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Abstract|We show that traditional waveform-coding and
3-D model-based coding are not competing alternatives but
should be combined to support and complement each other.
Both approaches are combined such that the generality of
waveform coding and the eÆciency of 3-D model-based cod-
ing are available where needed. The combination is achieved
by providing the block-based video coder with a second
reference frame for prediction which is synthesized by the
model-based coder. The model-based coder uses a param-
eterized 3-D head model specifying shape and color of a
person. We therefore restrict our investigations to typi-
cal videotelephony scenarios that show head-and-shoulder
scenes. Motion and deformation of the 3-D head model con-
stitute facial expressions which are represented by facial ani-
mation parameters (FAPs) based on the MPEG-4 standard.
An intensity gradient-based approach that exploits the 3-D
model information is used to estimate the FAPs as well as
illumination parameters that describe changes of the bright-
ness in the scene. Model failures and objects that are not
known at the decoder are handled by standard block-based
motion-compensated prediction which is not restricted to a
special scene content, but results in lower coding eÆciency.
A Lagrangian approach is employed to determine the most
eÆcient prediction for each block from either the synthe-
sized model frame or the previous decoded frame. Exper-
iments on �ve video sequences show that bit-rate savings
of about 35 % are achieved at equal average PSNR when
comparing the model-aided codec to TMN-10, the state-of-
the-art test model of the H.263 standard. This corresponds
to a gain of 2-3 dB in PSNR when encoding at the same
average bit-rate.

I. Introduction

In recent years, several video coding standards, such as
H.261, MPEG-1, MPEG-2, and H.263, have been intro-
duced to address the compression of digital video for stor-
age and communication services. H.263 [1] as well as the
other standards describe a hybrid video coding scheme,
which consists of block-based motion-compensated predic-
tion (MCP) and DCT-based quantization of the prediction
error. The future MPEG-4 standard [2] will also follow
the same video coding approach. These schemes utilize the
statistics of the video signal without knowledge of the se-
mantic content of the frames and can therefore be used for
arbitrary scenes.
In case semantic information about a scene is suitably in-

corporated, higher coding eÆciency may result with model-
based video codecs [3], [4]. For example, 3-D models that

describe the shape and texture of the objects in the scene
could be used. The 3-D object descriptions are encoded
only once. When encoding a video sequence, individual
frames are characterized by 3-D motion and deformation
parameters of these objects. In most cases, such parame-
ters can be transmitted at extremely low bit-rates. Unfor-
tunately, such a codec lacks generality. It is restricted to
scenes that can be composed of objects that are known
by the decoder. One typical class of scenes are head-
and-shoulder sequences which are frequently encountered
in applications such as videotelephony or videoconferenc-
ing. For head-and-shoulder scenes, bit-rates of about 1
kbps with acceptable quality can be achieved [5]. This has
also motivated the recently determined Synthetic and Nat-

ural Hybrid Coding (SNHC) part of the MPEG-4 standard
[2]. SNHC allows the transmission of a 3-D face model that
can be animated to generate di�erent facial expressions.

The transmission of SNHC-based 3-D models is sup-
ported in combination with 2-D video streams [2]. The
video frame is composited at the decoder out of arbitrarily
shaped video object planes (VOP), and each VOP can be
either synthesized or conventionally generated by a DCT-
based motion-compensated hybrid decoder. Due to the in-
dependent encoding of the VOPs and the additional bit-
rate needed for transmitting their shapes, MPEG-4 SNHC
may require a prohibitive amount of overhead information.

Another coding approach that uses multiple compres-
sion strategies has been proposed as dynamic coding [6].
Choosing from several available compression techniques,
the frames are segmented in a rate-distortion optimal sense.
Again, the shape information of the regions has to be trans-
mitted as side information and encoding of individual re-
gions is performed independently.

The combination of traditional hybrid video coding
methods with model-based coding has been proposed by
Chowdhury et al. in 1994 [7]. In [7] a switched model-based

coder is introduced that decides between the encoded out-
put frames from an H.261 coder and a 3-D model-based
coder. The frame selection is based on rate and distortion.
However, the mode decision is only done for a complete
frame and therefore the information from the 3-D model
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cannot be exploited if parts of the frame cannot be de-
scribed by the model-based coder.

An extension to the switched model-based coder is the
layered coder published by Musmann in 1995 [8] as well as
Kampmann and Ostermann in 1997 [9]. The layered coder
chooses the output from up to �ve di�erent coders. The
mode decision between the layers is also done frame-wise
or object-wise and, again, encoding in the various modes
is carried out independently.

In this paper we present an extension of an H.263 video
codec [1] that incorporates information from a model-based
coder in a novel way. Instead of exclusively predicting
the current frame of the video sequence from the previ-
ous decoded frame, motion compensated prediction using
the synthesized output frame of the model-based coder is
also considered. Thus, our codec employs multi-frame pre-

diction with M = 2 frames. In our previous work, we have
explored multi-frame prediction with up to M = 50 frame
stores [10]. However, these frame stores either contain past
reconstructed frames directly, or warped versions of these
[11], [12], but not yet synthetic frames generated with a
3-D model.

With multi-frame prediction, the video coder decides
which frame should be used for each block by minimizing
a Lagrangian cost function D + �R, where distortion D is
minimized together with rate R. The Lagrange parameter
� controls the balance between distortion and rate. A large
value of � corresponds to low bit-rate and large distortion
while a small � results in high bit-rate and low distortion
[13], [14], [15]. The minimization proceeds over all avail-
able prediction signals and chooses the most eÆcient one
in terms of the cost function.

The incorporation of the model-based coder into the
motion-compensated predictor allows the coder to further
re�ne an imperfect model-based prediction. Neither the
switched model-based coder [7] nor the layered coder [8],
[9] nor MPEG-4 SNHC [2] allow eÆcient residual coding
of the synthesized frame. In contrast, the coding eÆciency
of our \model-aided codec" (MAC) never degrades below
H.263 in the case the model-based coder cannot describe
the current scene. However, if the objects in the scene
correspond to the 3-D models in the codec, a signi�cant
improvement in coding eÆciency can be achieved.

