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Rate Distortion Theory

» Theoretical discipline treating data compression from the
viewpoint of information theory.

» Rate distortion theory calculates minimum transmission
bit-rate R for a given distortion D.

Distortion D
/ \

U Vv
Source Coder Decoder Sink

Bit-Rate R

» Results of rate distortion theory are obtained without
consideration of a specific coding method.
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Rate Distortion Theory: Mutual Information

» "Mutual information” is the information that symbols u
and symbols v convey about each other.

PV, [u) :|ng(u| Vi)
P(vy) P(u)

[(u;vi ) =1(vi)=1(vi |u))=log

= Average mutual information:
\) = JogPVIu) _ 1og P Ulv)
I(U,V)-%%P(u,v) log P) %%P(u,v) log P
=H(V)-H(V [U)=H{U)-H{U V)

0<IUV)=1(V:U)
= Properties of mutual information: | 1(UV)<H(U)
I(V;U)<H(V)
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Rate Distortion Theory: Distortion

= Symbol u sent, v received

= Distortion:

d(uyv)=0
duv)=0 for u=v

= Average distortion:
D=E[d(uVv)]=>> P\ |u)-P(u)-d(uyv)
uv

= Djstortion criterion:

(D* -maximum average distortion)
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Rate Distortion Function

= Definition: R(D%)= min {(UV)}
D<D*

» For a given maximum average distortion D*, the rate
distortion function R(D*) is the lower bound for the

transmission bit-rate.

R(D*) for continuous amplitude source
R(D*) for discrete amplitude source

H(U) ——
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Shannon Lower Bound

= [t can be shown that [H(U -V [V)=H(U |V)|

R(D*)= min {HU)-HU |V)}
D<D*
=HU)-max{HU |V)}
D<D*
=HU)- max{HU -V |V)}
D<D*

= Then we can write

= |[deally, the source coder would produce distortions

u-v that are statistically independent from the
reconstructed signal v (not always possible!).

= Shannon Lower Bound: |R(P*)= H(U)_[?la[;(*H(U -V)
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R(D*) for a Memoryless Gaussian Source
and MSE Distortion

= Gaussian source, variance o2
» Mean squared error (MSE) D = E {(u-v)?}

2
R(D*)=;Iogg*; D(R)=c22-2R* R>0

2
SNR=10-log. %= =10-log._2~2R~6R [dB
oD "% [dB]

» Rule of thumb: 6 dB ~ 1 bit
» The R(D*) for non-Gaussian sources with the same
variance o2 is always below this Gaussian R(D*) - curve.
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R(D*) Function for Gaussian Source
with Memory |

= Jointly Gaussian source with power spectrum S (@)
» MSE: D = E{(u-v)?}
= Parametric formulation of the R(D*) function

I
D = j min[6,S..(w)d®
w
Suw(w)
0

l[dew

1 1
R=—"—|max[0,=lo
27[". [ 2 g
W

» R(D*) for non-Gaussian sources with the same power
spectral density is always lower.
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R(D*) Function for Gaussian Source
with Memory |l

1S, (o)

reconstruction error preserved spectrum S, /(@)

spectrum
\

white{noise 6

Sy
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R(D*) Function for Gaussian Source
with Memory Il

= ACF and PSD for a first order AR(1) Gauss-Markov
process: U[n] = W[n] + pU[n-1]

o’(1-p?
Ru(K)=p"o? S, (@)= d-p) 2
1-2pcosw+p

= Rate Distortion Function:

V4 * _
R(D*)=ijlogzsuu—(*w)da), D_zgl_p
4r D c° l+p
_ 1 T 0_2(1_p2) 1 V4 )
—Eilongdw—E_J;logz(l— 2pcosw+ p )da)

_1| 0-2(1_p2) 10 0-2

T3 T T %
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R(D*) Function for Gaussian Source
with Memory IV
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Quantization

= Structure

Quantize

r

= Alternative: coder (o) / decoder (B) structure

u

i

—

%]

1B

* Insert entropy coding (y) and transmission channel

U|—|i,—|

b

AL D

b

@V

channel

rY—l

LP]
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Scalar Quantization

» Average distortion Output v y
NG i+2

D= E{d (U A )} reconstruction " |
N—-1Yk+1 levels . |
= [d(uv,)-f,u)du N —_
k=0 y, v, i :

= Assume MSE . ;”i  Uir 5”u+1

=(u-v, ) : input
d(u,Vk) (u Vk) — \ / signal u
N-1Yks1
= —v ). N-1 decision

b= k=0 l;l;(u Vk) fU (u)du thresholds

» Fixed code word length vs. variable code word length
R=IlogN vs. R=-E{logP(v)}
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Lloyd-Max Quantizer

0: Given: a source distribution f; (u)
a set of reconstruction levels {,}

1: Encode given {B,} (Nearest Neighbor Condition):
o(u) = argmin {d(u,B,)} > U =(Vtv,)/2 (MSE)

2: Update set of reconstruction levels given o(u,)
(Centroid Condition): Uks1

Iu £, (u)du

B, = argmin E { d(u,B,) | o(u)=k} »v, =—~——— (MSE)

