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Scalable Wavelet Video Coding Using
Aliasing-Reduced Hierarchical Motion Compensation

Xuguang Yang, Member, IEEE,and Kannan Ramchandran, Member, IEEE

Abstract—We describe a spatially scalable video coding
framework in which motion correspondences between successive
video frames are exploited in the wavelet transform domain. The
basic motivation for our coder is that motion fields are typically
smooth and, therefore, can be efficiently captured through a
multiresolutional framework. A wavelet decomposition is applied
to each video frame and the coefficients at each level are predicted
from the coarser level through backward motion compensation.
To remove the aliasing effects caused by downsampling in the
transform, a special interpolation filter is designed with the
weighted aliasing energy as part of the optimization goal, and
motion estimation is carried out with lowpass filtering and
interpolation in the estimation loop. Further, to achieve robust
motion estimation against quantization noise, we propose a novel
backward/forward hybrid motion compensation scheme, and a
tree structured dynamic programming algorithm to optimize the
backward/forward mode choices. A novel adaptive quantization
scheme is applied to code the motion predicted residue wavelet co-
efficients. Experimental results reveal 0.3–2-dB increase in coded
PSNR at low bit rates over the state-of-the-art H.263 standard
with all enhancement modes enabled, and similar improvements
over MPEG-2 at high bit rates, with a considerable improvement
in subjective reconstruction quality, while simultaneously sup-
porting a scalable representation.

I. INTRODUCTION

DURING the last decade, the discrete wavelet transform
(DWT) has gained much popularity in image coding. A

primary reason behind this trend is the DWT’s improved ability
to efficiently capture the space and frequency characteristics of
typical images. State-of-the-art wavelet image coders typically
owe their success to accurately modeling the statistical distri-
bution of wavelet coefficients and exploiting their higher order
dependencies. For tutorials on the wavelet transform and its ap-
plications to image coding, refer to [1]–[6].

Recently, there has also been active research in trying to
apply the DWT to video coding, for which a critical problem
is the estimation of motion fields. There are two major classes
of motion estimation algorithms, namely, theforward and
backward approaches. In aforward approach, the encoder
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performs motion estimation and transmits the estimated motion
parameters explicitly to the decoder. In abackwardapproach,
both the encoder and the decoder perform motion estimation
on previously decoded data, therefore no motion information
needs to be sent. The wavelet decomposition is most suitable
for backward motion estimation, because it provides a mul-
tiresolution representation of the video frames. By coding each
frame in a coarse-to-fine fashion in the wavelet domain, and
exploiting the correlations among motion fields across the
multiresolution pyramid using a backward approach, one can
expect to build a highly efficient video coder.

Another motivation for wavelet-based video coding is to sup-
port scalability—partial decoding of the entire sequence at var-
ious quality levels. Scalability is a strongly desired property for
many multimedia video applications, but is very hard to achieve
in conventional motion compensated video coding. A primary
reason is the so-called “drift” problem [7], [8]. “Drift” occurs
between the encoder and decoder due to the availability of dif-
ferent resolution previous frames for motion compensation. In
a hierarchical backward motion compensation framework, this
problem is avoided, because the encoder and decoder always
have the reconstructed previous frame for motion compensation.

Despite these significant potential advantages, practical
implementation of an efficient wavelet-based video coder is
complicated. A major difficulty is in motion estimation, and
is caused by aliasing artifacts from downsampling operations
[14], [15]. The aliasing problem can be better understood in
the frequency domain, in which translational motion shows up
as linear phase modulation. During downsampling, an aliasing
term with a different phase shift is added to the original signal
spectrum, which destroys the original linear phase relationship.
Therefore, direct motion estimation from wavelet coefficients
is in general infeasible.

In [12], Uz and Vetterli proposed a scalable video coder using
a three-dimensional (3-D) spatio–temporal Laplacian pyramid,
with motion vectors differentially estimated and coded for each
level. The coding efficiency is affected by the over-complete
Laplacian representation and the redundancy in the multires-
olutional motion fields. Later, Naveen and Woods [13] con-
sidered both backward and forward motion compensation in
the wavelet domain, in which the backward approach involves
using the previous two video frames. They also discussed the
alternative of using bandpass pyramid versus lowpass pyramid
structures. Their backward motion field is defined in the pre-
vious frame, which however has to be extrapolated to the cur-
rent frame for motion prediction. In [14], Tsunashimaet al.dis-
cussed the aliasing problem, and presented a coder that performs
motion estimation in the intensity domain (full resolution), and
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interpolates the lower resolution levels for motion compensa-
tion. However, scalability is impossible in this approach because
of the need for full-resolution motion fields. In [15], Nosratinia
and Orchard presented a purely backward coding framework, in
which the aliasing problem is alleviated by matching the lower
resolution current frame with the unsampled previous frame at
the same resolution. In this approach, the current frame is still
aliased, and the estimation accuracy could suffer because the
two frames go through different operations for motion estima-
tion, i.e., the current frame is downsampled once more and suf-
fers one more level of aliasing than the previous frame.

