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Rate Distortion Theory & QuantizationRate Distortion Theory & Quantization

!Rate Distortion Theory

!Rate Distortion Function

!R(D*) for Memoryless Gaussian Sources

!R(D*) for Gaussian Sources with Memory

!Scalar Quantization

! Lloyd-Max Quantizer

!High Resolution Approximations

!Entropy-Constrained Quantization

!Vector Quantization
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!Theoretical discipline treating data compression from 
the viewpoint of information theory. 

!Results of rate distortion theory are obtained without 
consideration of a specific coding method.

!Goal: Rate distortion theory calculates minimum 
transmission bit-rate R for a given distortion D and

source.

Rate Distortion TheoryRate Distortion Theory
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!Need to define U, V, Coder/Decoder, Distortion D,
and Rate R.

!Need to establish functional relationship between
U,V,D, and R

Transmission SystemTransmission System

Coder DecoderSource Sink
U V

Distortion D

Bit-Rate R
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DefinitionsDefinitions
! Source symbols are given by the random sequence {Uk}

• Each Uk assumes values in the discrete set 
U = {u0, u1, …, uM-1}

- For a binary source: U = {0, 1}
- For a picture: U = {0, 1,..., 255}

• For simplicity, let us assume Uk to be independent and 
identically distributed (i.i.d.) with distribution {P(u), u ∈ U}

! Reconstruction symbols are given by the random sequence {Vk} 
with distribution {P(v), v ∈ V}

• Each Vk assumes values in the discrete set 
V = {v0, v1, …, vN-1}

• The sets U and V need not to be the same
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CoderCoder / Decoder/ Decoder
! Statistical description of Coder/Decoder, i.e. the mapping of the 

source symbols to the reconstruction symbols, via

! Q is the conditional probability distribution over the letters of the 
reconstruction alphabet U given a letter of the source alphabet V

! Transmission system is described via

{ }( | ), ,Q Q v u u v= ∈ ∈U V#
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DistortionDistortion
! To determine distortion, we define a non-negative cost function

! Examples for d
• Hamming distance:

• Squared error:

! Average Distortion
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MutualMutual InformationInformation
! Shannon average mutual information

! Using Bayes‘ rule
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RateRate
!Shannon average mutual information expressed via 

entropy

!Equivocation: 
• The conditional entropy (uncertainty) about the 

source U given the reconstruction V
• A measure for the amount of missing [quantized]

information in the received signal V

( ; ) ( ) ( | )I U V H U H U V= −
Source entropy    Equivocation: conditional entropy
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Rate Distortion FunctionRate Distortion Function

!Definition:

!For a given maximum average distortion D, the rate 
distortion function R(D*) is the lower bound for the 
transmission bit-rate.

!The minimization is conducted for all possible 
mappings Q that satisfy the average distortion 
constraint 

!R(D*) is measured in bits for ld

: ( ) *
( *) min { ( )}

Q D Q D
R D I Q

≤
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DiscussionDiscussion
! In information theory: maximize mutual information for efficient

communication

! In rate distortion theory: minimize mutual information

! In rate distortion theory: source is given, not the channel

! Problem which is addressed: 

Determine the minimum rate at which information about the source
must be conveyed to the user in order to achieve a prescribed 
fidelity.

! Another view: Given a prescribed distortion, what is the channel
with the minimum capacity to convey the information.

! Alternative definition via interchanging the roles of rate and 
distortion
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Distortion Distortion Rate Rate FunctionFunction

!Definition:

!For a given maximum average rate R, the distortion 
rate function D(R*) is the lower bound for the average 
distortion.