This paper is organized as follows. In Section II, we de-
scribe the architecture of the video coder that combines the
traditional hybrid video coding loop with a model-based
coder that is able to encode head-and-shoulder scenes at
very low bit-rates. In Section III, the underlying semantic
model is presented and the algorithm for the estimation of
Facial Animation Parameters (FAPs) that determine the
rendered output frame is explained. Given the rendered
output frame of the model-based coder, we describe how bit
allocation is done in our combined block- and model-based
coder using Lagrangian optimization techniques (Section
IV). Finally, experimental results verify the improved rate-
distortion performance of the proposed scheme compared
to TMN-10, the test model of the H.263 standard (Section
V).

II. Video Coding Architecture

Figure 1 shows the architecture of the proposed model-
aided video coder. It depicts the well-known hybrid video
coding loop that is extended by a model-based codec. The
model-based codec runs in parallel to the hybrid video
codec, generating a synthetic model frame. This model
frame is employed as a second reference frame for block-
based MCP in addition to the previous reconstructed ref-
erence frame. For each block, the video coder decides which
of the two frames to use for MCP. The bit-rate reduction for
the proposed scheme compared to single-frame prediction
arises from those parts in the image that are well approx-
imated by the model frame. For these blocks, the bit-rate
required for transmission of the motion vector and DCT
coeÆcients for the residual coding is often dramatically re-
duced.
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Fig. 1. Structure of the \model-aided coder". Traditional block-
based MCP from the previous decoded frame is extended by pre-
diction from the current model frame.

Incorporating the model-based codec into an H.263 video
codec requires syntax extensions. To enable multi-frame
MCP, the inter-prediction macroblock modes INTER and
UNCODED are assigned one code word representing the
picture reference parameter for the entire macroblock. The
INTER-4V macroblock mode utilizes four picture refer-
ence parameters, each associated with one of the four 8�8
block motion vectors. For further details on H.263 syntax,
please refer to the ITU-T Recommendation [1].

In addition to the picture reference parameter for each
block, the FAPs for synthesizing the model frame at the
decoder are included in the picture header. In the next
section, we describe the model-based codec in more detail.
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After that, we return to the combined video codec and
explain the coder control.

III. Model-Based Codec

The structure of the model-based codec which is described
in the following is depicted in Fig. 2. The coder analyzes
the incoming frames and estimates the parameters of the
3-D motion and deformation of the head model. These de-
formations are represented by a set of FAPs that are quan-
tized, entropy-coded, and transmitted through the channel.
The 3-D head model with its facial expression synthesis are
incorporated into the parameter estimation. The 3-D head
model consists of shape, texture, and the description of
facial expressions. For synthesis of facial expressions, the
transmitted FAPs are used to deform the 3-D head model.
Finally, the original video frame is approximated by ren-
dering the 3-D model using standard computer graphics
techniques.

A. 3-D Head Model

For the description of the shape of head and shoulder, we
use a generic 3-D model employing a triangle mesh with
�xed topology similar to the well-known Candide model
[16]. Texture is mapped onto the triangle mesh to ob-
tain photo-realistic appearance. In contrast to the Candide
model, we describe the object's surface with triangular B-
splines [17] in order to reduce the number of degrees of
freedom of the shape. This simpli�es modeling and estima-
tion of the facial expressions and does not severely restrict
the possible shapes of the surface since facial expressions
result in smooth movements of surface points due to the
anatomical properties of tissue and muscles. B-splines are
well suited to model the surface properties of facial skin,
as shown, e.g., by Hoch et al. [18].
To reduce the computational complexity of rendering,

the B-splines are only evaluated at �xed discrete positions
of the surface. These points form the vertices of a triangle
mesh that approximates the smooth B-spline surface. The
number of vertices and thus triangles can be varied to trade
approximation accuracy against rendering complexity. The
positions of the vertices in 3-D space and the shape of the
head are determined in our model by the location of 231
control points of the B-spline surface.
The resulting triangle mesh is colored by mapping tex-

ture onto the surface [19]. To each vertex of the mesh,
a �xed texture coordinate is assigned that is obtained by
projecting the neutral vertex position on a cylindric surface
that speci�es the texture map.
An example of such a triangle mesh together with the

corresponding textured model is shown in Fig. 3.

B. Synthesis of the Model Frame

The synthesis of the model frame consists of �rst animat-
ing the 3-D head model using the FAPs and then render-
ing the model frame. The mechanism by which changes
of the FAPs inuence the shape and mimic of the face in
the rendered model frame is de�ned by a set of cascaded
transformations as shown in Fig. 4. Given a set of FAPs

Fig. 3. Left: hidden-line representation of the head model, right:
corresponding textured version.

de�ning a certain facial expression, the corresponding 2-D
model frame is created by �rst placing the control points in
order to shape the B-spline surface. Using the basis func-
tions of the B-splines, the algorithm computes the position
of the vertices from the control points. The 3-D location of
all object points on the triangle surface is speci�ed by their
barycentric coordinates. Finally, the 2-D object points in
the model frame are obtained by projecting the 3-D points
into the image plane. In the following, all transformations
are explained in more detail.

B.1 Deformation of 3-D Model

We parameterize a person's facial expressions following the
proposal of the MPEG-4/SNHC group [2]. According to
that scheme, every facial expression can be generated by
a superposition of di�erent basic expressions, each quanti-
�ed by a facial animation parameter (FAP). These FAPs
describe elementary motion �elds of the face's surface in-
cluding both global motion, like head rotation, and local
motion, like eye or mouth movement. The vector FAP
that contains all K facial animation parameter values

FAP = [FAP0 FAP1 : : : FAPk : : : FAPK�1]
T (1)

then describes the complete facial expression.
Changes of FAPs inuence the shape and facial expres-

sion of the 3-D head model. The relation between a param-
eterized facial expression and the surface shape is de�ned
by a set of transformations that is applied to the control
points of the B-spline surface. The �nal control point po-
sition ci is obtained by concatenating all transformations,
each associated with one FAP, according to

ci = TFAPK�1(: : : TFAP1(TFAP0(ci0))); (2)

with ci0 being the initial control point location correspond-
ing to a neutral expression of the person. Each transforma-
tion corresponding to a FAP describes either a translation
or a rotation that is quanti�ed by the parameter FAPk

