Rate Distortion Theory & Quantization

- Rate Distortion Theory
- Rate Distortion Function
- R(D*) for Memoryless Gaussian Sources
- R(D*) for Gaussian Sources with Memory
- Scalar Quantization
- Lloyd-Max Quantizer
- High Resolution Approximations
- Entropy-Constrained Quantization
- Vector Quantization

Rate Distortion Theory

- Theoretical discipline treating data compression from the viewpoint of information theory.
- Rate distortion theory calculates minimum transmission bit-rate *R* for a given distortion *D*.

 Results of rate distortion theory are obtained without consideration of a specific coding method.

Thomas Wiegand: Digital Image Communication

Rate Distortion Theory: Mutual Information

 "Mutual information" is the information that symbols u and symbols v convey about each other.

$$|I(u_{l};v_{k}) = I(v_{k}) - I(v_{k} | u_{l}) = \log \frac{P(v_{k} | u_{l})}{P(v_{k})} = \log \frac{P(u_{l} | v_{k})}{P(u_{l})}$$

Average mutual information:

$$I(U;V) = \sum_{u} \sum_{v} P(u,v) \cdot \log \frac{P(v|u)}{P(v)} = \sum_{u} \sum_{v} P(u,v) \cdot \log \frac{P(u|v)}{P(u)}$$
$$= H(V) - H(V|U) = H(U) - H(U|V)$$

Properties of mutual information:

$$0 \le I(U;V) = I(V;U)$$
$$I(U;V) \le H(U)$$
$$I(V;U) \le H(V)$$

Rate Distortion Theory: Distortion

- Symbol u sent, v received
- Distortion

$$d(u,v) \ge 0$$

$$d(u,v) = 0 for u = v$$

Average distortion:

$$D = E[d(u,v)] = \sum_{u} \sum_{v} P(v|u) \cdot P(u) \cdot d(u,v)$$

Distortion criterion:

$$D \leq D^*$$

 $(D^*$ -maximum average distortion)

Rate Distortion Function

• Definition:

$$R(D^*) = \min_{D \le D^*} \{I(U;V)\}$$

 For a given maximum average distortion D*, the rate distortion function $R(D^*)$ is the lower bound for the transmission bit-rate.

Shannon Lower Bound

It can be shown that

$$H(U-V|V)=H(U|V)$$

Then we can write

$$R(D^*) = \min_{D \le D^*} \{H(U) - H(U|V)\}$$

= $H(U) - \max_{D \le D^*} \{H(U|V)\}$
= $H(U) - \max_{D \le D^*} \{H(U-V|V)\}$
 $D \le D^*$

- Ideally, the source coder would produce distortions *u-v* that are statistically independent from the reconstructed signal v (not always possible!).
- Shannon Lower Bound:

$$R(D^*) \ge H(U) - \max_{D \le D^*} H(U-V)$$

R(D*) for a Memoryless Gaussian Source and MSE Distortion

- Gaussian source, variance s²
- Mean squared error (MSE) $D = E\{(u-v)^2\}$

$$R(D^*) = \frac{1}{2} \log \frac{s^2}{D^*}; \quad D(R^*) = s^2 2^{-2R^*}, R \ge 0$$

$$SNR = 10 \cdot \log_{10} \frac{s^2}{D} = 10 \cdot \log_{10} 2^{-2R} \approx 6R \quad [dB]$$

- Rule of thumb: 6 dB ~ 1 bit
- The R(D*) for non-Gaussian sources with the same variance s^2 is always below this Gaussian $R(D^*)$ - curve.

R(D*) Function for Gaussian Source with Memory I

- Jointly Gaussian source with power spectrum $S_{\mu\nu}(w)$
- MSE: $D = E\{(u-v)^2\}$
- Parametric formulation of the R(D*) function

$$D = \frac{1}{2p} \int_{\mathbf{W}} \min[\mathbf{q}, S_{uu}(\mathbf{w})] d\mathbf{w}$$

$$R = \frac{1}{2p} \int_{\mathbf{W}} \max[0, \frac{1}{2} \log \frac{S_{uu}(\mathbf{w})}{\mathbf{q}}] d\mathbf{w}$$

 R(D*) for non-Gaussian sources with the same power spectral density is always lower.