In this paper, we present a new video coding framework that
uses hierarchical motion estimation in the wavelet transform do-
main. In our coder, the aliasing problem is tackled from two an-
gles. First, at each level of the wavelet pyramid, we use an inter-
polated and filtered coarser level for backward motion estima-
tion. Second, more significantly, a specially designed interpo-
lation filter is used to reduce the aliasing energy. An optimiza-
tion criterion is derived for the interpolation filter design that
takes into account the statistical properties of the input video
signal. Applying this interpolation filter, we then build a basic
backward coding system, in which the quantized video frames
at coarser levels are used in the motion estimation operation,
thus avoiding the need to send any motion information. Finally,
the motion compensated error signal is coded using a novel
adaptive estimation-quantization (EQ) coder [6]. Experimental
results confirm and quantify the benefits of our interpolation
filter, over alternatives like having no interpolation, or using the
standard filter-bank synthesis filter in place of our optimized
interpolation filter.

The purely backward motion estimation scheme performs
reasonably well at moderate to high bit rates. At very low bit
rates, however, the backward instability problem begins to man-
ifest itself. Backward adaptive frameworks, as are well known,
become very fragile in the face of excess quantization noise,
and this can prove detrimental to accurate motion estimation in
our case. This effect is magnified by the motion prediction feed-
back loop, and becomes very serious at low bit rates, when the
quantization operation is very lossy. This backward instability
problem has not been addressed in previous backward adaptive
works. We propose a novel hybrid backward/forward motion
compensation technique, in which we judiciously choose to
send forward motion information estimated from the current
resolution level when the backward motion vector fails to be
very accurate. In this case, we trade off the accuracy of motion
prediction with the amount of motion information we need
to send. The backward/forward binary decisions at all spatial
locations and resolution levels are undertaken to attain rate-dis-
tortion (R-D) optimality. To this end, we borrow the zerotree data
structure from the celebrated embedded zerotree wavelet (EZW)
image coder [3], inspired by the striking similarity between
our backward/forward binary decision field and the so-called
significance map of wavelet coefficients, and invoke a dynamic
programming algorithm to optimize the binary decision tree.
The backward instability problem is then solved by adding more
“protection” against quantization noise, and the resulting coder
demonstrates remarkable improvement over the basic purely
backward coder, especially at low bit rates.

Our proposed coder in its full resolution operation achieves
a 0.3–2 dB improvement in PSNR over both MPEG-2 standard
implementation at high bit rates and that of H.263 at low bit
rates. In addition, it also has the following salient features.

• It is spatially scalable. The coder achieves scalability
through its inherent multiresolutional design. Our motion
estimation/compensation and backward/forward mode
optimization involve only coarser levels of both the cur-
rent and reference frames. Motion compensated residue
coding is a simple coefficient scan estimation-quantiza-
tion process, and is interleaved with motion compensation
at each level. Therefore, to decode the current frame at a
coarser resolution, only the reconstructed previous frame
at that same resolution is needed. As a result, the “drift”
problem does not exist in our coder [7], [8].

• In contrast to conventional block-DCT based coders, our
coder is free from blocky artifacts. There are two rea-
sons to account for this. First, our backward motion es-
timation makes it feasible to employ a dense motion field,
which is more flexible in motion representation. Second,
the motion compensated residue signal is quantized in the
wavelet transform domain, as opposed to the block-DCT
domain. Both stages are relaxed from the rigid block con-
straints and therefore the overall coder is free from blocky
artifacts.

• The backward/forward hybrid mode for motion compen-
sation in our coder provides an adaptive bit allocation
strategy between motion representation and residue
coding. Conventional coders are severely restricted in this
capability as they typically partition the motion field into
a fixed number of piecewise (usually blockwise) constant
motion subfields, and send forward motion parameters
for each subfield. The proposed coder, however, can
adaptively regulate its motion bits investment according
to the motion complexity in each frame, by adjusting
the relative frequency with which forward modes are
used. As a consequence, our coder is capable of superior
performance for a wider range of input sequences and
desired bit rates, without its inherent structure needing to
be modified.

