Transform Coding

- Principle of block-wise transform coding
- Properties of orthonormal transforms
- Discrete cosine transform (DCT)
- Bit allocation for transform coefficients
- Entropy coding of transform coefficients
- Typical coding artifacts
- Fast implementation of the DCT

Transform Coding Principle

- Structure

- Transform coder (T α) / decoder $\left(\beta \mathrm{T}^{-1}\right)$ structure

- Insert entropy coding (γ) and transmission channel

Transform Coding and Quantization

- Transformation of vector $\mathbf{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{N}}\right)$ into $\mathbf{U}=\left(\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, U_{N}\right)$
- Quantizer Q may be applied to coefficients U_{i}
- separately (scalar quantization: low complexity)
- jointly (vector quantization, may require high complexity, exploiting of redundancy between U_{i})
- Inverse transformation of vector $\mathbf{V}=\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{N}}\right)$ into $\mathbf{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{N}}\right)$

Why should we use a transform ?
Thomas Wiegand: Digital Image Communication
Transform Coding - 3

Geometrical Interpretation

- A linear transform can decorrelate random variables
- An orthonormal transform is a rotation of the signal vector around the origin
- Parseval's Theorem holds for orthonormal transforms

Properties of Orthonormal Transforms

- Forward transform

- Orthonormal transform property: inverse transform

$$
\mathbf{u}=\mathbf{T}^{-1} \mathbf{U}=\mathbf{T}^{\top} \mathbf{U}
$$

- Linearity: \mathbf{U} is represented as linear combination of "basis functions"

Transform Coding of Images
 Exploit horizontal and vertical dependencies by processing blocks

from: Girod

Separable Orthonormal Transforms, I

- Problem: size of vectors $\mathrm{N} * \mathrm{~N}$ (typical value of N : 8)
- An orthonormal transform is separable, if the transform of a signal block of size $\mathrm{N}^{*} \mathrm{~N}$-can be expressed by

- The inverse transform is
$\mathbf{u}=\mathbf{T}^{\boldsymbol{T}} \mathbf{U T}$
- Great practical importance: transform requires 2 matrix multiplications of size $\mathrm{N}^{*} \mathrm{~N}$ instead one multiplication of a vector of size1 ${ }^{*} N^{2}$ with a matrix of size $N^{2} N^{2}$
- Reduction of the complexity from $\mathrm{O}\left(\mathrm{N}^{4}\right)$ to $\mathrm{O}\left(\mathrm{N}^{3}\right)$

Separable Orthonormal Transforms, II

Separable 2-D transform is realized by two 1-D transforms

- along rows and
- columns of the signal block

from: Girod

Criteria for the Selection of a Particular Transform

- Decorrelation, energy concentration
- KLT, DCT, ...
- Transform should provide energy compaction
- Visually pleasant basis functions
- pseudo-random-noise, m-sequences, lapped transforms, ...
- Quantization errors make basis functions visible
- Low complexity of computation
- Separability in 2-D
- Simple quantization of transform coefficients

	from: Girod
Thomas Wiegand: Digital Image Communication	Transform Coding-9

Karhunen Loève Transform (KLT)

- Decorrelate elements of vector \mathbf{u}

$$
\begin{gathered}
\mathbf{R}_{\mathbf{u}}=\mathrm{E}\left\{\mathbf{\mathbf { u } ^ { \top } \} , \boldsymbol { \mathbf { U } } = \mathbf { T } \mathbf { u } , \boldsymbol { \rightarrow }}\right. \\
\mathbf{R}_{\mathbf{U}}=\mathrm{E}\left\{\mathbf{U} \mathbf{U}^{\top}\right\}=\mathbf{T E}\left\{\mathbf{u} \mathbf{u}^{\top}\right\} \mathbf{T}^{\top}=\mathbf{T R}_{\mathbf{u}} \mathbf{T}^{\top}=\operatorname{diag}\left\{\alpha_{i}\right\}
\end{gathered}
$$

- Basis functions are eigenvectors of the covariance matrix of the input signal.
- KLT achieves optimum energy concentration.
- Disadvantages:
- KLT dependent on signal statistics
- KLT not separable for image blocks
- Transform matrix cannot be factored into sparse matrices.