R(D*) Function for Gaussian Source with Memory II

Thomas Wiegand: Digital Image Communication

R(D*) Function for Gaussian Source with Memory III

 ACF and PSD for a first order AR(1) Gauss-Markov $U[n] = W[n] + \rho U[n-1]$ process:

$$R_{uu}(k) = r^{|k|} s^2, \qquad S_{uu}(w) = \frac{s^2(1-r^2)}{1-2r\cos w + r^2}$$

Rate Distortion Function:

$$R(D^{*}) = \frac{1}{4p} \int_{-p}^{p} \log_{2} \frac{S_{uu}(w)}{D^{*}} dw, \quad \frac{D^{*}}{s^{2}} \leq \frac{1-r}{1+r}$$

$$= \frac{1}{4p} \int_{-p}^{p} \log_{2} \frac{s^{2}(1-r^{2})}{D^{*}} dw - \frac{1}{4p} \int_{-p}^{p} \log_{2} (1-2r\cos w + r^{2}) dw$$

$$= \frac{1}{2} \log_{2} \frac{s^{2}(1-r^{2})}{D^{*}} = \frac{1}{2} \log_{2} \frac{s_{z}^{2}}{D^{*}}.$$

R(D*) Function for Gaussian Source with Memory IV

Quantization

Structure

• Alternative: coder (α) / decoder (β) structure

• Insert entropy coding (γ) and transmission channel

Scalar Quantization

Average distortion

$$D = E\{d(U,V)\}$$

$$= \sum_{k=0}^{N-1} \int_{u_k}^{u_{k+1}} d(u,v_k) \cdot f_U(u) du$$

Assume MSE

$$d(u, v_k) = (u - v_k)^2$$

$$D = \sum_{k=0}^{N-1} \int_{0}^{u_{k+1}} (u - v_k)^2 \cdot f_U(u) du$$

Fixed code word length vs. variable code word length

$$R = \log N$$
 vs. $R = -E\{\log P(v)\}$

Lloyd-Max Quantizer

- 0: Given: a source distribution $f_{ij}(u)$
 - a set of reconstruction levels $\{\beta_{\nu}\}$
- 1: Encode given $\{\beta_k\}$ (Nearest Neighbor Condition):

$$\alpha(u) = \operatorname{argmin} \{d(u, \beta_k)\}$$

$$\alpha(u) = \operatorname{argmin} \{d(u, \beta_k)\}$$
 \rightarrow $u_k = (v_k + v_{k+1})/2 \text{ (MSE)}$

2: Update set of reconstruction levels given $\alpha(u_k)$

(Centroid Condition):

$$\beta_{k} = \operatorname{argmin} E \{ d(u, \beta_{k}) \mid \alpha(u) = k \} \rightarrow V_{k} = \frac{u_{k}}{u_{k+1}}$$

$$\int_{u_{k}}^{u_{k+1}} f_{U}(u) du$$
(MSE)

3: Repeat steps 1 and 2 until convergence

High Resolution Approximations

• Pdf of U is roughly constant over individual cells C_{k}

$$f_U(u) \approx f_k, \quad u \in C_k$$

The fundamental theorem of calculus

$$P_k = \Pr(u \in C_k) = \int_{u_k}^{u_{k+1}} f_U(u) \cdot du \approx (u_{k+1} - u_k) \cdot f_k = \Delta_k f_k$$

Approximate average distortion (MSE)

$$D = \sum_{k=0}^{N-1} \int_{u_k}^{u_{k+1}} (u - v_k)^2 \cdot f_U(u) \cdot du = \sum_{k=0}^{N-1} f_k \int_{u_k}^{u_{k+1}} (u - v_k)^2 du$$
$$= \sum_{k=0}^{N-1} f_k \frac{\Delta_k^3}{12} = \frac{1}{12} \sum_{k=0}^{N-1} P_k \Delta_k^2$$

Uniform Quantization

- Reconstruction levels of quantizer $\{v_{\iota}\}, k \in K$ are uniformly spaced
- Quantizer step size, i.e. distance between reconstruction levels: A
- Average distortion

$$\sum_{k=0}^{N-1} P_k = 1, \quad \Delta_k = \Delta$$

$$D = \frac{1}{12} \sum_{k=0}^{N-1} P_k \Delta_k^2 = \frac{\Delta^2}{12} \sum_{k=0}^{N-1} P_k = \frac{\Delta^2}{12}$$

- Closed-form solutions for pdf-optimized uniform quantizers for Gaussian RV only exist for N=2 and N=3
- Optimization of Δ is conducted numerically

