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Rate Distortion Theory

» Theoretical discipline treating data compression from
the viewpoint of information theory.

» Results of rate distortion theory are obtained without
consideration of a specific coding method.

» Goal: Rate distortion theory calculates minimum
transmission bit-rate R for a given distortion D and

source.
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Transmission System

Distortion D
/ \

U Vv
Source Coder I Decoder Sink

Bit-Rate R

= Need to define U, V, Coder/Decoder, Distortion D,

and Rate R.
» Need to establish functional relationship between
u,Vv,D, and R
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Definitions

= Source symbols are given by the random sequence {U, }
* Each U, assumes values in the discrete set
U= {ug, Uy, ..., Uy}
- For a binary source: U = {0, 1}
- For a picture: 4 = {0, 1,..., 255}

» For simplicity, let us assume U, to be independent and
identically distributed (i.i.d.) with distribution {P(u), u € U}

» Reconstruction symbols are given by the random sequence {V,}
with distribution {P(v), v € V}
» Each V, assumes values in the discrete set
V={vy, Vq, --es Vit
* The sets ¢/ and V need not to be the same
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Coder / Decoder

= Statistical description of Coder/Decoder, i.e. the mapping of the
source symbols to the reconstruction symbols, via

Q={QuIuw,ueuvev}
= Q is the conditional probability distribution over the letters of the

reconstruction alphabet U given a letter of the source alphabet V
= Transmission system is described via

Jointpdf : P(u,v)
PU= > Puyv)

vey

P()= 2 P(uyv)

ueld
P(u,v) =P@)-Q(v |u) (Bayes' rule)
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Distortion

= To determine distortion, we define a non-negative cost function

d@u,v), d():UxV —[0,00)

= Examples for d 0, foru =v
. ing di - d(u,v) =
Hamming distance: d(U,V) 1 foru=v
« Squared error: d(u,v) = lu — v

= Average Distortion

DQ)= > > P-Qv|u)-d(u,v)

uey vey P(u,v)
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Mutual Information

= Shannon average mutual information

| =HU)-HU V)
== PU)-1dPu)+ > > Pu,v)-ldP(u|v)
uey uey vey
==> Y Puv)-ldP)+ > > Pu,\v)- IdM
uel vey uey vey PV)
_ 1q_ PUV)
=2 5P Y560 e
= Using Bayes' rule
Q=Y ¥ PW-Qulu- a1,
uel veVT puwy V)
with P(v)= > P@u)-Q(v |u)
e ueld
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Rate
» Shannon average mutual information expressed via

entropy
IUV) = |;|(U)—|'T|(U V)

Source entropy Equivocation: conditional entropy

= Equivocation:
» The conditional entropy (uncertainty) about the
source U given the reconstruction V

* A measure for the amount of missing [quantized]
information in the received signal V
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Rate Distortion Function

= Definition: R (D *)= min {1 (Q)}
Q:D(Q)=<D~

» For a given maximum average distortion D, the rate
distortion function R(D¥*) is the lower bound for the
transmission bit-rate.

» The minimization is conducted for all possible
mappings Q that satisfy the average distortion

constraint
» R(D*) is measured in bits for Id
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Discussion

= |In information theory: maximize mutual information for efficient
communication

= In rate distortion theory: minimize mutual information
= In rate distortion theory: source is given, not the channel
= Problem which is addressed:

Determine the minimum rate at which information about the source
must be conveyed to the user in order to achieve a prescribed
fidelity.

= Another view: Given a prescribed distortion, what is the channel
with the minimum capacity to convey the information.

= Alternative definition via interchanging the roles of rate and
distortion
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Distortion Rate Function

= Definiion: D (R*)=  min {d (Q)}
Q:I (Q)<R*

» For a given maximum average rate R, the distortion
rate function D(R*) is the lower bound for the average
distortion.

