

OCTREE VOXEL MODELING WITH MULTI-VIEW TEXTURING IN CULTURAL HERI-

TAGE SCENARIOS

Karsten Müller, Aljoscha Smolic, Birgit Kaspar, Philipp Merkle, Tobias Rein, Peter Eisert and Tho-
mas Wiegand

Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut

ABSTRACT

Reconstruction of 3D models of real world scenes and
objects and photo realistic rendering in interactive free
viewpoint applications is a challenging task combining
image processing, computer vision and computer graph-
ics. In this paper, we present a reconstruction pipeline for
cultural heritage applications. Starting with a number of
photographs of a scene, calibration information is ob-
tained and a 3D model is reconstructed using a hierarchi-
cal voxel approach. This octree reconstruction generates a
3D geometry that is further transformed into a wire frame
model for smoothing and surface primitive reduction. Fi-
nally, texture mapping in the form of view-dependent
multi-texture rendering is applied. This approach guaran-
tees original views at original camera positions and auto-
matic texture interpolation at intermediate positions dur-
ing scene navigation. Furthermore, the algorithm was
adapted to exploit automatic graphics card processing and
interpolation.

1. INTRODUCTION

Multi-view scene and object reconstruction became rather
common in recent years, due to a number of approaches
that were introduced recently. Among the 3D geometry
reconstruction methods are voxel approaches, which op-
erate on a set of mask information from all views and a set
of provided calibration data [4]. To limit the complexity
of voxel reconstruction, a hierarchical approach was in-
troduced, namely octree reconstruction [7], that is also
exploited for the cultural heritage reconstruction, intro-
duced in this paper. For the texturing or coloring of 3D
objects, two main classes of algorithms have been devel-
oped. The first class contains approaches for voxel-wise
coloring [6], while the second class deals with texture
mapping. Some of the texture mapping algorithms also
make use of hardware acceleration and were specifically
developed to fit the graphics-processing unit’s functional-
ities including view-dependent multi texturing [3], Light
field map-ping [2] or Lumigraph mapping [1]. However,
voxel coloring is only suited for a fine-resolved voxel

model, since each voxel can only take one constant color
value. For the chosen hierarchical octree approach, such
coloring is rather unsuitable. In this case, some of the
voxels might be rather coarse, depending on the object
surface. On the other hand, a constant coloring causes the
object surface to look identical no matter which viewpoint
is selected. Different lighting, reflections or even varying
colors from different viewpoints are thus omitted. More-
over, due to the limited voxel resolution, fine color details
on the surface cannot be reproduced. Therefore, texture
mapping is the method to use, as it projects a texture patch
onto the surface with the texture patch size adapted to the
voxel size. Often the reconstructed voxel object is trans-
formed into a wire frame to obtain a smoother surface
approximation of the real object and at the same time to
reduce the complexity. However, applying a constant
color to a triangle in the mesh does not give the desired
result and texture mapping is an applicable algorithm for
the representation of fine structures with coarse polygonal
meshes. Therefore, we present a reconstruction pipeline
for cultural heritage applications that uses a number of
photographs of a scene, constructs a 3D geometry as hier-
archical octree voxel model and applies a multi-view tex-
turing to exploit automatic graphics card processing and
interpolation.

2. CAMERA SETUP AND CALIBRATION

Fig. 1: Camera Positions along the temple

The modeling starts with the calibration of original cam-
era images. Fig. 1 shows the camera positions and direc-
tions that were used to capture images of a temple in Ang-
kor Vat to be reconstructed in 3D as small red arrows.
From this, a projection of significant points into 3D space
and resulting calibration and projection information is
generated, using available calibration software, see Fig. 2.