The remainder of the paper are organized as follows. In Sec-
tion II, we first analyze the aliasing problem in performing mo-
tion estimation in the wavelet domain, and derive a suitable opti-
mization criterion for our interpolation filter design. Section III
then presents our basic video coding framework in purely back-
ward mode. In Section IV, we propose as a solution to the back-
ward instability problem our hybrid backward/forward motion
compensation scheme, and describe in detail the dynamic pro-
gramming optimization algorithm. Section V discusses the com-
putational complexity issues. Experimental results are given in
Section VI. Finally, some conclusions and discussions for future
research are given in Section VII.

II. BASIC DERIVATION

We start by examining the possibility of estimating motion
in the wavelet domain through appropriate processing of trans-
formed signals. Consider the generic subband decomposition
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Fig. 1. Generic subband filtering system.

Fig. 2. Two different schemes for estimating the motion vectorv from the
lowpass signals in the wavelet domain.

system in Fig. 1. For simplicity, let us denote the current and
reference video frames by the one-dimensional (1-D) notations

, , respectively. The discussion here can be generalized
trivially to two dimensions through separable construction of
two-dimensional (2-D) filters. Assume that there is a motion
between and , . Further, let and

denote their transformed signals in the lowpass band of
the wavelet decomposition (see Fig. 2). Our coder operates in a
coarse-to-fine fashion, in which and are coded first.
The purpose here is to find a close estimate of the motion vector

from the coded and . (We do not consider quanti-
zation effects for the time being.)

Straightforwardly, one could perform motion estimation di-
rectly between and to obtain a motion vector , and
scale it by 2 to get, as shown in Fig. 2(a). However, the aliasing
noise that enter and at downsampling make this di-
rect estimation inaccurate. Let us illustrate this in the spectral
domain. We have,1

(1)
and

(2)
Substitution of into (2) leads to

(3)

Both and contain two parts: The original
signal filtered by and the aliasing signal filtered
by . Now, consider the ideal motion vector

1Throughout this paper, we use capital letters to denote the Fourier Trans-
forms of the corresponding time signals

. Subtracting (1) from (3), we can see
that for this candidate motion vector, the signal parts in
and are exactly matched, but the aliasing parts are not.
In other words, even for perfect estimation, we still have a
nonnegligible matching error coming from the aliasing noise.
Therefore this method can not be very accurate.

A. Aliasing Reduction Using an Interpolation Filter

To improve the motion estimation accuracy, let us upsample
, by 2 and filter them by an (usually lowpass)

interpolation filter to reduce some aliasing noise. We
then estimate from the interpolated signals , , as
shown in Fig. 2(b). This approach is expected to perform better,
since the detrimental aliasing noise are reduced. However, the
choice of the interpolation filter is of crucial importance
here. While some filters may do well in removing the aliasing
noise, they may also simultaneously weaken or distort the
signal components in and , and therefore destroy
their inherent motion relationships. This is undesirable since
our motion estimation is based on these signal components,
and requires that they are preserved faithfully. Therefore, in
the design of , we have two optimization goals: one is
aliasing reduction, the other issignal preservation. An ideal

should seek a reasonable balance between these two
conflicting optimization goals.

Now, let us find a quantitative representation of our two opti-
mization purposes. First, we have

(4)

Our signal preservation criterion, denoted, requires that the
first part of equals . We use the mean squared error
as a measure of deviation from this ideal

(5)

On the other hand, our aliasing reduction criterion, denoted
, says that the second part of should be zero. Therefore

(6)

Combining these two minimization criteria with a weighting
coefficient , we have the following cost function

(7)

For each given input signal , minimizing (7) gives the
optimal interpolation filter . However, the problem of (7) is
that it involves the input spectrum , which is often hard to
evaluate in practice. Here, let us utilize a stochastic input model;
we assume that is a wide sense stationary (WSS) random
process, and seek to minimize the expectation of (7). In this case
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we simply substitute in (7) by its expectation, the input
power spectral density . Our cost function now is

(8)

Here, the weighting coefficient represents a tradeoff be-
tween our two optimization purposes. Obviously, a largerfa-
vors aliasing reduction, while a smallerfavors signal preser-
vation. In our implementation, we findby training on the first
few frames of the sequence. For a selected range ofvalues, and
a corresponding set of optimal interpolation filters, we apply our
backward coding scheme as described in Section III to choose
the that gives the best performance. This is then sent as
side information.2