Ukﬁ‘u (u)du

3: Repeat steps 1 and 2 until convergence
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High Resolution Approximations

= Pdf of U is roughly constant over individual cells C,
f,u)=f, ueC,
» The fundamental theorem of calculus

U1

P, =Pr ueC If dU~ k+1_uk)'fk:Akfk

= Approximate average dlstortlon (MSE)

N—1Uk+1 N-1 Uk
D=3 [lu-v,) f(u)dquj

k=0 y, Uy
N-1 3

— Ak 1 2

D PkAk
o 12 12§D
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Uniform Quantization

= Reconstruction levels of quantizer {v, ke K are
uniformly spaced
v

= Quantizer step size, i.e. distance A
between reconstruction levels: A ’ |

= Average distortion

N-1 i A
dDP =1 A=A H—

) AZNl A_2 i
ZPA 12Z K12

k=0

= Closed-form solutions for pdf-optimized uniform
guantizers for Gaussian RV only exist for N=2 and N=3
= Optimization of A is conducted numerically

m
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Panter and Dite Approximation

= Approximate solution for optimized spacing of
reconstruction and decision levels
= Assumptions: high resolution and smooth pdf A(u)

const

M= RO

= Optimal pdf of reconstruction levels is not the same as
for the input levels 1

. ; ; _ U3(; ).
Average Distortion D ~ W(.szu (u) du)3

= Operational distortion rate function for Gaussian RV

\/§ 0.2 2—2R

U ~ N(0,6?), D(R)zﬂT

| H
..I Thomas Wiegand: Digital Image Communication RD Theory and Quantization 17

Entropy-Constrained Quantization

» So far: each reconstruction level is transmitted with fixed code
word length
= Encode reconstruction levels with variable code word length
= Constrained design criteria:
minD,st.R<R, or minR,s.t.D<D,
» Pose as unconstrained optimization via Lagrangian formulation:
minD+AR

Lines of constant = For a given A, an optimum is obtained

slope: -1/A corresponding to either R or D,

= |f A small, then D small and R large
if A large, then D large and R smalll

= Optimality also for functions that are
neither continuous nor differentiable
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Chou, Lookabaugh, and Gray Algorithm*

0: Given: a source distribution f; (u)
a set of reconstruction levels {B,}
a set of variable length code (VLC) words {y,}
set n=1

1: Encode given {8,} and {y,}:
ou) = argmin {d(u,B)}+Alvd

2: Update VLC given o(u,) and {B,}
[l = -log P(a(u)=k)

3: Update set of reconstruction levels given o(u,) and {y,}
B = argmin E {d(u,p,) | a(u)=k}

4: Repeat steps 1 - 3 until convergence

*
1989, has been proposed for Vector Quantization
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Entropy-Constrained Scalar Quantization:
High Resolution Approximations

= Assume: uniform quantization: P =f, A

N-1 N-1
R= —kz(; P logP, = —gkaIog(ka)

ZA J_d J = —NifkaIog(fk)—dekalog(A)
~ u k=0 k=0
~ j%fu (u)log(f, (u))du —IogAJ'%fU (u)du

—_——
Differential Entropy h(U) 1

=h(U)-logA
= Operational distortion rate function for Gaussian RV
e
U~N(0,62), D(R) z%GZZ‘ZR

= It can be shown that for high resolution:
Uniform Entropy-Constrained Scalar Quantization is optimum
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Comparison for Gaussian Sources
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Vector Quantization

= So far: scalars have been quantized
= Encode vectors, ordered sets of scalars
= Gain over scalar quantization (Lookabaugh and Gray 1989)
* Space filling advantage
- Zlattice is not most efficient sphere packing in K-D (K>1)
- Independent from source distribution or statistical dependencies
- Maximum gain for Ka: 1.53 dB
« Shape advantage
- Exploit shape of source pdf
- Can also be exploited using entropy-constrained scalar
guantization
« Memory advantage
- Exploit statistical dependencies of the source

- Can also be exploited using DPCM, Transform coding, block
entropy coding
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Comparison for Gauss-Markov Source: p=0.9
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Vector Quantization Il

= Vector quantizers can achieve R(D*) if Koo

» Complexity requirements: storage and computation
= Delay

» Impose structural constraints that reduce complexity
» Tree-Structured, Transform, Multistage, etc.

= Lattice Codebook VQ

Representative
vector

\ Amplitude 2

cell

Amplitude 1
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Summary

» Rate-distortion theory: minimum bit-rate for given distortion

» R(D*) for memoryless Gaussian source and MSE: 6 dB/bit

» R(D*) for Gaussian source with memory and MSE: encode
spectral components independently, introduce white noise,
suppress small spectral components

* Lloyd-Max quantizer: minimum MSE distortion for given number of
representative levels

= Variable length coding: additional gains by entropy-constrained
quantization

= Minimum mean squared error for given entropy: uniform quantizer
(for fine quantization!)

= Vector quantizers can achieve R(D*) if Koo : Are we done ?

= No! Complexity of vector quantizers is the issue

Design a coding system with optimum rate distortion performance,
such that the delay, complexity, and storage requirements are met.
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