Rate Distortion Theory & Quantization
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* R(D*) for Gaussian Sources with Memory
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 Lloyd-Max Quantizer

* High Resolution Approximations

* Entropy-Constrained Quantization
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Rate Distortion Theory

* Theoretical discipline treating data compression from the
viewpoint of information theory.

e Rate distortion theory calculates minimum transmission
bit-rate R for a given distortion D.

Distortion D
— | T~

U V

Source —» Coder TDecoder—» Sink

Bit-Rate R

» Results of rate distortion theory are obtained without
consideration of a specific coding method.
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Rate Distortion Theory: Mutual Information

 "Mutual information" is the information that symbols u
and symbols v convey about each other.

v, )= _ _1aq PV U) _ P V)
1(u;vi) =1(vi ) - [(vi |u;) =log P(V,) log PU)
e Average mutual information:
V18 8 P(v]u) _ s P(u|v)
(UV)=g a P(u,v)+4og P (V) a a P(u,v)xog P(U)

u v uyv
=HV)-HM|U)=HU)- HU V)

0£I1(UV)=1V:U)

« Properties of mutual information: | 1(U;V)£H(U)
— IV;U)EHV)
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Rate Distortion Theory: Distortion

e Symbol u sent, v received

e Distortion
d(uv)3 0
d(uv)=0 for u

Vv

« Average distortion:
D=E[d(uV)]=8§ § P(v|u):P(u):d(u,v)
uyv

e Distortion criterion:

DED*

(D* -maximum average distortion)
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Rate Distortion Function

e Definition:

R(D*)= min {I(UV)}
DED*

e For a given maximum average distortion D*, the rate
distortion function R(D*) is the lower bound for the
transmission bit-rate.

R(D*) for continuous amplitude source
R(D*) for discrete amplitude source

>
°0 1 DIs;
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Shannon Lower Bound

. It can be shown that HU-VI|V)=HU[V)

R(D*)= min {H(U)- HU [V)}
DED*
=H(U)- max {H(U[V)}
DED*
=H(U)- max {HU-V |[V)}
DED*

 Then we can write

* |deally, the source coder would produce distortions u-v that are
statistically independent from the reconstructed signal v
(not always possible!).

e Shannon Lower Bound: |[R(D*)3 H(U)- max HU -V)
DED*
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R(D*) for a Memoryless Gaussian Source
and MSE Distortion

e Gaussian source, variance s 2
e Mean squared error (MSE) D = E {(u-v)3}

2

1, s

R(D*)=Zlo

(D%) 5109

SNR =10%0 ﬁleﬂO 2~ 2R, 6R [dB]
90D 910

. D(R*)=s 22" 2R* R3 Q

e Rule of thumb: 6 dB ~ 1 bit
* The R(D*) for non-Gaussian sources with the same
variance s 2 is always below this Gaussian R(D*) - curve.
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R(D*) Function for Gaussian Source
with Memory |

« Jointly Gaussian source with power spectrum S ,(w)
« MSE: D = E{(u-v)?}
e Parametric formulation of the R(D*) function

-1
2p

= 2;13 C‘Snin[q ,Suw(W)]dw

onax| O,Elog

W

W

suu(w)] dw

* R(D*) for non-Gaussian sources with the same power
spectral density is always lower.
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R(D*) Function for Gaussian Source

with Memory |l
d Syu(w)

reconstruction error

preserved spectrum S, (w)

spectrum \

[noise q
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R(D*) Function for Gaussian Source
with Memory Il

« ACF and PSD for a first order AR(1) Gauss-Markov
process: U[n] = W[n] + r U[n-1]

s ?(1- r?)
1- 2r COSW +r °

R, (K)=rMs? S, (W)=

e Rate Distortion Function:

P * _
R(D*):i dogz SUU(W)dW, D2 £1 r
4p I D * S 1+
p 201 _ ¢ 2 p
-1 Jo ZS (- )dw- 1 (‘jogz(l- 2r cosw+r2)dw
ap D * s
1 s2f-r?) 1, s/
—§|092 D * —5092 DZ*-
|-
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R(D*) Function for Gaussian Source
with Memory IV
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Quantization

e Structure

» Quantizer >

 Alternative: coder (a) / decoder (b) structure

u i \Y;
»a »b >

e Insert entropy coding (g) and transmission channel

u i b b i \Y;

—>a [—>g— channel —— gl —b—
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Scalar Quantization

« Average distortion
D =E{d(U,V )}

e Assume MSE

d(uyv,)=(u-v,f
D=5 du-v,J,(u)du

k=0 Uy

A
Output v
N Vi+2

reconstruction
levels |
\ Vier |
—————————————— -I—:
vi '

\\\ / |nput

— signal u
N-1 decision

thresholds

* Fixed code word length vs. variable code word length

=logN vs.