Fig. 2: Projected points in 3D-space

3. OCTREE-VOXEL-GENERATION

After obtaining the projection information, 3D geometry
reconstruction starts by applying an octree voxel ap-
proach. The algorithm operates on the silhouette informa-
tion of all views. A user-assisted segmentation is used to
obtain this silhouette information for each view. For 3D
modeling, an initial cube is placed into the 3D scene such
that its projection into all silhouette views covers the inte-
rior area completely. In the next stage, the cube is divided
into eight equivalent cubes one in each octant, if a 3D
orthogonal coordinate sys-tem would be placed into the
cube’s center and in parallel to the cube’s edges. Each
sub-cube is further projected in each view and treated with
respect to the following rules:

1. A cube that is completely inside the silhouettes
of all views, it is not subdivided further, i.e. it is com-
pletely inside the object to be reconstructed

2. A cube that is completely outside of at least sil-
houette is omitted.

3. All other cubes are further subdivided.

Subdivision is applied, until a certain minimum
voxel size is achieved. Fig. 3 shows the different voxel
resolutions resulting from the subdivision process, starting
with a coarse voxel resolution. Here only remaining vox-
els of a certain stage are shown, that are also part of the
final model.

Fig. 3: Different voxel resolutions during the Octree
generation process

Finally, the octree model is obtained, including all
resolution stages, as shown in Fig. 4. For better visualiza-
tion, the coarsest voxel are drawn in opaque red, while all
other resolution stages are drawn in transparent white.

Fig. 4: Reconstructed octree model, coarsest voxel
resolution red, finer resolutions transparent

4. SURFACE SMOOTHING

Although the voxel geometry is already suited for textur-
ing, visible artifacts would occur, if texture mapping is
applied onto the model at this stage. Therefore, the voxel
model is transformed into an irregular triangular wire
frame model that better approximates the original 3D ob-
ject and provides surface smoothing at the same time. A
general approach for voxel model transformation is the
marching cubes algorithm [5], where all cubes be-longing
to the object surface are triangulated. However, to obtain
a better approximation, also neighboring cubes need to be
considered, such that larger triangles can be formed in
surface areas, which are relatively planar. Fig. 5 shows a

wire frame transformation example, followed by a
smoothing operation.

Fig. 5: Transformation of voxel model into smoothed
wireframe

The algorithm begins with the triangulation of all
cube faces that belong to the object surface. These faces
where detected before, applying a marching cubes algo-
rithm. The result is a very dense wire frame, which is
smoothed and reduced, using automatic DirectX function-
ality for mesh processing. To combine also perpendicular
faces, resulting from adjacent cube sides, normal vector
comparison needs to be neglected for the mesh simplifica-
tion routines.

5. MULTI-VIEW TEXTURING

Finally, the 3D geometry needs to be textured. As already
mentioned, a constant coloring of geometric primitives,
i.e. voxel or triangles, is not suited for good viewing qual-
ity, as the triangles are rather large and constant coloring
does not show individual aspects from different views.
Therefore, a specific form of multi texturing is applied,
that guarantees relatively constant lighting conditions
when navigating through the scene and shows original
views, if the appropriate viewing direction is reached dur-
ing navigation. In general, texture interpolation is
achieved by weighting the available textures. These
weights are usually obtained by taking the dot product of
view vector and surface normal vector. For an untextured
model, this weighting is shown in Fig. 5, right. Each trian-

gle of the surface shows a different lighting, according to
its normal vector direction. Unfortunately, the triangular
surface structure is clearly visible not only for the untex-
tured but also for the textured model. Therefore, we use
an approach, where all surface triangles are illuminated
equally for a specific view. Instead of using the individual
normal vectors of each triangle separately, a common vec-
tor is used for all triangles for a constant texture weight
for texture mapping. This common vector equals the cam-
era vector of that view, since we want to have maximum
weighting, if the 3D scene is seen from the associated
original camera viewpoint. Note that although constant
illumination is now achieved for one texture, all other
textures have their own texture weight. This results in a
texture blending behavior, where textures are blended
together, considering their original camera direction. An
example of the textured temple model is shown in Fig. 6,
where an intermediate view was selected.

Fig. 6: Textured temple model

For a more detailed reconstruction example, the
temple model is shown in detail from two original and
intermediate viewpoint in Fig. 7.