!Here, we can set R* to the capacity C of the
transmission channel and determine the minimum 
distortion for this ideal communication system

: ( ) *
( *) min { ( )}

Q I Q R
D R d Q

≤
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(H(U), Dmin=0)
R(D) for a discrete amplitude source

10
0 max/D D

PropertiesProperties of of thethe Rate Distortion FunctionRate Distortion Function, I, I

!R(D) is well defined for D∈ (Dmin, Dmax)
!For discrete amplitude sources, Dmin = 0
!R(D)=0, if D > Dmax

(H(U)-H(U|V)=0, Dmax)
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PropertiesProperties of of thethe Rate Distortion FunctionRate Distortion Function, II, II

! R(D) is always positive

! R(D) is non-increasing in D
! R(D) is strictly convex downward in the range (Dmin, Dmax)
! The slope of R(D) is continous in the range (Dmin, Dmax)

0 ( ; ) ( )I U V H U≤ ≤

10
0 max/D D

( )R D
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Shannon Lower BoundShannon Lower Bound

! It can be shown that

!Then we can write

! Ideally, the source coder would produce distortions 
u-v that are statistically independent from the
reconstructed signal v (not always possible!).

! Shannon Lower Bound:
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RR((D*D*)) for a for a MemorylessMemoryless Gaussian Source Gaussian Source 
and MSE Distortionand MSE Distortion

!Gaussian source, variance  σ 2
!Mean squared error (MSE) D = E {(u-v)2}

!Rule of thumb: 6 dB ~ 1 bit 
!The R(D*) for non-Gaussian sources with the same 

variance σ 2 is always below this Gaussian R(D*) curve.
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RR((D*D*)) Function for Gaussian Source Function for Gaussian Source 
with Memory Iwith Memory I

! Jointly Gaussian source with power spectrum Suu(ω)
!MSE: D = E{(u-v)2}
!Parametric formulation of the R(D*) function

!R(D*) for non-Gaussian sources with the same power  
spectral density is always lower.
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RR((D*D*)) Function for Gaussian Source Function for Gaussian Source 
with Memory IIwith Memory II

white noise D*

reconstruction error 
spectrum 

Suu(ω)

D*

preserved spectrum Svv(ω)

ωno signal transmitted
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!ACF and PSD for a first order AR(1) Gauss-Markov 
process: U[n] = Z[n] + ρ U[n-1]

!Rate Distortion Function:

RR((D*D*)) Function for Gaussian Source Function for Gaussian Source 
with Memory IIIwith Memory III
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RR((D*D*)) Function for Gaussian Source Function for Gaussian Source 
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QuantizationQuantization

!Structure

Quantizer
u v

!Alternative: coder (α) / decoder (β) structure

α
u i

β
v

! Insert entropy coding (γ) and transmission channel

α
u i v

β
i

γ γ−1channel
b b



Thomas Wiegand: Digital Image Communication RD Theory and Quantization   21

Scalar QuantizationScalar Quantization

!Average distortion
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!Fixed code word length vs. variable code word length
{ }log . log ( )= =−R N vs R E P v
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0: Given: a source distribution fU (u)
a set of reconstruction levels {vk}

1: Encode given {vk} (Nearest Neighbor Condition): 

α(u) = argmin {d(u,vk)} " uk=(vk+vk+1)/2 (MSE)

2: Update set of reconstruction levels given α(uk)
(Centroid Condition):

vk = argmin E { d(u,vk) | α(u)=k} "

3: Repeat steps 1 and 2 until convergence

LloydLloyd--Max Max QuantizerQuantizer
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High Resolution ApproximationsHigh Resolution Approximations
!Pdf of U is roughly constant over individual cells Ck

!The fundamental theorem of calculus

!Approximate average distortion (MSE)
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Uniform QuantizationUniform Quantization

!Reconstruction levels of quantizer are 
uniformly spaced

!Quantizer step size, i.e. distance 
between reconstruction levels: ∆

!Average distortion

!Closed-form solutions for pdf-optimized uniform 
quantizers for Gaussian RV only exist for N=2 and N=3

!Optimization of ∆ is conducted numerically
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2 21 1
2

0 0

1

12 12 12

N N

k k k
k k

D P P
− −

= =

∆ ∆= ∆ = =∑ ∑

1

0

1,
N

k k
k

P
−

=

= ∆ =∆∑

v

∆

u

∆



Thomas Wiegand: Digital Image Communication RD Theory and Quantization   25

PanterPanter and and DiteDite ApproximationApproximation

!Approximate solution for optimized spacing of 
reconstruction and decision levels