I Thomas Wiegand: Digital Image Communication

R =-E{logP(v)}

RD Theory and Quantization 13



Lloyd-Max Quantizer

0: Given: a source distribution f (u)
a set of reconstruction levels {b,}

1: Encode given {b,} (Nearest Neighbor Condition):
a(u) = argmin {d(u,b,)} > u=(v+v,,,)/2 (MSE)

2: Update set of reconstruction levels given a(u,)

(Centroid Condition): Uy 1
o X (u)du
b, = argmin E { d(u,b,) | a(u)=k} s v, =~ (MSE)

uk+1

Cu (u )du

3: Repeat steps 1 and 2 until convergence
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High Resolution Approximations

 Pdf of U is roughly constant over individual cells C,
f, (u)» f, ul C,

 The fundamental theorem of calculus

uk+1

P :Pr(uT Ck): ot (u)><du » (uk+1- uk)><fk =D, f,

* Approximate average distortion (MSE)

N-luk+1 N-1 Uy +1
D=a Ju-v.) % u)du=g f Ju-v,)du
k=0 y, k=0,
N-1 N-1
:é fi D, = ¥ P, D
=0 12 12,5
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Uniform Quantization

* Reconstruction levels of quantizer {vk}, kTl K are
uniformly spaced

e Quantizer step size, i.e. distance v 4 D
between reconstruction levels: D | B
* Average distortion |
N 1 | D
4P =1 D =D
k=0 ﬁ - ﬁ I I I j 1 I I u
1 N-1 -
D:—éPszkz—éPk:— }
122 122 k12 _

 Closed-form solutions for pdf-optimized uniform
guantizers for Gaussian RV only exist for N=2 and N=3
e Optimization of Dis conducted numerically
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Panter and Dite Approximation

* Approximate solution for optimized spacing of
reconstruction and decision levels
o Assumptions: high resolution and smooth pdf D(u)

D(u) =

const

Ity (u)

e Optimal pdf of reconstruction levels is not the same as
for the input levels 1
- . N\ £1/3
* Average Distortion D » 1N (qu (u)><du)3

e Operational distortion rate function for Gaussian RV

p+3

38 22-2R
2

U~N(,s?), D(R)»
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Entropy-Constrained Quantization

« So far: each reconstruction level is transmitted with fixed code
word length
* Encode reconstruction levels with variable code word length
e Constrained design criteria:
min D, s.t. R<R. or mnR,s.t.D<D,
* Pose as unconstrained optimization via Lagrangian formulation:
mnD+1| R

R 4 Lines of constant « For a given | , an optimum is obtained

slope: -1/I corresponding to either R or D,

o IfI small, then D small and R large
if | large, then D large and R small

» Optimality also for functions that are
neither continuous nor differentiable
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Chou, Lookabaugh, and Gray Algorithm*

0: Given: a source distribution f (u)
a set of reconstruction levels {b,}
a set of variable length code (VLC) words {g }
set n=1

1: Encode given {b,} and {g}:
a(u) = argmin {d(u,b,)}+l |g |

2. Update VLC given a(u,) and {b,}
9l = -log P(a(u)=k)

3: Update set of reconstruction levels given a(u,) and {g}
b, = argmin E { d(u,b,) | a(u)=k}

4. Repeat steps 1 - 3 until convergence

1989, has been proposed for Vector Quantization
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Entropy-Constrained Scalar Quantization:
High Resolution Approximations

e Assume: uniform quantization: P, =f, D

N-1
O

N-1
R=-8§ P logP, =- g f.Dlog(f.D)
k=0 k=0
No-l l\cl;l
o . =-a fiDlog(f,) - a fDlog(D)
a D» cdu k=0 k=0
» qu (w)log(f, (u))du - log DQfU (u)du
) Differenti al Entropy h(U) ’ ) \i ’
=h(U)- logD

» Operational distortion rate function for Geaussian RV
U~N(0s2), D(R)» %s 29 2R

* |t can be shown that for high resolution:

Uniform Entropy-Constrained Scalar Quantization is optimum
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Comparison for Gaussian Sources

30 >
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Vector Quantization

« S0 far: scalars have been quantized
e Encode vectors, ordered sets of scalars
» Gain over scalar quantization (Lookabaugh and Gray 1989)

v'Space filling advantage
> Z lattice is not most efficient sphere packing in K-D (K>1)

» Independent from source distribution or statistical dependencies
» Maximum gain for K»¥: 1.53 dB

v Shape advantage
» Exploit shape of source pdf
» Can also be exploited using entropy-constrained scalar
guantization
v Memory advantage
» EXxploit statistical dependencies of the source
» Can also be exploited using DPCM, Transform coding, block
entropy coding
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Comparison for Gauss-Markov Source: r=0.9

SNR[dB] *°
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Vector Quantization Il

e Vector quantizers can achieve R(D*) if K»¥
o Complexity requirements: storage and computation

e Delay
e Impose structural constraints that reduce complexity

e Tree-Structured, Transform, Multistage, etc.
o Lattice Codebook VQ

Representative
vector

\ Amplitude 2

cell

Amplitude 1
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Summary

« Rate-distortion theory: minimum bit-rate for given distortion

* R(D*) for memoryless Gaussian source and MSE: 6 dB/bit

* R(D*) for Gaussian source with memory and MSE: encode
spectral components independently, introduce white noise,
suppress small spectral components

 Lloyd-Max quantizer: minimum MSE distortion for given number of
representative levels

 Variable length coding: additional gains by entropy-constrained
guantization

 Minimum mean squared error for given entropy: uniform quantizer
(for fine quantization!)

 Vector quantizers can achieve R(D*) if K»>¥

o Complexity of vector quantizers

Design a coding system with optimum rate distortion performance,
such that the delay, complexity, and storage requirements are met.