TFAPk(ci) =

�
ci + dik � FAPk translation,

RFAPk(ci � ok) + ok rotation:
(3)

In case of a translation, the control point ci is moved in
direction dik by the amount of jjdikjj � FAPk. For rota-
tional movements, the control point ci is rotated around
ok as speci�ed by the rotation matrix RFAPk . RFAPk is
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Fig. 2. Basic structure of our model-based codec.
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Fig. 4. Transformation from FAPs to image points.

determined by a �xed rotation axis and a rotation angle
proportional to the parameter FAPk.
To generate facial expressions speci�ed by a set of FAPs,

the transformations are computed and sequentially applied
on the control point positions. Note that the resulting fa-
cial expression is not independent of the order of the trans-
formations. For the rendering of new expressions, we �rst
deform the neutral head model locally and apply the global
head rotation and translation last.

B.2 B-Spline Surface Approximation by Triangle Meshes

Once all control points are properly positioned according
to the FAPs, the shape of the B-spline surface is fully de-
termined. To approximate this surface by a triangle mesh,
we compute the position of the mesh's vertices. This is
accomplished using the linear relation

vj =
X
i2Ij

bjici (4)

between a vertex vj and the control points ci with bji be-
ing the basis functions of the B-spline. The basis function
values are computed only once and stored in a list. Ij is
the index set that contains the indices of the control points
that inuence the position of vertex vj . The number of
indices in this set is usually between 3 and 6.
From the position of the vertices, arbitrary object points

x on the surface of the triangle mesh are computed using

x =
X
j2I

�jvj (5)

where �j are the barycentric coordinates of the object point
relative to the surface triangle enclosing it. The index set
I contains the three indices of the vertices forming the
triangle.

B.3 Perspective Projection

Given the 3-D object points, a 2-D model frame is rendered
using perspective projection. The geometry of the camera
model is shown in Fig. 5. The 3-D coordinates of an object

y

xz

Y

X

x

Y0X  , 0

object

image
plane

Fig. 5. Camera model and its associated coordinate systems.

point x = [x y z]T are projected into the image plane
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[X Y ] according to

X = X0 � fx
x

z

Y = Y0 � fy
y

z
; (6)

with fx and fy denoting the scaled focal length parameters
that allow the use of non-square pixel geometries. The two
parameters X0 and Y0 describe the location of the opti-
cal axis and can account for its deviation from the image
center due to inaccurate placement of the image sensor in
the camera. The four parameters fx, fy, X0 and Y0 are
obtained from an initial camera calibration using Tsai's
algorithm [20].

C. Scene Analysis and Encoding of Facial Animation Pa-

rameters

The model-based coder analyzes the incoming frames and
estimates the 3-D motion and facial expression of a per-
son. The determined FAPs are quantized, entropy-coded,
and transmitted. The 3-D head model and the motion
constraints used by the facial expression synthesis are in-
corporated into the parameter estimation as described in
the following.

C.1 Facial Parameter Estimation

In our model-based coder all FAPs are estimated simul-
taneously using a hierarchical optical ow based method
[21]. We employ a hierarchy of 3 spatial resolution lay-
ers with CIF as the highest resolution and each subse-
quent lower resolution layer subsampled by a factor of two
vertically and horizontally. We use the whole picture of
the face for the estimation, in contrast to feature-based
approaches, where only discrete feature point correspon-
dences are exploited. To simplify the optimization in the
high-dimensional parameter space, a linearized solution is
directly computed from the optical ow with the motion
constraints of the head model.

Model

Analysis

Synthesis

Shape
Texture
Expressions
Illumination

facial parameters
camera    I(n)

image

Î(n−1)

synthetic
image

Fig. 6. Analysis-synthesis loop of the coder.

In the optimization, an analysis-synthesis loop is em-
ployed [22] as shown in Fig. 6. The algorithm estimates the

facial parameter changes between the previous synthetic
frame Î [n � 1] and the current frame I [n] from the cam-
era video sequence. This approximate solution is used to
compensate the di�erences between the two frames by ren-
dering the deformed 3-D model at the new position. The
remaining linearization errors are reduced by repeating this
procedure in the analysis-synthesis loop.
Note that in our experiments the texture map of the head

model, once complete, is not updated during the video se-
quence. All changes between the model image and the
video frame must therefore be compensated by the under-
lying 3-D model, the motion model, and the illumination
model. To cope with changes in illumination which have a
strong inuence on the image intensities we also estimate
the current lighting frame-by-frame [23]. The parameters
that describe the direction and intensity of the incident
light are then used at the decoder to reduce the di�erences
between camera and model frames caused by photometric
e�ects.
In the following, the components of the model parameter

estimation algorithm are described in more detail.

C.2 3-D Motion Constraint

The 3-D head model restricts the possible deformations in
the face to facial expressions that can be controlled by the
FAPs. Thus, the motion of any surface point can be de-
scribed by a function of the unknown FAP changes. This
motion constraint can be derived from the �rst three trans-
formations depicted in Fig. 4 and describes the relation
between the 3-D motion and changes of FAPs.
Following the description of the transformations in sec-

tion III-B we can set up one 3-D motion equation for each
surface point. Instead of the 6 parameters specifying a rigid
body motion, we have a much larger number of unknowns.
Rather than estimating the absolute values of the FAPs,
we track their evolution over time and estimate relative
changes between the previous and the current frame. The
analysis-synthesis loop assures that no error accumulation
occurs when relative changes are summed up for a long
time. In order to obtain a constraint for relative motion
between two frames we have to reformulate (2){(5).
In a �rst step, a relation between the control point po-

sition c0i of the current frame and the one of the previous
frame ci is established. This relation is given by (2) and
(3). To obtain the new control point coordinates we have
to apply the inverse transformations of the previous frame
T�1