!Assumptions: high resolution and smooth pdf ∆(u)

!Optimal pdf of reconstruction levels is not the same as 
for the input levels

!Average Distortion

!Operational distortion rate function for Gaussian RV 
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EntropyEntropy--Constrained QuantizationConstrained Quantization

! So far: each reconstruction level is transmitted with fixed code
word length

! Encode reconstruction levels with variable code word length
! Constrained design criteria: 

min D, s.t. R < Rc or   min R, s.t. D < Dc

! Pose as unconstrained optimization via Lagrangian formulation:
min D + λ R

R

D

Lines of constant
slope: -1/λ

! For a given λ, an optimum is obtained 
corresponding to either Rc or Dc

! If λ small, then D small and R large
if λ large, then D large and R small

! Optimality also for functions that are 
neither continuous nor differentiable
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0: Given: a source distribution fU (u)
a set of reconstruction levels {vk}
a set of variable length code (VLC) words {γk}
with associated length |γk|

1: Encode given {vk} and {γk}: 
α(u) = argmin {d(u, vk) +λ|γk| }

2: Update VLC given α(uk) and {vk}
|γk| = -log P(α(u)=k)

3: Update set of reconstruction levels given α(uk) and {vk}
vk = argmin E { d(u, vk) | α(u)=k}

4: Repeat steps 1 - 3 until convergence
*1989, has been proposed for Vector Quantization

Chou, Chou, LookabaughLookabaugh, and Gray Algorithm*, and Gray Algorithm*
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EntropyEntropy--Constrained Scalar Quantization:Constrained Scalar Quantization:
High Resolution ApproximationsHigh Resolution Approximations

! Assume: uniform quantization: Pk=fk ∆
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! Operational distortion rate function for Gaussian RV 
2 2 2e

~ (0, ), ( ) 2
6

RU D R
πσ σ −≈N

! It can be shown that for high resolution: 
Uniform Entropy-Constrained Scalar Quantization is optimum
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Comparison for Gaussian SourcesComparison for Gaussian Sources
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Vector QuantizationVector Quantization
!So far: scalars have been quantized
!Encode vectors, ordered sets of scalars
!Gain over scalar quantization (Lookabaugh and Gray 1989)

• Space filling advantage
- Z lattice is not most efficient sphere packing in K-D (K>1)
- Independent from source distribution or statistical dependencies
- Maximum gain for K"∞: 1.53 dB

• Shape advantage
- Exploit shape of source pdf
- Can also be exploited using entropy-constrained scalar 

quantization
• Memory advantage

- Exploit statistical dependencies of the source
- Can also be exploited using DPCM, Transform coding, block 

entropy coding
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Comparison for GaussComparison for Gauss--Markov Source: Markov Source: ρρ=0.9=0.9
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Vector Quantization IIVector Quantization II
!Vector quantizers can achieve R(D*) if K"∞
!Complexity requirements: storage and computation
!Delay
! Impose structural constraints that reduce complexity
!Tree-Structured, Transform, Multistage, etc.
! Lattice Codebook VQ
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SummarySummary
! Rate-distortion theory: minimum bit-rate for given distortion
! R(D*) for memoryless Gaussian source and MSE: 6 dB/bit
! R(D*) for  Gaussian source with memory and MSE: encode 

spectral components independently, introduce white noise, 
suppress small spectral components

! Lloyd-Max quantizer: minimum MSE distortion for given number of
representative levels

! Variable length coding: additional gains by entropy-constrained 
quantization

! Minimum mean squared error for given entropy: uniform quantizer
(for fine quantization!)

! Vector quantizers can achieve R(D*) if K"∞ - Are we done ?
! No! Complexity of vector quantizers is the issue

Design a coding system with optimum rate distortion performance,
such that the delay, complexity, and storage requirements are met.