» Here, we can set R* to the capacity C of the
transmission channel and determine the minimum
distortion for this ideal communication system
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Properties of the Rate Distortion Function, |

R(D) for a discrete amplitude source
(H(U)’ Dminzo)_’

(H(U)-H(U[V)=0, Dpax)

0 —— D/D

0 1 max

* R(D) is well defined for DU(Dyin: Dmax)
= For discrete amplitude sources, D, = 0
* R(D)=0, if D > Dyax
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Properties of the Rate Distortion Function, Il

= R(D) is always positive
0<I(UV)<H (U)

= R(D) is non-increasing in D

= R(D) is strictly convex downward in the range (D

min? Dmax)

* The slope of R(D) is continous in the range (D, Dmax)

0

R(D)

— D/D

0

1

max
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Shannon Lower Bound

= It can be shown that [H(U -V |[V)=H(U |V)|

= Then we can write

R(D*) =

min  {HU)-HU [V)}

Q:DQ)<D*
HU)-

HU)-

Q:DQ)<D*

Q:DQ)<D*

max {HU [V)}

max {HU -V |V)}

= |deally, the source coder would produce distortions
u-v that are statistically independent from the

reconstructed signal v (not always possible!).

= Shannon Lower Bound:

RD*)>HU)— max HU-V)

Q:D(Q)<D*
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R(D*) for a Memoryless Gaussian Source
and MSE Distortion

= Gaussian source, variance o2
» Mean squared error (MSE) D = E {(u-v)?}

1 o’ 2 5 2R*
*) — — _ —
R(D )—2|OQD*, D(R*) =02 ,R>0

2

SNR=10- Ioglo% —10-log,, 2% ~ 6R [dB]

» Rule of thumb: 6 dB ~ 1 bit
» The R(D*) for non-Gaussian sources with the same

variance g2 is always below this Gaussian R(D*) curve.
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R(D*) Function for Gaussian Source
with Memory |

= Jointly Gaussian source with power spectrum S,,(«)
» MSE: D = E{(u-v)?%}
= Parametric formulation of the R(D*) function

1
D:Z—meln[D S, (W)]dw

:_fmax[o o),

» R(D*) for non-Gaussian sources with the same power
spectral density is always lower.
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R(D*) Function for Gaussian Source

with Memory |l
A Syu(a)
reconstruction error
spectrum
«— | preserved spectrum S, (@)
|
| /-
white rjoise D* D*
no signal transmitted
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R(D*) Function for Gaussian Source

with Memory Il
» ACF and PSD for a first order AR(1) Gauss-Markov
process: Uln] = Z[n] + pU[n-1]

o’(1—p?)
1—2p cosw + p?

RJu(k) - lkl 2 SJU (w)
= Rate Distortion Function:

D* 1

——flogz (1 p)dw —flogzl 2pcosw + p° ) dw

1— 2
:%Iogz (D*p) flogzg*.

|| H
..I Thomas Wiegand: Digital Image Communication RD Theory and Quantization 18



R(D*) Function for Gaussian Source
with Memory IV
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Quantization

= Structure

Quantizer——

= Alternative: coder (a) / decoder () structure

u @ i @ Vv

» Insert entropy coding (y) and transmission channel

i b b .
. @ : E channel y1 : @v

| H
..I Thomas Wiegand: Digital Image Communication RD Theory and Quantization 20



Scalar Quantization

» Average distortion Output v v
D=E {d (U Y% )} recons'\tlruction B I —

_ tzljd (u,v,) O, (u) Celu e \\‘ .......... ,V;l

o Vi :

= Assume MSE . T Uiy Eum
eV )
03 [ o a v den

» Fixed code word length vs. variable code word length
R=IlogN vs. R=—E{logP(v)}
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Lloyd-Max Quantizer

. Given:  asource distribution f, (u)

a set of reconstruction levels {v,}
: Encode given {v,} (Nearest Neighbor Condition):

o(u) = argmin {d(u,v,)}

U= (V+Vies1)/2 (MSE)

2: Update set of reconstruction levels given a(u,)

(Centroid Condition):

v, = argmin E { d(u,v) | a(u)=k} » v, ==

Ug 41

[uld, adu
(MSE)

UT f, (u)du

Uy

3: Repeat steps 1 and 2 until convergence
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High Resolution Approximations

= Pdf of U is roughly constant over individual cells C,
f,w =1, ullC,

= The fundamental theorem of calculus

P.=Pr(ulC,F j f, wddu= (U~ u )3f=4f

= Approximate average distortion (MSE)

N =1 Uk+1 ) N-1 Uks )
D=> I (u-v,) &) EBu =) f _[ (u -v,) du
k=0 y, k=0 g,
N-1 3 =
_ A _1Xp e
= Z f, 12 P&
ko 12 1243
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Uniform Quantization