FAP0
; : : : ; T�1

FAPK�1
in descending order and then the

transformations of the current frame T 0
FAP0

; : : : ; T 0
FAPK�1

in ascending order

c
0
i = T 0

FAPK�1
(: : : T 0

FAP0
(T�1

FAP0
(: : : (T�1

FAPK�1
(ci)))): (7)

This leads to a complicated non-linear expression which
cannot easily be incorporated into a parametric motion es-
timation framework. However, one may assume that the
rotation angles due to changes in the FAPs are relatively
small between two successive video frames. The rotation
of a control point around an axis with direction ! can then
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be substituted by a translation along the tangent

TFAPk(ci) = �RFAPk (ci�ok)+ok � ci+dik��FAPk (8)

with
dik = sk(! � (ci � ok)): (9)

The factor sk determines the scaling of the corresponding
FAP and

�FAPk = FAP 0
k � FAPk (10)

is the change of the facial animation parameter k between
the two frames. We now have a uniform description for
both rotation as well as translation and can estimate both
global as well as local motion simultaneously. The small
error caused by the approximation is compensated after
some iterations in the feedback structure shown in Fig. 6.
The desired function for the control point motion results
in

c
0
i = ci +

X
k

�FAPkd̂ik; (11)

with d̂ik being the 3-D motion-compensated direction vec-
tor dik of the previous frame.
Combination of (5) and (11) leads to the motion equation

for an arbitrary surface point as

x
0 = x+

X
k

tk�FAPk = x+T ��FAP; (12)

where the tk's are the new direction vectors corresponding
to the facial animation parameters which are calculated
from d̂ik by applying the linear transforms (4) and (5).
T combines all direction vectors in a single matrix of size
3 �K and �FAP is the vector of all FAP changes. The
matrix T can be derived from the 3-D model, but has to be
set up for each surface point independently. The 3D mo-
tion constraint (12) describes the change of the 3-D point
location x0�x as a linear function of FAP changes�FAP.

C.3 Gradient-based FAP Determination

For the estimation of the facial expression parameters, we
use the well-known optical ow constraint equation

IX � u+ IY � v + It = 0 (13)

where [IX IY ] is the gradient of the intensity at point
[X Y ], u and v are the velocity in x- and y-direction, and
It the intensity gradient in the temporal direction. We can
set up (13) for each pixel of a head-and-shoulder scene, but,
unfortunately, this results in twice as many unknowns u,
v as equations. Hence, we need additional constraints to
compute a unique solution [22], [24]. Instead of determin-
ing the optical ow �eld by using smoothness constraints
and then extracting the motion parameter set from this
ow �eld, we directly estimate the facial animation param-
eters from (13) by inserting the 3-D motion constraints
(12). Our technique is very similar to the one described
in [25]. One main di�erence is that we estimate the mo-
tion from synthetic frames and camera images using an
analysis-synthesis loop as shown in Fig. 6. This permits a

hierarchical framework that can handle larger motion vec-
tors between two successive frames. Another di�erence be-
tween the two approaches is that we use a textured 3-D
model to generate new synthetic views of our virtual scene
after estimating the motion.
Writing (12) for each component leads to

x0 = x(1 +
1

x
tx ��FAP) (14)

y0 = y(1 +
1

y
ty ��FAP) (15)

z0 = z(1 +
1

z
tz ��FAP): (16)

with tx, ty and tz being the row vectors of matrixT. Divid-
ing (14) and (15) by (16), incorporating the camera model
(6) and using a �rst order approximation yields

u = X 0 �X � �1

z
(fxtx + (X �X0)tz)�FAP(17)

v = Y 0 � Y � �1

z
(fyty + (Y � Y0)tz)�FAP: (18)

These equations serve as the motion constraint in the 2-D
image plane. Together with (13), a linear equation for each
pixel can be written as

1

z
(IXfxtx + IY fyty+ (19)

[IX (X �X0) + IY (Y � Y0)]tz)�FAP = It

with z being the depth information obtained from the
model. This over-determined system is solved in a least-
squares sense with low computational complexity. The size
of the system depends directly on the number of FAPs.
Since the system of equations is highly over-determined,

we can discard possible outliers. These outliers are de-
tected by analyzing the partial derivatives of the intensity.
Due to the linear approximation of the image intensity, the
optical ow constraint equation (13) is only valid for small
displacement vectors. If the estimate of the displacement
vector length l̂ for the pixel at position [X Y ]

l̂(X;Y ) =

s
I2t

I2X + I2Y
(20)

is larger than a threshold, we do not use it for motion
estimation.
In order to increase the robustness of the high-

dimensional parameter estimation, the range of the pa-
rameter space is restricted. Inequality constraints given by
matrices A and B and vectors a and b specify the allowed
range for the FAPs

A � FAP � a (21)

or restrict the changes in the facial parameters between two
successive frames

B ��FAP � b: (22)
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Note that each row of the matrices correspond to one in-
equality constraint. In our current implementation, the
matrices A and B are zero except for a single 1 or -1 in
each row leading to a simple restriction of the valid param-
eter range of the form

mini � FAPi � maxi (23)

�mini � �FAPi � �maxi:

Currently, constraints are used for 6 facial animation pa-
rameters that control the eyelids, the jaw, the lower mid-
lip, and the lip corners. The additional terms are incor-
porated in the optimization of the least-squares problem
given by (19) using a least-squares estimator with inequal-

ity constraints (LSI) [26].

