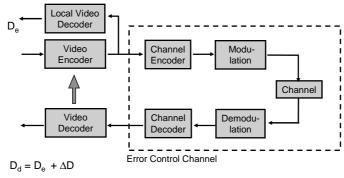
Video Transmission


- Transmission of Hybrid Coded Video
- Error Control Channel
- Motion-compensated Video Coding
- Error Mitigation
- Scalable Approaches
- Intra Coding
- Distortion-Distortion Functions
- Feedback-based Error Control

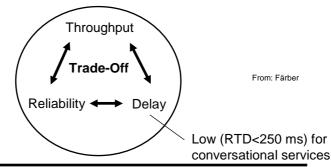
Thomas Wiegand: Digital Image Communication

Video Transmission 1

Transmission of Hybrid Coded Video

 $PSNR_d = PSNR_e - \Delta PSNR$

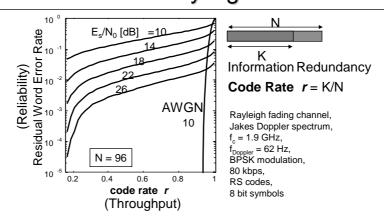
 $(PSNR = 10 log(255^2/D) [dB])$


How do system components interact?

From: Färber

Thomas Wiegand: Digital Image Communication

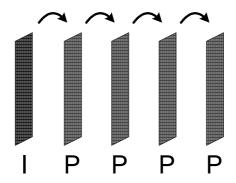
Error Control Channel


- Combination of
 - Channel codec
 - Modulation
 - Channel
- Interface to video codec

Thomas Wiegand: Digital Image Communication

Video Transmission 3

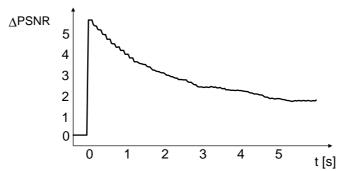
AWGN and Rayleigh Channel



- Code rate r controls bit allocation between source and channel coding
- Trade-off reliability vs. throughput depends on ECC

From: Färber

Motion-Compensated Coding of Video



- ■If just one frame is missing → reference pictures at coder and decoder differ → error propagation
- ■Error decays slowly → mitigate error propagation

Thomas Wiegand: Digital Image Communication

Video Transmission 5

Recovery from Single Burst

- Single burst covering 1/3 of a frame
- Previous frame concealment
- Average over many trials
- No Intra

Thomas Wiegand: Digital Image Communication

Temporal Error Propagation

- 1 picture = 1 packet
- 10 % packet loss probability

Sources of Bad Video at the Decoder

- Source coding distortions
 - Not enough bit-rate available for targeted spatio-temporal resolution
 - · Large activity in the video signal
 - · Many scene cuts
- Transmission errors and throughput variation
 - Channel noise
 - Fading
 - · Cell overload and variations

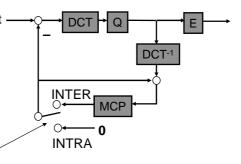
Set source coding and transmission system parameters for best decoder video quality given the application constraints

Applications and Constraints

- Conversational vs. non-conversational services
- Unicast vs. multicast: single vs. multiple possibly heterogeneous transmission conditions
- Delay constraints:
 - 250 ms RTT for conversational services.
 - ≈ 2-3 s or more play-out delay for unicast streaming
 - ≈ 0.5 s for multicast streaming
- High vs. low bit-rate coding: source coding performance
- Off-line vs. on-line encoding: adaptation possibilities
- Feedback: with or w/o per picture or statistical feedback

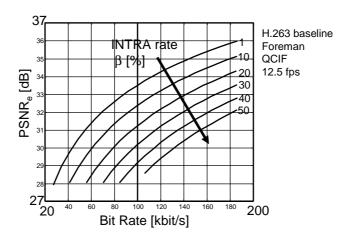
Thomas Wiegand: Digital Image Communication