= Reconstruction levels of quantizer {v, }, keK are
uniformly spaced v

= Quantizer step size, i.e. distance A
between reconstruction levels: A i |

= Average distortion }

1 N-1 AZ N-1 AZ
D=—) PA2="0N"pP =" .
122 Kk 12§ 12

= Closed-form solutions for pdf-optimized uniform
quantizers for Gaussian RV only exist for N=2 and N=3

= Optimization of A is conducted numerically

N-1 A
Zazl A=A 1
k=0
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Panter and Dite Approximation

= Approximate solution for optimized spacing of
reconstruction and decision levels
= Assumptions: high resolution and smooth pdf A(u)

_ const
MW

= Optimal pdf of reconstruction levels is not the same as
for the input levels 1 3
1/3
12N? (f% g (u)'d”)

= Average Distortion D =
= Operational distortion rate function for Gaussian RV

/3

U ~N(0,6%), D(R) zTUZZZR
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Entropy-Constrained Quantization

= So far: each reconstruction level is transmitted with fixed code
word length
= Encode reconstruction levels with variable code word length
= Constrained design criteria:
min D, s.t. R< R, or minR,s.t. D <D,

= Pose as unconstrained optimization via Lagrangian formulation:
minD + AR

Lines of constant = For a given A, an optimum is obtained

slope: -1/A corresponding to either R, or D,

= If A small, then D small and R large
if A large, then D large and R small

= Optimality also for functions that are
neither continuous nor differentiable
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Chou, Lookabaugh, and Gray Algorithm*

0: Given:

a source distribution f, (u)

a set of reconstruction levels {v,}

a set of variable length code (VLC) words {y, }
with associated length |y,|

1: Encode given {v,} and {y,}:

a(u) = argmin {d(u, v,) +Aly }

2: Update VLC given a(u,) and {v,}

IVl = -log P(a(u)=k)

3: Update set of reconstruction levels given a(u,) and {v, }

v, = argmin E { d(u, v,) | a(u)=k}

4: Repeat steps 1 - 3 until convergence

*
1989, has been proposed for Vector Quantization
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Entropy-Constrained Scalar Quantization:
High Resolution Approximations

= Assume: uniform quantization: P,=f, A

ZA“IdU\ k=0

N-1 N-1
R= —; R logR, = —; f Alog(f,A)

N-1 N-1
=->_ fAlog(f)->" fAlog(A)
k=0

~ f% f, (u)log( f, (u))du—log A f% f, (u)du
Differential Entropy h(U) 1

=h(U)—logA
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= Operational distortion rate function for Gaussian RV
e
U ~N(0,6%), D(R) z%azzﬂ

= |t can be shown that for high resolution:
Uniform Entropy-Constrained Scalar Quantization is optimum
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Comparison for Gaussian Sources
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Vector Quantization

= So far: scalars have been quantized
» Encode vectors, ordered sets of scalars
= Gain over scalar quantization (Lookabaugh and Gray 1989)
» Space filling advantage
- Z lattice is not most efficient sphere packing in K-D (K>1)
- Independent from source distribution or statistical dependencies
- Maximum gain for K»e: 1.53 dB
+ Shape advantage
- Exploit shape of source pdf
- Can also be exploited using entropy-constrained scalar
guantization
+ Memory advantage
- Exploit statistical dependencies of the source
- Can also be exploited using DPCM, Transform coding, block
entropy coding
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Comparison for Gauss-Markov Source: p=0.9

7
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Vector Quantization Il

= Vector quantizers can achieve R(D*) if K>

» Complexity requirements: storage and computation
= Delay

» Impose structural constraints that reduce complexity
» Tree-Structured, Transform, Multistage, etc.

= | attice Codebook VQ

Representative
vector

\ Amplitude 2

cell

Amplitude 1
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Summary

= Rate-distortion theory: minimum bit-rate for given distortion

= R(D*) for memoryless Gaussian source and MSE: 6 dB/bit

= R(D*) for Gaussian source with memory and MSE: encode
spectral components independently, introduce white noise,
suppress small spectral components

= Lloyd-Max quantizer: minimum MSE distortion for given number of
representative levels

= Variable length coding: additional gains by entropy-constrained
quantization

= Minimum mean squared error for given entropy: uniform quantizer
(for fine quantization!)

= Vector quantizers can achieve R(D*) if Ko - Are we done ?

= No! Complexity of vector quantizers is the issue

Design a coding system with optimum rate distortion performance,
such that the delay, complexity, and storage requirements are met.
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