C.4 Illumination Estimation

The optical ow constraint equation (13) is based on the
constant-brightness assumption. However, this assumption
is only approximately valid, or, in some cases, not at all.
Obviously, if the lighting in the scene changes, we no longer
�nd the same brightness at corresponding object points.
But also if the orientation of the object surface relative
to a light source or to the observer changes due to object
motion, brightness is in general not constant.
To overcome the constant brightness assumption we add

an illumination component to the scene model that de-
scribes the photometric properties for colored light and sur-
faces. In contrast to the methods proposed in [27] and [28]
we incorporate the 3-D information from our head model
which leads to a linear, low-complexity algorithm for the
estimation of the illumination parameters.
The incident light in the original scene is assumed to

consist of ambient light and a directional light source with
illumination direction l. The surface is modeled by Lam-
bertian reection, and thus the relation between the video
frame intensity I and the corresponding value Itex of the
texture map is

IR = IRtex(c
R
amb + cRdir �maxf�n � l; 0g)

IG = IGtex(c
G
amb + cGdir �maxf�n � l; 0g)

IB = IBtex(c
B
amb + cBdir �maxf�n � l; 0g); (24)

with camb and cdir controlling the intensity of ambient and
directional light, respectively [23]. The surface normal n is
derived from the 3-D head model. The Lambertian model
is applied to all three RGB color components separately
with a common direction of the incident light. The equa-
tions (24) thus contain 8 parameters that characterize the
current illumination. By estimating these parameters cCamb,
cCdir with

C 2 fR;G;Bg; (25)

we are able to compensate brightness di�erences of corre-
sponding points in the synthesized frame and the camera
frame.
The non-linear maximum function in (24) complicates

the estimation of the illumination parameters. Since the
system of equations is over-determined, we can remove this

non-linearity by excluding object points that are not illu-
minated by the light source. However, the unknowns in
the resulting equations are still non-linearly coupled. For-
tunately, we can break down the estimation process into
two linear problems and we employ a LS estimator. First,
we determine the illumination direction l and, in a second
step, the remaining photometric properties cCamb and cCdir
are computed.
To obtain the illuminant direction l we divide each com-

ponent in (24) by its corresponding texture value ICtex and
sum up the three equations. We obtain a system with the
four unknowns camb, cdirlx, cdirly, and cdirlz

[1 �nx �ny �nz]

2
664

camb
cdir � lx
cdir � ly
cdir � lz

3
775 =

IR

IRtex
+

IG

IGtex
+

IB

IBtex
(26)

that is solved in a least-squares sense. The two values
camb = cRamb + cGamb + cBamb and cdir = cRdir + cGdir + cBdir
only determine the sum of the desired unknowns cCamb and
cCdir and are not used in the following. To estimate the sin-
gle components for each color channel, a second estimation
step is necessary. Given the illuminant direction l from the
previous estimation, we can set up three independent sys-
tems of linear equations for the remaining unknowns cCamb
and cCdir

ICtex � [1 d]

�
cCamb
cCdir

�
= IC (27)

that can again be solved with low complexity in a least-
squares sense. We use a non-negative least squares estima-
tor (NNLS) [26] to constrain the coeÆcients cCamb and cCdir
to positive values. The reectivity d = maxf�n � l; 0g is
calculated from the previously determined illumination di-
rection and the surface normals from the 3-D model. Note
that the images from the video camera are -predistorted
[29]. This has to be inverted before estimating the photo-
metric properties. The estimated variables are then used
for the compensation of the illumination di�erences be-
tween the camera images and the synthetic images using
(24) with the appropriate non-linear mappings to account
for -predistortion.

C.5 Encoding of Facial Animation Parameters

In our experiments, 19 FAPs are estimated. These pa-
rameters include global head rotation and translation (6
parameters), movement of the eyebrows (4 parameters),
two parameters for eye blinking, and 7 parameters for the
motion of the mouth and the lips. For the transmission
of the FAPs, we predict the current values from the pre-
vious frame and quantize the prediction error. An arith-
metic coder that is initialized with experimentally deter-
mined probabilities is then used to encode the quantized
values. Note that the training set for the arithmetic coder
is separate from the test set. The parameters for the body
motion (4 parameters) and the illumination model (8 val-
ues) are coded accordingly. The resulting bit-stream has
to be transmitted as side information.
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IV. Rate-Constrained Coder Control

The coder control employed for the proposed scheme
mainly follows the current ITU-T reference model TMN-
10 [30], [31] of the H.263 recommendation. As a welcome
side e�ect, we can use an H.263 TMN-10 coder for com-
parison. In the following, we briey describe the TMN-10
scheme and explain the extensions to multi-frame motion-
compensated prediction enabling the incorporation of the
model-based coder into H.263.

The problem of optimum bit allocation to the motion
vectors and the residual coding in any hybrid video coder
is a non-separable problem requiring a high amount of
computation. To circumvent this joint optimization, we
split the problem into two parts: motion estimation and
mode decision. Motion estimation determines the motion
vector and the picture reference parameter to provide the
motion-compensated signal. Mode decision determines the
macroblock mode considering the rate-distortion trade-o�
between motion vectors, DCT coeÆcients, and side infor-
mation for coder control. Motion estimation and mode
decision are conducted for each macroblock given the deci-
sions made for past macroblocks.

Our block-based motion estimation proceeds over both
reference frames, i.e., the previous frame and the synthe-
sized model frame. For each block, a Lagrangian cost func-
tion is minimized [32], [33] that is given by

DDFD(v;�) + �MOTIONRMOTION (v;�); (28)

where the distortion DDFD is measured as the sum of the
absolute di�erences (SAD) between the luminance pixels
in the original and the block from the reference frame �
that is displaced by v. The term RMOTION is associated
with the bit-rate for the motion vector v and the picture
reference parameter �. The motion vector v is entropy-
coded according to the H.263 speci�cation while the picture
reference � is signaled using one bit. For both frames, the
motion search covers a range of �16 pixels horizontally and
vertically. We have noticed that large displacements are
very unlikely to occur when the model frame is referenced
leaving further room for optimization.

Given the motion vectors and picture reference parame-
ters, the macroblock modes are chosen. Again, we employ
a rate-constrained decision scheme where a Lagrangian cost
function is minimized for each macroblock [34], [35], [36]

DREC(h;v;�; c) + �MODERREC(h;v;�; c): (29)

Here, the distortion after reconstruction DREC mea-
sured as the sum of the squared di�erences (SSD) is
weighted against bit-rate RREC using the Lagrange multi-
plier �MODE . The corresponding rate term is given by the
total bit-rate RREC that is needed to transmit and recon-
struct a particular macroblock mode, including the mac-
roblock header h, motion information including v and �, as
well as DCT coeÆcients c. Based on (29), the coder control
determines the best H.263 modes INTER or INTER-4V
or INTRA [1] for each macroblock.