B. Optimal Solution

Our optimization criterion in (8) is a quadratic form with re-
spect to . The optimal filter can be obtained by set-
ting its variation to zero

(9)

This solution is an infinite impulse response (IIR) filter. In
practice, however, FIR filters are often preferred. The optimal
FIR solution to (8) under a given length constraint can also be
found in closed-form. Let us first rewrite our optimization cri-
terion in (8) in the time-domain. We define the convolution ma-
trix for a FIR filter as shown in (10) at the bottom of the
page.

Using , filtering any sequence by is .
Equation (8) is then rewritten as

(11)

where is the correlation matrix of the input and is
the unit impulse sequence. , and

2Further, the following loose analytical guide is used in the training: our�
should result in anL (!) that gives smaller values for bothS andT than
G (!), the original synthesis lowpass filter. The motivation is that sinceG (!)
is part of the perfect reconstruction filter bank, it should be in general a reason-
ably good choice forL(!). By enforcing smaller values on both criteria, we
guarantee an improvement overG (!).

Fig. 3. Various filter responses in our design ofL(!), for Daubechies 9-7
filter bank and AR(1) input process with� = 0:95. On the left, the solid curve
is H (!), “. . .” is G (!), and “+” is the optimal IIR filter given by (9). On
the right, the solid, “. . .,” “-.,” and “+” curves are our optimized FIR filters at
lengths five, seven, nine, and 11, respectively. Note that the last two curves are
almost overlapped.

. Setting to zero the derivative with respect to,
we get

(12)
The above optimization has been carried out to design an in-

terpolation filter for the well known Daubechies 9-7 filter
bank [16], in which and are both symmetric fil-
ters, having lengths 9 and 7, respectively. The input signal is
modeled as a WSS AR(1) process, with a high correlation co-
efficient [17]. In this case, and

. Fig. 3 compares the mag-
nitude frequency responses of , , the optimal IIR
filter , and the optimized FIR filters of lengths five, seven,
nine, and 11, respectively. Table I lists their filter taps. It can be
seen that for lengths larger than nine, the advantage obtainable
by using longer filters is very small. To keep a low computa-
tional complexity, we choose to use the optimized FIR filter of
length nine.

III. B ASIC SYSTEM STRUCTURE

Fig. 5 illustrates the basic system structure of our video coder
using the optimized interpolation filter . Here a three level
wavelet transform is performed on each video frame, resulting
in 10 subbands, as shown in Fig. 4. Coding starts from the lowest

(10)
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Fig. 4. The three-level wavelet transform and the parent–children relationships defined in our quadtree structure. Each node represents a spatial area of a fixed
size in the LL band of that level. The four nodes that cover the same spatial area in the next LL band are defined as its children nodes.

Fig. 5. The block diagram of our basic video coding system. For a labeling of subbands, refer to Fig. 4. The middle level shows how a motion predicted band
12 is found, and decomposed to code the prediction errors in bands 5–7. The coder iterates among quantization, synthesis, motion estimation (M. E), motion
compensation (M. C), and decomposition.

TABLE I
COEFFICIENTS OF THEVARIOUS FILTERS IN OUR INTERPOLATION FILTER

DESIGN. ONLY THE SECOND HALF OF THE COEFFICIENTSARE LISTED AS THE

FILTERS ARE ODD SYMMETRIC

resolution level and successively operates on each finer resolu-
tion. At each level, both motion estimation and compensation
are performed on the LL band.3

Band 1 (see Fig. 4), is the first to be coded. Because of its
small size, we simply use frame difference coding. Then at each
resolution level, the following iterative steps are performed.

1) Interpolate and filter by the reconstructed lowpass
bands of both the previous and current frames.

3This is in contrast to [15], in which motion fields are estimated from the
basebands, but are used to directly compensate the high frequency bands. Since
quantization noise is usually high frequency, we believe that baseband compen-
sation is more robust against quantization noise.

2) Perform motion estimation on these interpolated and fil-
tered lowpass bands, to obtain the motion vectors for this
level. Note that as this step is purely backward, no mo-
tion information needs to be transmitted. Moreover, the
backward nature makes it possible to use a dense mo-
tion field. Ideally, one would prefer pixelwise motion vec-
tors, which can be estimated through such advanced mo-
tion analysis techniques as proposed in [18]–[22]. In our
coder, we trade off motion accuracy with computational
complexity by using block matching with a very small
block size of .