Panter and Dite Approximation

- Approximate solution for optimized spacing of reconstruction and decision levels
- Assumptions: high resolution and smooth pdf $\Delta(u)$

$$\Delta(u) = \frac{\text{const}}{\sqrt[3]{f_U(u)}}$$

- Optimal pdf of reconstruction levels is not the same as for the input levels
- Average Distortion $D \approx \frac{1}{12NI^2} \left(\int_{\Re} f_U^{1/3}(u) \cdot du \right)^3$
- Operational distortion rate function for Gaussian RV

$$U \sim N(0, s^2), \quad D(R) \approx \frac{p\sqrt{3}}{2} s^2 2^{-2R}$$

Entropy-Constrained Quantization

- So far: each reconstruction level is transmitted with fixed code word length
- Encode reconstruction levels with variable code word length
- Constrained design criteria:

min D, s.t. $R < R_c$ or min R, s.t. $D < D_c$

• Pose as unconstrained optimization via Lagrangian formulation:

$$\min D + \lambda R$$

- For a given λ , an optimum is obtained corresponding to either R_c or D_c
- If λ small, then D small and R large if λ large, then *D* large and *R* small
- Optimality also for functions that are neither continuous nor differentiable

Chou, Lookabaugh, and Gray Algorithm*

- 0: Given: a source distribution $f_{ij}(u)$
 - a set of reconstruction levels $\{\beta_{k}\}$
 - a set of variable length code (VLC) words $\{\gamma_k\}$
 - set n=1
- 1: Encode given $\{\beta_k\}$ and $\{\gamma_k\}$: $\alpha(u) = \operatorname{argmin} \{d(u, \beta_k)\} + \lambda |\gamma_k|$
- 2: Update VLC given $\alpha(u_k)$ and $\{\beta_k\}$ $|\gamma_k| = -\log P(\alpha(u) = k)$
- 3: Update set of reconstruction levels given $\alpha(u_k)$ and $\{\gamma_k\}$ $\beta_k = \operatorname{argmin} E \{ d(u, \beta_k) \mid \alpha(u) = k \}$
- Repeat steps 1 3 until convergence

^{1989,} has been proposed for Vector Quantization

Entropy-Constrained Scalar Quantization: **High Resolution Approximations**

• Assume: uniform quantization: $P_k = f_k \Delta$

$$R = -\sum_{k=0}^{N-1} P_k \log P_k = -\sum_{k=0}^{N-1} f_k \Delta \log(f_k \Delta)$$

$$= -\sum_{k=0}^{N-1} f_k \Delta \log(f_k) - \sum_{k=0}^{N-1} f_k \Delta \log(\Delta)$$

$$\approx \int_{\Re} f_U(u) \log(f_U(u)) du - \log \Delta \int_{\Re} f_U(u) du$$

$$= h(U) - \log \Delta$$

Operational distortion rate function for Gaussian RV

$$U \sim N(0, s^2), \quad D(R) \approx \frac{p e}{6} s^2 2^{-2R}$$

It can be shown that for high resolution: Uniform Entropy-Constrained Scalar Quantization is optimum

Comparison for Gaussian Sources

Vector Quantization

- So far: scalars have been quantized
- Encode vectors, ordered sets of scalars
- Gain over scalar quantization (Lookabaugh and Gray 1989)
 - ✓ Space filling advantage
 - > Z lattice is not most efficient sphere packing in K-D (K>1)
 - > Independent from source distribution or statistical dependencies
 - Maximum gain for K→∞: 1.53 dB
 - ✓ Shape advantage
 - Exploit shape of source pdf
 - Can also be exploited using entropy-constrained scalar quantization
 - ✓ Memory advantage
 - > Exploit statistical dependencies of the source
 - Can also be exploited using DPCM, Transform coding, block entropy coding

Comparison for Gauss-Markov Source: ρ =0.9

Vector Quantization II

- Vector quantizers can achieve R(D*) if K→∞
- Complexity requirements: storage and computation
- Delay
- Impose structural constraints that reduce complexity
- Tree-Structured, Transform, Multistage, etc.
- Lattice Codebook VQ

Summary

- Rate-distortion theory: minimum bit-rate for given distortion
- R(D*) for memoryless Gaussian source and MSE: 6 dB/bit
- R(D*) for Gaussian source with memory and MSE: encode spectral components independently, introduce white noise, suppress small spectral components
- Lloyd-Max quantizer: minimum MSE distortion for given number of representative levels
- Variable length coding: additional gains by entropy-constrained quantization
- Minimum mean squared error for given entropy: uniform quantizer (for fine quantization!)
- Vector quantizers can achieve $R(D^*)$ if $K \rightarrow \infty$
- Complexity of vector quantizers

Design a coding system with optimum rate distortion performance, such that the delay, complexity, and storage requirements are met.

