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Rate Distortion TheoryRate Distortion Theory
Theoretical discipline treating data compression from the
viewpoint of information theory.

Rate distortion theory calculates minimum transmission
bit-rate R for a given distortion D.

Results of rate distortion theory are obtained without
consideration of a specific coding method.

Coder DecoderSource Sink
U V

Distortion D

Bit-Rate R
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Rate Distortion Theory: Mutual InformationRate Distortion Theory: Mutual Information

"Mutual information" is the information that symbols u
and symbols v convey about each other.

Average mutual information:

Properties of mutual information:
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Rate Distortion Theory: DistortionRate Distortion Theory: Distortion
Symbol u sent, v received

Distortion:

Average distortion:

Distortion criterion:

(D* -maximum average distortion)
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Rate Distortion FunctionRate Distortion Function

Definition:

For a given maximum average distortion D*, the rate
distortion function R(D*) is the lower bound for the
transmission bit-rate.
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Shannon Lower BoundShannon Lower Bound

It can be shown that

Then we can write

Ideally, the source coder would produce distortions
u-v that are statistically independent from the
reconstructed signal v (not always possible!).

Shannon Lower Bound:
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RR((D*D*) for a) for a Memoryless GaussianMemoryless Gaussian SourceSource
and MSE Distortionand MSE Distortion

Gaussian source, variance σ 2
Mean squared error (MSE) D = E {(u-v)2}

Rule of thumb: 6 dB ~ 1 bit
The R(D*) for non-Gaussian sources with the same
variance σ 2 is always below this Gaussian R(D*) - curve.
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RR((D*D*) Function for) Function for GaussianGaussian SourceSource
with Memory Iwith Memory I

Jointly Gaussian source with power spectrum Suu(ω)
MSE: D = E{(u-v)2}
Parametric formulation of the R(D*) function

R(D*) for non-Gaussian sources with the same power
spectral density is always lower.
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RR((D*D*) Function for) Function for GaussianGaussian SourceSource
with Memory IIwith Memory II

white noise θ

reconstruction error
spectrum

Suu(ω)

θ

preserved spectrum SVV(ω)

ω
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ACF and PSD for a first order AR(1) Gauss-Markov
process: U[n] = W[n] + ρU[n-1]

Rate Distortion Function:

RR((D*D*) Function for) Function for GaussianGaussian SourceSource
with Memory IIIwith Memory III



Thomas Wiegand: Digital Image Communication RD Theory and Quantization 11

R [bits]
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QuantizationQuantization

Structure

Quantizer
u v

Alternative: coder (α) / decoder (β) structure

α
u i

β
v

Insert entropy coding (γ) and transmission channel

α
u i v

β
i

γ γ−1channel
b b
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ScalarScalar QuantizationQuantization

Average distortion
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0: Given: a source distribution fU (u)
a set of reconstruction levels {βk}

1: Encode given {βk} (Nearest Neighbor Condition):

α(u) = argmin {d(u,βk)} uk=(vk+vk+1)/2 (MSE)

2: Update set of reconstruction levels given α(uk)
(Centroid Condition):

βk = argmin E { d(u,βk) | α(u)=k}

3: Repeat steps 1 and 2 until convergence

LloydLloyd--MaxMax QuantizerQuantizer
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High Resolution ApproximationsHigh Resolution Approximations

Pdf of U is roughly constant over individual cells Ck

The fundamental theorem of calculus

Approximate average distortion (MSE)
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UniformUniform QuantizationQuantization

Reconstruction levels of quantizer are
uniformly spaced
Quantizer step size, i.e. distance
between reconstruction levels: ∆
Average distortion

Closed-form solutions for pdf-optimized uniform
quantizers for Gaussian RV only exist for N=2 and N=3
Optimization of ∆ is conducted numerically
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PanterPanter andand DiteDite ApproximationApproximation

Approximate solution for optimized spacing of
reconstruction and decision levels
Assumptions: high resolution and smooth pdf ∆(u)

Optimal pdf of reconstruction levels is not the same as
for the input levels
Average Distortion

Operational distortion rate function for Gaussian RV
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EntropyEntropy--ConstrainedConstrained QuantizationQuantization

So far: each reconstruction level is transmitted with fixed code
word length
Encode reconstruction levels with variable code word length
Constrained design criteria:

min D, s.t. R < Rc or min R, s.t. D < Dc

Pose as unconstrained optimization via Lagrangian formulation:
min D + λ R

R

D

Lines of constant
slope: -1/λ

For a given λ, an optimum is obtained
corresponding to either Rc or Dc
If λ small, then D small and R large
if λ large, then D large and R small
Optimality also for functions that are
neither continuous nor differentiable
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0: Given: a source distribution fU (u)
a set of reconstruction levels {βk}
a set of variable length code (VLC) words {γk}
set n=1

1: Encode given {βk} and {γk}:
α(u) = argmin {d(u,βk)}+λ|γk|

2: Update VLC given α(uk) and {βk}
|γk| = -log P(α(u)=k)

3: Update set of reconstruction levels given α(uk) and {γk}
βk = argmin E { d(u,βk) | α(u)=k}

4: Repeat steps 1 - 3 until convergence
*1989, has been proposed for Vector Quantization

ChouChou,, LookabaughLookabaugh, and Gray Algorithm*, and Gray Algorithm*
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EntropyEntropy--Constrained ScalarConstrained Scalar QuantizationQuantization::
High Resolution ApproximationsHigh Resolution Approximations

Assume: uniform quantization: Pk=fk ∆
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It can be shown that for high resolution:
Uniform Entropy-Constrained Scalar Quantization is optimum
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Comparison forComparison for GaussianGaussian SourcesSources
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VectorVector QuantizationQuantization
So far: scalars have been quantized
Encode vectors, ordered sets of scalars
Gain over scalar quantization (Lookabaugh and Gray 1989)

• Space filling advantage
- Z lattice is not most efficient sphere packing in K-D (K>1)
- Independent from source distribution or statistical dependencies
- Maximum gain for K ∞: 1.53 dB

• Shape advantage
- Exploit shape of source pdf
- Can also be exploited using entropy-constrained scalar

quantization
• Memory advantage

- Exploit statistical dependencies of the source
- Can also be exploited using DPCM, Transform coding, block

entropy coding
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Comparison for GaussComparison for Gauss--Markov Source:Markov Source: ρρ=0.9=0.9
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VectorVector QuantizationQuantization IIII
Vector quantizers can achieve R(D*) if K ∞
Complexity requirements: storage and computation
Delay
Impose structural constraints that reduce complexity
Tree-Structured, Transform, Multistage, etc.
Lattice Codebook VQ
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SummarySummary
Rate-distortion theory: minimum bit-rate for given distortion
R(D*) for memoryless Gaussian source and MSE: 6 dB/bit
R(D*) for Gaussian source with memory and MSE: encode
spectral components independently, introduce white noise,
suppress small spectral components
Lloyd-Max quantizer: minimum MSE distortion for given number of
representative levels
Variable length coding: additional gains by entropy-constrained
quantization
Minimum mean squared error for given entropy: uniform quantizer
(for fine quantization!)
Vector quantizers can achieve R(D*) if K ∞ : Are we done ?
No! Complexity of vector quantizers is the issue

Design a coding system with optimum rate distortion performance,
such that the delay, complexity, and storage requirements are met.