Video Transmission 9

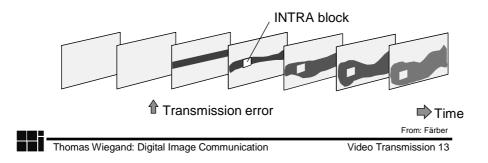

Videoconferencing: On-line Encoding, Low Delay

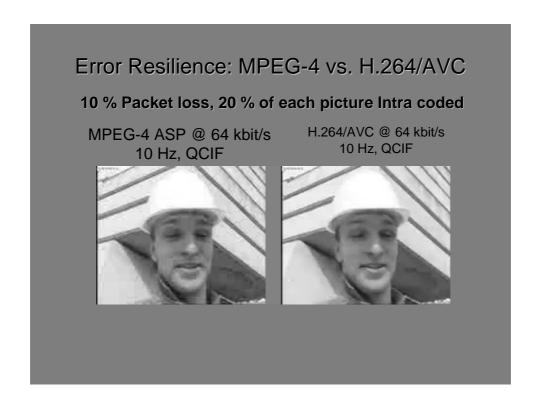
- Conversational services:
 - Low bit-rates (< 100 kbit/s): QCIF/CIF pictures @ 10/15 Hz
 - Low RTT < 250 ms corresponding to 2-3 picture intervals
- Methods for improvement
 - Reduce number of errors
 - Increased FEC: decreases source bit-rate/quality
 - No retransmissions possible
 - Mitigate impact of errors
 - Concealment of lost pictures
 - Intra block coding: stop temporal error propagation
 - Multi-frame prediction from acknowledged references
 - Intra-picture scalability: syntax (spatial, SNR)

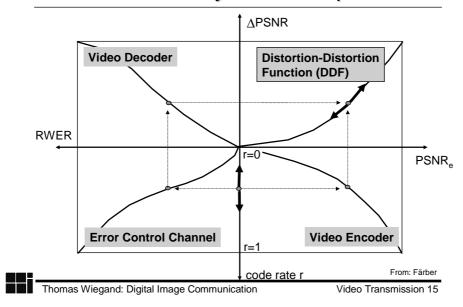
Video Encoder


- Hybrid video coding is the most successful compression scheme and used in all current standards (MPEG-1/2/4, H.261, H.263, H.264/AVC...)
- Motion-compensated prediction provides efficiency
- Transform coding of prediction error
- INTRA/INTER mode decision on block basis (INTRA rate β)

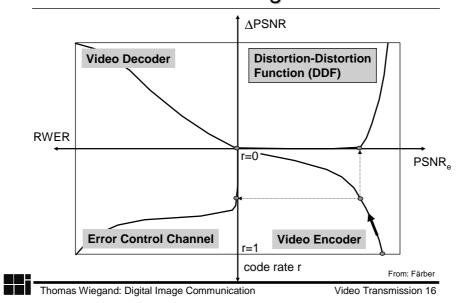
Thomas Wiegand: Digital Image Communication

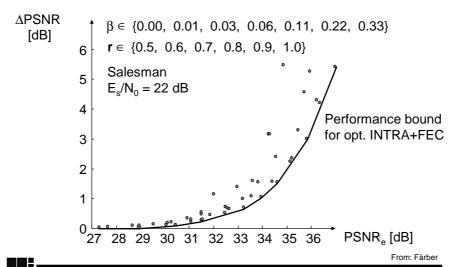

Video Transmission 11


Rate-Distortion Performance


Video Decoder

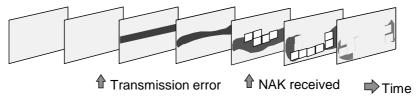
- MCP causes spatio-temporal error propagation in case of a transmission error
- Resynch. and error concealment of limited help
- INTRA coding helps but reduces coding efficiency
- Loop filter introduces leakage