Comparison of Various Transforms, I

Comparison of 1D basis functions for block size $N=8$

Comparison of Various Transforms, II

- Energy concentration measured for typical natural images, block size 1x32 (Lohscheller)
- KLT is optimum
- DCT performs only slightly worse than KLT

DCT

- Type II-DCT of blocksize M x M is defined by transform matrix A containing elements
$\mathrm{a}_{\mathrm{ik}}=\alpha_{\mathrm{i}} \cdot \cos \frac{\pi(2 \mathrm{k}+1) \mathrm{i}}{2 \mathrm{M}}$
$\mathrm{i}, \mathrm{k}=0 \ldots(\mathrm{M}-1)$
with
$\alpha_{0}=\sqrt{\frac{1}{\mathrm{M}}}$
$\alpha_{\mathrm{i}}=\sqrt{\frac{2}{\mathrm{M}}} \quad \mathrm{i} \neq 0$
- 2D basis functions of the DCT:

Thomas Wiegand: Digital Image Communication
Transform Coding - 13

Discrete Cosine Transform and Discrete Fourier Transform

- Transform coding of images using the Discrete Fourier Transform (DFT):
- For stationary image statistics, the energy concentration properties of the DFT converge against those of the KLT for large block sizes.
- Problem of blockwise DFT coding: blocking effects
- DFT of larger symmetric block -> "DCT" due to circular topology of the DFT and Gibbs phenomena.
- Remedy: reflect image at block boundaries

Histograms of DCT Coefficients:

- Image: Lena, 256x256 pixel
-DCT: 8x8 pixels
- DCT coefficients are approximately distributed like Laplacian pdf
$\min \Lambda \Lambda \Lambda \Lambda \Lambda \Omega \Lambda$

 $\Lambda \Lambda \Lambda \Lambda \Omega \wedge \Omega \Omega$ $\Lambda \Lambda \Lambda \Lambda \Lambda \Omega \Lambda \Omega$ $\Lambda \Lambda \Lambda \Omega \Omega \Omega \Omega \Lambda$

Distribution of the DCT Coefficients

- Central Limit Theorem requests DCT coefficients to be Gaussian distributed
- Model variance of Gaussian DCT coefficients distribution as random variable
(Lam \& Goodmann'2000)

$$
p\left(u \mid \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{u^{2}}{2 \sigma^{2}}\right\}
$$

- Using conditional probability

$$
\mathrm{p}(\mathrm{u})=\int_{0}^{\infty} \mathrm{p}\left(\mathrm{u} \mid \sigma^{2}\right) \cdot \mathrm{p}\left(\sigma^{2}\right) \cdot \mathrm{d} \sigma^{2}
$$

Distribution of the Variance

Distribution of the DCT Coefficients

$$
\begin{aligned}
\mathrm{p}(\mathrm{u}) & =\int_{0}^{\infty} \mathrm{p}\left(\mathrm{u} \mid \sigma^{2}\right) \cdot \mathrm{p}\left(\sigma^{2}\right) \cdot \mathrm{d} \sigma^{2} \\
& =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\mathrm{u}^{2}}{2 \sigma^{2}}\right\} \cdot \mu \exp \left\{-\mu \sigma^{2}\right\} \cdot \mathrm{d} \sigma^{2} \\
& =\sqrt{\frac{2}{\pi}} \mu \int_{0}^{\infty} \exp \left\{-\frac{\mathrm{u}^{2}}{2 \sigma^{2}}-\mu \sigma^{2}\right\} \cdot \mathrm{d} \sigma \\
& =\left(\sqrt{\frac{2}{\pi}} \mu\right)\left(\frac{1}{2} \sqrt{\frac{\pi}{\mu}}\right) \exp \left\{-2 \sqrt{\frac{\mu \mathrm{u}}{2}}\right\} \\
& =\frac{\sqrt{2 \mu}}{2} \exp \{-\sqrt{2 \mu}|u|\} \quad \text { Laplacian Distribution }
\end{aligned}
$$

Bit Allocation for Transform Coefficients I

- Problem: divide bit-rate R among N transform coefficients such that resulting distortion D is minimized.

- Approach: minimize Lagrangian cost function

$$
\frac{\mathrm{d}}{\mathrm{dR}_{\mathrm{i}}} \sum_{\mathrm{i}=1}^{N} \mathrm{D}_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{i}}\right)+\lambda \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{R}_{\mathrm{i}}=\frac{\mathrm{dD}_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{i}}\right)}{\mathrm{dR}_{\mathrm{i}}}+\lambda \stackrel{!}{=} 0
$$

- Solution: Pareto condition

$$
\frac{\mathrm{dD}_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{i}}\right)}{\mathrm{dR}_{\mathrm{i}}}=-\lambda
$$

- Move bits from coefficient with small distortion reduction per bit to coefficient with larger distortion reduction per bit