3) Apply this set of motion vectors on the (reconstructed)
LL band at the next level of the previous frame, to obtain
the motion predicted next LL band, and decompose this
band to obtain the predicted highpass bands at the current
resolution. To reduce the spurious high frequency coef-
ficients in the decomposition caused by blocky artifacts,
we use overlapped block motion compensation (OBMC)
[23], which uses the same small block size of as in
motion estimation, and a weighting window derived by
averaging the OBMC window in H.263 [11]. Fig. 6
shows the values of our weighting window.

4) Quantize and entropy code the prediction differences in
the high bands. Here we use a modified version of the
adaptive estimation-quantization (EQ) still image coder
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Fig. 6. The weighting window used in our4 � 4 overlapped block motion
compensation. All numbers are normalized by1=8.

[6], whose basic idea is to model wavelet coefficients
as generalized Gaussian distribution (GGD) fields, with
slowly varying variances estimated from local neighbor-
hood, and apply optimal adaptive quantization/entropy
coding according to the estimated variance. The EQ coder
is best credited for its fast speed, primarily due to the
fact that the optimal GGD quantization parameters at dif-
ferent variances and bitrates are computed off-line and
stored as lookup tables, therefore real-time coding con-
sists of a simple and fast table look-up using the estimated
variance. In our framework, we use the EQ coder for
residue coding. Our statistical studies on motion predicted
wavelet coefficient errors reveal that the GGD model still
fits very well. In addition, the EQ coder can be modified
in a way that each residue frequency band is coded com-
pletely independently of other bands, with little loss in
coding efficiency, making it particularly suitable for our
hierarchical motion compensation framework.

5) Run one stage of the synthesis operation on the recon-
structed lowpass and highpass bands to form the recon-
structed baseband of the next finer resolution level.

The entire process iterates until the multiresolution pyramid
is exhausted. Fig. 7 illustrates graphically the basic operations
involved between the current level and its coarser level.

IV. BACKWARD/FORWARD HYBRID MOTION COMPENSATION

The coder as described above is purely backward. It performs
reasonably well at moderate to high bit rates. Experiments have
revealed a degraded performance at low bit rates and very com-
plicated motion. The reason is that our backward motion esti-
mation uses quantized coarser resolution frames, therefore its
accuracy is dependent on the reconstruction quality of coarser
frames. At low bitrates, increased quantization noise has a neg-
ative effect on the backward motion estimation accuracy. This
exacerbates the reconstruction error, which further degrades the
motion estimation accuracy and reconstruction quality at the
next resolution level, and so on. In other words, in a backward
framework, the mutual dependency between motion estimation
and residual quantization forms a “positive feedback loop.” In

order to further attack this instability problem, we propose a
novel backward/forward hybrid motion compensation strategy.
The basic idea is to judiciously use forward information to help
enhance the performance of purely backward motion prediction.
In this case, we have a tradeoff between the accuracy of motion
prediction, and the amount of motion information to send. The
tradeoff is resolved in a R-D sense using a Lagrangian cost func-
tion [24] defined as

(13)

Note that the distortion here is the motion compensated error en-
ergy, not the final coded distortion. Therefore we have chosen
to use a Lagrangian parameter that is different from the pa-
rameter used in residue coding [6]. The choice of will be
discussed shortly.

Our backward/forward mode selections are made in a tree
structured fashion using dynamic programming, and a descrip-
tion follows.

A. Zerotrees of Mode Selections

We first construct a quadtree with each node representing
a certain spatial area at a certain level of the multiresolution
pyramid, and parent–children relationships among the tree
nodes according to their spatial locations, as illustrated in
Fig. 4. Each node of the tree can possibly be compensated by
two motion vectors: 1) a backward motion vector estimated
from its parent node, which corresponds to the same spatial
location in the lower resolution frame and 2) a forward motion
vector estimated directly from the same node. Usually, the
backward motion vector is a good approximation to the forward
motion vector, therefore a much smaller search range can be
used for the forward motion estimation. Furthermore, in the
case when a forward decision is made, the forward motion
vector is differentially coded based on the backward motion
vector. The backward/forward binary decisions at all the tree
nodes are jointly optimized using the R-D criterion (13).