Following [37], the Lagrange multiplier for the mode de-
cision is chosen as

�MODE = 0:85Q2; (30)

with Q being the DCT quantizer parameter. For the La-
grange multiplier �MOTION , we make an adjustment to
the relationship to allow the use of the SAD measure. Ex-
perimentally, we have found that an e�ective method is
to measure distortion during motion estimation using SAD
rather than the SSD and to simply adjust the Lagrange
multiplier for the lack of the squaring operation in the er-
ror computation, as given by �MOTION =

p
�MODE .

V. Experimental Results

Experiments are conducted using �ve natural video se-
quences. The sequences Peter, Eckehard, and Illumina-

tion were recorded in our laboratory and consist of 200,
100, and 150 frames, respectively. All three sequences have
CIF resolution (352 x 288 pixels) and are encoded at 8.33
fps. Additionally, 200 frames of the standard video test
sequence Akiyo (10 fps) and 300 frames of Claire (7.5 fps)
are encoded at CIF resolution.
Since the model-based coder requires the adaptation of

the head model to the person in the video sequence, we �rst
describe the head model initialization used in our experi-
ments. The resulting model is then used to generate model
frames with the model-based coder. We briey present
some results for this model-based codec alone. Finally,
rate-distortion plots and reconstructed frames are shown
for the proposed model-aided coder and compared with the
H.263 test model TMN-10.

A. Head Model Initialization

For the shape and texture adaptation of our generic head
model towards an individual person we distinguish between
two di�erent cases in our experiments. In the �rst one,
we can utilize explicit shape and texture data from a 3-D
scanner to create the head model. In the other case, no
shape information of the person in the video sequence is
available.
For the three video sequences Peter, Eckehard, and Illu-

mination we have explicit shape and texture information
from a 3-D laser scan of the corresponding person. This
information is exploited to create the 3-D head model. We
map the texture onto the surface and optimize the posi-
tion of the control points to adapt the spline surface to the
measured data. Both shape and texture of the resulting
model have to be transmitted initially, unless the decoder
has already stored the head model from a previous video-
phone session between the two terminals [38]. In all our
experiments, we initially position the head model manu-
ally, and then rely on automatic tracking by the algorithm
described in Section III-C. In a practical system, one would
use a technique for automatic face �nding and head pose
estimation, as, e.g., described in [9].
To understand the number of bits needed to transmit an

explicit head model we adapt the mesh coding algorithm
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bpc no bits � PSNR

24 16866 -0.0 dB
12 8550 -0.0 dB
10 7164 -0.0 dB
8 5778 -0.0 dB
7 5058 -1.7 dB

TABLE I

Number of bits needed to encode the shape of the 3-D model

for differently quantized control points (bpc: bits per

coordinate) and the resulting average loss in PSNR of the

decoded sequence from the model-based codec compared to

the decoded sequence with no shape quantization.

described in [39] to encode the 231 spline control points of
the generic head-model. The topology of the underlying tri-
angle mesh need not be encoded since it is �xed and known
at the decoder. To measure the sensitivity of the model-
based coding results to the shape quantization we run the
model-based codec with di�erently quantized shape mod-
els generating model frames for the sequence Peter. The
average PSNR in the facial region is computed between
the 200 model frames and the original images of the se-
quence Peter. Table I shows the loss in average PSNR for
the quantized models compared to the unquantized case.
These values show that the shape can be encoded with 5778
bits with no signi�cant loss in quality of the reconstructed
sequence. This value could be further reduced by predict-
ing the control points from a generic shape model or using
more sophisticated coding methods that exploit knowledge
about human head shapes [40]. The texture of the explicit
head models is coded by H.263 in INTRA mode with a
quantizer parameter of 4, requiring 38,480 bits for the se-
quence Peter and 37,928 bits for the sequence Eckehard.

For the sequences Akiyo and Claire no head shape infor-
mation from a 3-D scan is available. Hence, the 3-D model
is generated using a generic head model. To obtain a bet-
ter �t of the chin contour, 16 of the 231 control points are
modi�ed manually. This solution has been chosen due to
its simplicity. Again, sophisticated automatic techniques
for initial model adaptation can be found in the literature
(e.g. [9], [25]) and would be used in a practical system. Nev-
ertheless, even with our simple and inaccurate approach to
initial model adaptation, we are able to demonstrate the
practicability of a model-aided codec that does not require
a 3-D scan.

Once the shape of the generic head model is adapted, the
texture for the Akiyo and Claire model is extracted from
the �rst INTRA frame that is encoded with a quantizer
parameter of 4 in the face and body region. 45,472 bits are
necessary to encode the �rst INTRA frame for Claire, the
corresponding frame for Akiyo is coded with 51,280 bits.
Those parts of the texture not visible in the �rst frame are
extrapolated from the visible parts. In our experiments the
texture is neither changed or updated after the �rst frame.

B. Model-based Coding

Using the individualized 3-D head model, the FAPs and
illumination parameters are estimated and encoded with
the model-based coder described in Section III. At coder
and decoder side, the model is animated according to the
quantized FAPs and a synthetic sequence of model frames is
rendered. Figure 7 shows one original frame of the sequence
Peter and its synthetic counterpart. Since the 3-D model
does not provide reliable information about the hair and
the inside of the mouth, model failures lead to errors in
the synthesized frame that have to be compensated by the
block-based coder. A similar result is illustrated in Fig. 8

Fig. 7. Left: frame 120 of the sequence Peter, right: corresponding
model frame.

showing an original and the corresponding model frame for
the Akiyo sequence.

Fig. 8. Left: frame 18 of the sequence Akiyo, right: corresponding
model frame.

The quality of the synthetic model-based prediction is
illustrated in Fig. 9 where the PSNR, measured only in the
facial area, is plotted over the bit-rate needed for encoding
the sequence Peter. Note that model failures lead to a sat-
uration of the curve at 32.8 dB. The bit-rate necessary to
reach that point is below 1 kbps. For comparison, the cor-
responding plot with PSNR measured over the entire frame
is also depicted in Fig. 9. The latter curve is mainly char-
acterized by the erroneous background and the hair region
which are not expected to be utilized for prediction in the
model-aided coder. Note that the PSNR in the following
is always measured over the entire frame.