Bit Allocation for Transform Coefficients II

- Assumption: high rate approximations are valid

$$
\begin{gathered}
\mathrm{D}_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{i}}\right) \approx \mathrm{a} \sigma_{\mathrm{i}}^{2} 2^{-2 \mathrm{R}_{\mathrm{i}}}, \rightarrow \frac{\mathrm{dD}_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{i}}\right)}{\mathrm{dR}_{\mathrm{i}}} \approx-2 \mathrm{a} \ln 2 \sigma_{\mathrm{i}}^{2} 2^{-2 \mathrm{R}_{\mathrm{i}}}=-\lambda \\
\mathrm{R}_{\mathrm{i}} \approx \log _{2} \sigma_{\mathrm{i}}+\log _{2} \sqrt{\frac{2 \mathrm{a} \ln 2}{\lambda}} \rightarrow \mathrm{R}_{\mathrm{i}} \approx \log _{2} \sigma_{\mathrm{i}}-\log _{2} \tilde{\sigma}+\mathrm{R}=\log _{2} \frac{\sigma_{\mathrm{i}}}{\tilde{\sigma}}+\mathrm{R} \\
\mathrm{R}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{N} \mathrm{R}_{\mathrm{i}}=\underbrace{\frac{1}{N} \sum_{i=1}^{N} \log _{2} \sigma_{\mathrm{i}}}_{\log _{2} \tilde{\sigma}}+\log _{2} \sqrt{\frac{2 \mathrm{a} \ln 2}{\lambda}}=\log _{2} \underbrace{\left(\prod_{i=1}^{N} \sigma_{\mathrm{i}}\right)^{\frac{1}{N}}}_{\tilde{\sigma}}+\log _{2} \sqrt{\frac{2 \mathrm{a} \ln 2}{\lambda}}
\end{gathered}
$$

- Operational Distortion Rate function for transform coding:

$$
\begin{aligned}
& \mathrm{D}(\mathrm{R})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{D}_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{i}}\right) \approx \frac{\mathrm{a}}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \sigma_{\mathrm{i}}^{2} 2^{-2 R_{i}}=\frac{\mathrm{a}}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \sigma_{\mathrm{i}}^{2} 2^{-2 \log _{2} \frac{\sigma_{\mathrm{i}}}{\tilde{\sigma}}-2 \mathrm{R}}=\mathrm{a} \tilde{\sigma}^{2} 2^{-2 R} \\
& \text { Geometric mean: } \tilde{\sigma}=\left(\prod_{\mathrm{i}=1}^{\mathrm{N}} \sigma_{\mathrm{i}}\right)^{\frac{1}{N}}
\end{aligned}
$$

Entropy Coding of Transform Coefficients

- Previous derivation assumes: $\mathrm{R}_{\mathrm{i}}=\frac{1}{2} \max \left[\left(\log _{2} \frac{\sigma_{i}^{2}}{\mathrm{D}}\right), 0\right]$ bit
- AC coefficients are very likely to be zero
- Ordering of the transform coefficients by zig-zag scan
- Design Huffman code for event: \# of zeros and coefficient value
- Arithmetic code maybe 1 simpler

Probability that coefficient is not zero when quantizing with: $\mathrm{V}_{\mathrm{i}}=100 * \operatorname{round}\left(\mathrm{U}_{\mathrm{i}} / 100\right)$
0.5

Transform Coding - 21

Entropy Coding of Transform Coefficients II

Encoder

Entropy Coding of Transform Coefficients III

Reconstructed 8x8 block

	from: Girod
Thomas Wiegand: Digital Image Communication	Transform Coding - 23

Detail in a Block vs. DCT Coefficients Transmitted

from: Girod

Typical DCT Coding Artifacts

DCT coding with increasingly coarse quantization, block size 8×8

Influence of DCT Block Size

- Efficiency as a function of block size NxN , measured for 8 bit Quantization in the original domain and equivalent quantization in the transform domain.

- Block size 8×8 is a good compromise between coding efficiency and complexity

Fast DCT Algorithm I

DCT matrix factored into sparse matrices (Arai, Agui, and Nakajima; 1988):
from: Girod

Fast DCT Algorithm II

Signal flow graph for fast (scaled) 8-DCT according to Arai, Agui, Nakajima:

from: Girod

$$
\begin{aligned}
& \begin{array}{l}
\underline{Y}= \\
=\underline{S} \cdot \underline{P} \cdot \underline{M_{1}} \cdot \underline{M_{2}} \cdot \underline{M_{3}} \cdot \underline{M_{4}} \cdot \underline{M_{5}} \cdot \underline{M_{6}} \cdot \underline{X}
\end{array}
\end{aligned}
$$

Transform Coding: Summary

- Orthonormal transform: rotation of coordinate system in signal space
- Purpose of transform: decorrelation, energy concentration
- KLT is optimum, but signal dependent and, hence, without a fast algorithm
- DCT shows reduced blocking artifacts compared to DFT
- Bit allocation proportional to logarithm of variance
- Threshold coding + zig-zag scan $+8 \times 8$ block size is widely used today (e.g. JPEG, MPEG-1/2/4, ITU-T H.261/2/3)
- Fast algorithm for scaled 8-DCT: 5 multiplications, 29 additions