Interaction of System Components

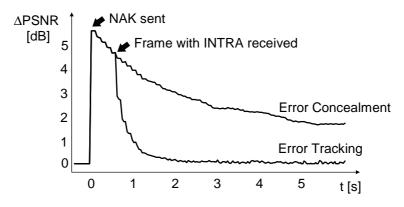
When Channel Coding Does the Job

Performance Bound for INTRA+FEC



Thomas Wiegand: Digital Image Communication

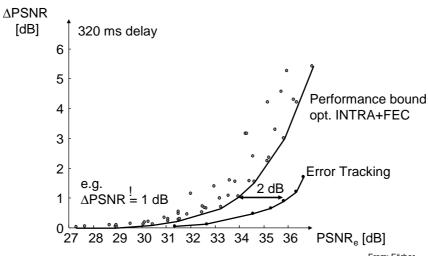
Video Transmission 17


Feedback-Based Error Control

- Spatio-temporal error propagation can be reconstructed at the encoder using an Error Tracking algorithm and feedback from the decoder
- Feedback consists of sending Negative Acknowledgements (NAKs) for lost image parts
- Use INTRA-mode for macroblocks affected by transmission errors to stop error propagation

Thomas Wiegand: Digital Image Communication

Recovery from Single Burst



- Same conditions as above
- 700 ms RTD

Thomas Wiegand: Digital Image Communication

Video Transmission 19

Comparison of DDFs

Video Transmission 20

Thomas Wiegand: Digital Image Communication

Demo

■ Sequence: Salesman, frames 0-300, 15 fps ■ Rayleigh Fading, E_S/N₀ = 22 dB, f_D = 62 Hz

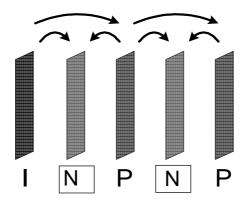
■ FEC block size: 88 byte (1 GOB) ■ BPSK, $f_c = 1900 \text{ MHz}$, 80 kbps

High error resilience	High coding efficiency
Low coding efficiency	Low error resilience
β = 33/99	β = 1/99
r = 48/88	r = 88/88
PSNR _e = 26.8	PSNR, = 37.2
PSNR _d = 26.7	PSNR, = 28.8
Δ PSNR = 0.1	Δ PSNR = 8.4
$\begin{array}{c} \text{Max PSNR at decoder} \\ \text{(Good compromise)} \\ \text{$\beta=6/99$} \\ \text{$r=72/88$} \\ \text{PSNR}_{\text{$\theta=34.3$}} \\ \text{PSNR}_{\text{$\theta=32.7$}} \\ \text{$\Delta\text{PSNR}=1.6$} \end{array}$	T = 3 r = 72/88 PSNR _e = 35.6 PSNR _d = 34.5 ΔPSNR = 1.1

From: Färber

Thomas Wiegand: Digital Image Communication

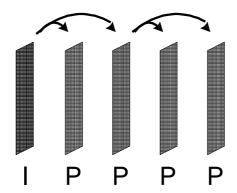
Video Streaming: Off-line Encoding, High Delay


- Wireless streaming services
 - Medium bit-rates (100-300 kbit/s): QCIF/CIF pictures @ 15/30 Hz
 - High delay ≈ 2-3 s corresponding to 30/60 45/90 pictures
- Methods for improvement
 - Reduce number of errors
 - Retransmissions decrease source bit-rate/quality • Inc. FEC (Multicast)
 - Adjust source bit-rate to average throughput
 - Mitigate impact of errors
 - Inter-picture scalability: insertion of non reference pictures
 - Concealment and intra-picture methods of less importance

Thomas Wiegand: Digital Image Communication

Video Transmission 23

Temporal Scalability with B-Pictures



- •non-reference pictures (N) maybe discarded
- Requires large delay
- Unequal protection

Thomas Wiegand: Digital Image Communication

P-Picture with Switched Reference

- Every other P picture maybe discarded
- Rate-Distortion performance problems
- Unequal protection

Thomas Wiegand: Digital Image Communication

Video Transmission 25

Summary: Video Transmission

- Transmission of video requires consideration of source coding and transmission channel
- Transmission channel is often lumped into unit called:
 Error Control Channel
- In videoconferencing, transmission errors are often not avoidable
- Motion-compensated prediction leads to spatio-temporal error propagation if error concealment is applied at decoder
- Video encoder can be controlled to stop spatio-temporal error propagation
- Trade-off must be balanced considering the complete system
- Distortion-distortion functions evaluate trade-off
- Feedback provides improved performance
- In video streaming, channel coding (i.e. re-transmissions) and temporal scalability can do the job

Thomas Wiegand: Digital Image Communication