C. Model-Aided Coding

For comparing the proposed model-aided coder with TMN-
10, the state-of-the-art test model of the H.263 standard,
rate-distortion curves are measured by varying the DCT
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Fig. 9. Rate-distortion plot for the sequence Peter using the model-
based coder. The two curves show the PSNR measured only in
the facial area and over the entire frame.

quantizer parameter over values 10; 15; 20; 25; and 31. De-
codable bit-streams are generated that produce the same
PSNR values at the encoder and decoder. In our simula-
tions, the data for the �rst INTRA frame and the initial 3-
D model are excluded from the results. In addition, the re-
sults for the �rst 30 frames are excluded. Thus, we compare
the inter-frame coding performance of both codecs without
the start-up phase at the beginning of the sequence.

In the following, we show rate-distortion curves for the
proposed model-aided coder in comparison to the H.263
test model, TMN-10. Additionally, subjective results by
means of comparing reconstructed frames are presented,
since we have found that the PSNR measure allows only
limited conclusions about the comparisons. 1

The following abbreviations are used for the two codecs
compared:

� TMN-10: The result produced by the H.263 test model,
TMN-10, using Annexes D, F, I, J, and T.
� MAC: Model-aided coder: H.263 extended by model-
based prediction with Annexes D, F, I, J, and T enabled
as well.

Figure 10 shows the rate-distortion curves obtained for
sequence Peter. Signi�cant gains in coding eÆciency are
achieved compared to TMN-10. Bit-rate savings of about
35 % at equal average PSNR are visible at the low bit-
rate end. This corresponds to a gain of about 2.8 dB in
terms of average PSNR. From the same sequence, frame
120 is depicted in Fig. 11. The left picture is decoded and
reconstructed from the TMN-10 decoder, while the right
picture corresponds to the model-aided coder. Both frames
require about the same number of bits and are taken from
sequences that are approximately encoded at the same bit-
rate using a quantizer parameter of 31 for the TMN-10 and
a value of 25 for the model-aided coder.

1The decoded frames can also be found on the following web-page:
http://www.lnt.de/~eisert/mac.html.
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Fig. 10. Rate-distortion plot for the sequence Peter.

Similar gains in coding eÆciency are obtained for the se-
quence Eckehard as can be seen in Fig. 12. Two decoded
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Fig. 12. Rate-distortion plot for the sequence Eckehard.

frames at equal bit-rate are depicted in Fig. 13. The left
image corresponds to frame 27 and is decoded and recon-
structed from the TMN-10 decoder, while the right one is
generated from the model-aided coder.
The e�ectiveness of the illumination estimation is illus-

trated in Fig. 14 for the sequence Illumination. During the
acquisition of this sequence, one light source was moved to
alter the illumination conditions. Two experiments are per-
formed. For the �rst one, only the FAPs are estimated to
create a model frame. For the second experiment, we addi-
tionally estimate the illumination parameters as described
in Section III-C.4 and generate motion- and illumination-
compensated model frames. As shown in Fig. 14, the
gain in PSNR for the model-aided coder compared to the
TMN-10 is about 1 dB if no illumination compensation
is performed. However, an additional gain of about 1.5
dB is achieved when exploiting illumination information.
Corresponding decoded frames for all three cases are shown
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Fig. 11. Frame 120 of the Peter sequence coded at the same bit-rate using the TMN-10 and the MAC, left image: TMN-10 (33.88 dB
PSNR, 1680 bits), right image: MAC (37.34 dB PSNR, 1682 bits).

Fig. 13. Frame 27 of the Eckehard sequence coded at the same bit-rate using the TMN-10 and the MAC, left image: TMN-10 (34.4 dB
PSNR, 1264 bits), right image: MAC (37.02 dB PSNR, 1170 bits).

Fig. 15. Frame 99 of the Illumination sequence coded at about the same bit-rate using the TMN-10, and the MAC without and with
illumination compensation, left image: TMN-10 (31.91 dB PSNR, 1960 bits),middle image: MAC without illumination compensation
(32.45 dB PSNR, 1794 bits), right image: MAC with illumination compensation (34.55 dB PSNR, 1868 bits).

in Fig. 15. The additional computation for the illumination
estimation is negligible compared to the other codec com-
ponents since only linear systems of equations with up to 4
unknowns have to be solved. For the other video sequences,
which show a constant illumination, rather marginal gains
of about 0.2 dB are achieved when estimating photometric

properties from the scene.

Up to now, the experiments are performed with video se-
quences where explicit head shape information is available
from a 3-D scanner. This is not the case for the next two
video sequences. Figure 16 shows results for the sequence
Akiyo. For this sequence the bit-rate savings are still about
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Fig. 17. Frame 150 of the Akiyo sequence, upper left image: TMN-10 (31.08 dB PSNR, 720 bits), upper right image: MAC (33.19 dB
PSNR, 725 bits), lower left image: TMN-10 (34.7 dB PSNR, 1304 bits), lower right image: TMN-10 (33.12 dB PSNR, 912 bits).
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Fig. 14. Rate-distortion plot for the sequence Illumination illus-
trating the achieved improvement when using an illumination
estimator (ILE).

35 % at the low bit-rate end. The quality of the recon-
structed frames is shown in Fig. 17. The upper right image
shows frame 150 encoded with the model-aided coder, while
the upper left image corresponds to the TMN-10 coder at
the same bit-rate. At the lower right of Fig. 17, a frame
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Fig. 16. Rate-distortion plot for the sequence Akiyo.

from the TMN-10 coder is shown that has the same PSNR
as the upper model-aided frame. Even though the PSNR is
the same, the subjective quality of the reconstructed frame
from the model-aided coder is clearly superior since facial
features are reproduced more accurately and with less ar-
tifacts. The di�erence is even more striking when viewing
motion sequences. Finally, the lower left image is encoded
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with TMN-10 to yield the same subjective quality as the
model-aided coder; TMN-10 requires about twice as many
bits.
The corresponding rate-distortion plot and the decoded

frames for the sequence Claire are shown in Figs. 18 and
19. For this sequence the bit-rate savings are about 27 %
at the low bit-rate end. The slightly smaller gain is due to
the small face area of Claire and the limited motion in the
sequence.
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Fig. 18. Rate-distortion plot for the sequence Claire.