Fig. 7: Model detail from original viewpoints (top) and
interpolated view (bottom)

For the texture interpolation, it is necessary to ana-
lyze the camera vectors w.r.t. their directions. Consider
different textures with their camera vectors Ci and view-
ing direction v. If texture weights would be calculated for
each view independently, e.g. as cosθ with θ being the
angle between v and Ci, lighting varies considerably dur-
ing scene navigation. Thus an approach similar to unstruc-
tured lumigraph rendering was taken from [8] and applied
as shown in Fig. 8:
 v

C1

C3

C2

CN

θ1 θ2

θ3

θN

=

≠
−=

1cos,_

1cos,
cos1

cos

i

i
i

i

i

MaxFloat
w

θ

θ
θ

θ
 (1)

∑
∀

=

i
i

i
i

w

w
a (2)

Fig. 8: Unstructured Lumigraph Rendering [SOURCE
[8]]: Top: Calculate all cosθθθθ between viewing direction
v and camera vectors Ci, Bottom: weighting calcula-
tion for each view

First, cosines are calculated as already described, but
than relative weighting functions are calculated as shown
in (1). This function provides a weight that reaches infin-
ity, if viewing direction and camera vector are parallel and
drops to 0, if both directions are perpendicular. For angles
>90°, weights are assumed to be 0, since back face clip-
ping is provided. After calculating all relative weights wi,
absolute weights ai are obtained by normalizing them as
shown in (2). This approach results in absolute weights
that guarantee constant lighting during rendering, smooth
interpolation and show a single original texture, if an
original camera position is reached. The last condition
results from the relative weights being nearly infinite at
these positions. Due to the normalization, this weight is
finally divided by the sum of all weights, which causes an
absolute weight ai of one, while all other absolute weights
are neglected. Rendering is finally carried out, using the
texture weights for the associated textures and applying
view-dependent multi-texturing as multistage blending.

6. CONCLUSIONS

In this paper, we have shown a 3D reconstruction pipeline
for cultural heritage scenarios, starting with a number of
camera images. The images are used to extract calibration
information for building a hierarchical octree voxel
model. For surface smoothing and surface primitive re-
duction, a transformation step for obtaining a triangular
wire frame model was applied. In the last step, texture
mapping was carried out in the form of multi texturing
using adaptively calculated texture weights to provide
constant lighting when navigating through the scene.
Thus, a 3D model was build using only a limited subset of
views for texturing and automatically interpolated remain-
ing intermediate views. Currently investigations about
reconstruction quality are carried out, if different numbers
of input textures are used. Furthermore, research contin-
ues on 3D geometry with multiple video textures, where a
wireframe is required for each time instance.

9. REFERENCES

[1] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M.

Cohen, “Unstructured Lumigraph Rendering”, Proceedings
of SIGGRAPH 2001, pp. 425-432, 2001.

[2] W. C. Chen, J. Y. Bouguet, M. H. Chu and R. Grzeszczuk,
“Light Field Mapping: Efficient Representation and Hard-
ware Rendering of Surface Light Fields”, Proceedings of
ACM SIGGRAPH, pp. 447-456, 2002

[3] P. Debevec, C. Taylor and J. Malik, “Modeling and render-
ing architecture from photographs: A hybrid geometry- and
image based approach”, Proceedings of SIGGRAPH 1996,
pp. 11-20, 1996

[4] P. Eisert, B. Girod, “Multi-hypothesis, Volumetric Recon-
struction of 3-D Objects from Multiple Calibrated Camera
Views”, ICASSP, pp. 3509-3512, Phoenix, Mar. 1999

[5] W. E. Lorensen, and H. E. Cline, “Marching Cubes: a high
resolution 3D surface reconstruction algorithm”, Proceed-
ings of SIGGRAPH, vol. 21, no. 4, pp 163-169, 1987.

[6] S. M. Seitz and C. R. Dyer, “Photorealistic Scene Recon-
struction by Voxel Coloring”, Proc. Computer Vision and
Pattern Recognition Conf., pp. 1067-1073, 1997.

[7] R. Szeliski, "Rapid Octree Construction from Image Se-
quences", CVGIP: Image Understanding, Vol. 58, No. 1,
July, pp. 23-32, 1993

[8] D. Vlasic, H. Pfister, S. Molinov, R. Grzeszczuk and W.
Matusik, “Opacity Light Fields: Interactive Rendering of
Surface Light Fields with View-dependent Opacity”, Proc.
Of 2003 symposium on Interactive 3D graphics, pp. 65-74,
2003.