The gain in PSNR and the reduction in average bit-rate
depend on the number of macroblocks that are selected
from the model frame to predict the current video frame.
These blocks are motion-compensated by the model-based
coder saving bits for the motion vector and for the resid-
ual coding. Table II shows the percentage of macroblocks
that are selected from the model frame. The percentage
of the di�erent coding modes for the model-aided coder is
illustrated in Table III.
Figure 20 shows the model-based prediction of frame 18

that was already shown in Fig. 8. As can be seen in the
enlargement of the region around the mouth, a model fail-
ure occurs that causes the black bar inside the mouth. The
rate-constrained coder control handles such model failures
automatically, as illustrated in Fig. 21. Figure 21 shows
all macroblocks that are predicted from the model frame,
while the macroblocks predicted from the previous frame
are grey. The mouth is not predicted from the model frame
thus avoiding the prediction error coding of the black bar
in Fig. 20.
Finally, we address the computational complexity of the

model-aided coder. The CIF sequence Claire is encoded on
a 175 MHz O2 SGI workstation with R10000 processor and
the average time for processing a frame is measured. Note
that the implementation is not a real-time implementation
and many optimizations are possible without changing the
underlying algorithms. The complete processing time for
the encoding of one frame is 38.0 s. 13.8 s of that time is
spent for the block-based coder with motion compensated
prediction from two frames. For comparison, the encod-

Fig. 20. Model frame 18 of the sequence Akiyo with enlargement of
the image region around the mouth.

Fig. 21. Frame 18 of the sequence Akiyo. Macroblocks shown have
been selected for motion compensated prediction using the model
frame. The grey parts of the image are predicted from the pre-
vious frame, or they are coded in INTRA mode.

ing using our software implementation of a H.263 coder
with prediction from one frame takes 13.0 seconds. To en-
code and decode a model frame, the model-based part of
the coder needs 24.2 s including rendering. Note that the
graphics hardware of the SGI workstation is not utilized in
our implementation. The most demanding component of
the model-based coder is the FAP estimator whose execu-
tion time is mainly determined by the setup of the system
of equations (19) and its solution using the LSI estima-
tor. For this task, 6.7 s are necessary on average for all
iterations in the analysis-synthesis loop. The illumination
estimation described in Section III-C.4 needs only 0.2 s and
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Fig. 19. Frame 60 of the Claire sequence using the TMN-10 and the MAC, left image: TMN-10 (33.21 dB PSNR, 752 bits), right image:
MAC (35.05 dB PSNR, 761 bits).

quant 31 25 20 15 10

Peter 17.3% 17.3% 17.4% 16.4% 14.3%
Eckehard 12.7% 13.2% 13.3% 13.1% 12.2%
Illumination 29.3% 28.8% 27.1% 25.1% 21.8%
Akiyo 7.6% 7.8% 7.7% 7.5% 6.7%
Claire 6.5% 5.9% 5.5% 5.4% 5.2%

TABLE II

Percentage of macroblocks that are selected from the model frame for different quantizer values and video sequences.

PE 31 PE 15 EK 31 EK 15 IL 31 IL 15 AK 31 AK 15 CL 31 CL 15

UNCODED 92.2% 84.3% 95.0% 89.0% 77.4% 59.6% 95.9% 89.4% 93.9% 86.6%
INTER 7.0% 14.3% 4.8% 10.1% 9.6% 21.3% 3.9% 8.3% 5.6% 11.0%
INTER4V 0.1% 1.0% 0.1% 0.7% 0.7% 2.5% 0.3% 2.3% 0.5% 2.3%
INTRA 0.6% 0.4% 0.1% 0.2% 12.3% 16.6% 0.0% 0.0% 0.0% 0.0%

TABLE III

Mode percentage for the 4 modes 'UNCODED', 'INTER', 'INTER4V', and 'INTRA for the model-aided coder. Two different

quantizer parameters (31 and 15) are chosen for the sequences Peter (PE), Eckehard (EK), Illumination (IL), Akiyo (AK),

and Claire (CL).

does not alter the total processing time noticeably.

VI. Conclusions

We presented a new approach to incorporate facial anima-
tion into motion-compensated video coding of head-and-
shoulder sequences. This is achieved by combining a model-
based coder with a block-based hybrid coder such as H.263
in a rate-distortion-eÆcient framework. The model-based
coder estimates the facial expressions and the 3-D motion
of a person using a 3-D head model. Since only a few pa-
rameters are encoded and transmitted, very low bit-rates,
typically less than 1 kbps, are obtained if the 3-D mod-
els can describe the current video frame. Standard block-
based hybrid coders are not restricted to a special scene
content, but they are much less eÆcient.

The advantages of both approaches are combined in a

new framework by employing the synthesized frame from
the model-based coder as a second reference frame for
rate-constrained block-based motion-compensated predic-
tion in addition to the previously reconstructed reference
frame. For each block, the video coder decides which of
the two frames to select for motion compensation using
a Lagrangian cost function. This multi-frame prediction
and the combined encoding of the di�erent modes provides
increased robustness to model failures in the model-based
coder and ensures the generality of the approach.

In our experimental results, we showed that bit-rate sav-
ings around 35 % are achieved at equal average PSNR
in comparison to TMN-10, the state-of-the-art test model
of the H.263 video compression standard, for head-and-
shoulder sequences. At equal PSNR, the subjective quality
of the reconstructed frame from the model-aided coder is
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clearly superior since facial features are reproduced more
accurately and with less artifacts.
These results show that waveform-coding and 3-D

model-based coding are not competing alternatives but
should support and complement each other. Both can be
elegantly combined in a rate-distortion framework, such
that the generality of waveform coding and the eÆciency
of 3-D models are available where needed.
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