Two properties of the binary decision fields are observed in
our experiments. They are both consequences of the typically
high smoothness of motion fields, and are utilized to greatly
facilitate our optimization. First, it is observed that backward
decisions are highly dominant. In other words, with high proba-
bility the backward motion vector gives a sufficiently good pre-
diction. Second, mode selections demonstrate highly tree-struc-
tured correlations, i.e., a backward decision at a certain node is
most likely followed by backward selections at all its descendant
nodes. These properties are similar to those of the significance
maps of wavelet coefficients in still image coding. Therefore,
we are motivated to borrow the zerotree concept from [3], and
introduce for each tree node, the following three symbols re-
garding the mode choices of each node and all its descendant
nodes (see Fig. 8).

• ZR: Node and all its descendants are determined to use
backward mode.

• IZ : Node uses backward mode, but some of its descen-
dants use forward mode.

• NZ: Node uses forward mode. (Nothing is assumed about
its descendants).
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Fig. 7. The basic operations of our system in backward mode. The lower resolution signals are first interpolated and filtered for backward motion estimation.
The estimated motion vectors are applied to the previous finer resolution signal, to find the motion predicted finer resolution, which is then decomposed to code
the high-frequency bands.

Fig. 8. The definition of tree symbols ZR, IZ, and NZ in our coder. A “0” represents a backward mode and a “1” represents a forward mode.

B. Mode Optimization

The algorithm starts by initializing all the tree nodes to back-
ward mode, or the root nodes to ZR. When the coder is operating
at level , all the modes in that level are optimized. Ideally, to
achieve global optimality, the mode at any node should be op-
timized jointly with its ancestor nodes. However, our backward
motion estimation is based on reconstructed coarser signals,
which again depend on the mode choices of ancestor nodes.
Each different combination of ancestor modes would result in
different reconstructed coarser signals, therefore requiring a dif-
ferent backward motion estimation. As is commonly known,
motion estimation is the most computationally intensive part in
video coding; thus, such a joint optimization with each iteration
containing a motion estimation procedure would cost extraordi-
narily high complexity. Moreover, our experiments confirm that
the advantage of this joint optimization is marginal over an al-
ternative greedy algorithm, in which once a mode is chosen for a
certain node, that selection always remains valid (i.e., it is never
changed) in descendant mode optimization, and therefore back-
ward motion estimation needs only to be performed once for

each resolution level. To maintain a moderate complexity, we
choose to implement the greedy algorithm. As a consequence,
the only possible tree symbol change at an ancestor node is from
ZR to IZ, corresponding to the case that the ancestor node uses
backward mode, and a node at the current level switches from
its initial backward mode to a forward mode.

Mode selection at each tree node is performed as comparing
the R-D Lagrangian costs associated with both the backward
and forward modes and selecting the one with the smaller cost.
The Lagrangian cost for the backward mode is simply equal to
the backward motion compensation error energy, because there
is no motion information needing to be sent. To compute the
Lagrangian cost for the forward mode, extra bits for sending
the forward motion vector and the modified tree symbols for
the ancestor nodes have to be counted. The optimization is im-
plemented as a fast and efficient bottom-up dynamic program-
ming strategy, in which for each node in the tree, the maximum
reduction in Lagrangian cost obtainable by optimizing the sub-
tree rooted at that node and up to levelis computed and stored.
The computation is cumulative in the sense that for each inter-
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Fig. 9. The flowchart of our dynamic programming algorithm in optimizing
backward/forward mode selections. All nodes are initialized to backward mode
and their aggregated Lagrangian gains are initialized to 0. For each resolution
level r, the algorithm is repeated for all nodes in that level.

mediate node, the maximum gain is the summation of those of
its four children nodes, subtracted by the possible extra cost of
transmitting the updated tree symbol at that node. The algorithm
traces back from level toward the root node, at which point a
final decision is made.

In what follows, let us denote by the th node at level with
a tree symbol . For each , we denote its backward mo-
tion vector by and forward motion vector by , and
their associated motion compensated error energies by
and , respectively. Furthermore, represents the set
of all its children nodes at level . We start by defining
the “aggregated” Lagrangian gain at as the reduc-
tion in total Lagrangian cost [compared to the default choice of

ZR] in the subtree rooted at when an optimal
is used, under the assumption that all its descendant nodes up to
level are already optimized.

C. Dynamic Programming Algorithm

This subsection explains in detail our tree pruning algorithm
using dynamic programming. The algorithm is plotted in Fig. 9.

1) Initializing the Current Level:At the start, we perform
for each node at the current level , a backward motion es-
timation on the interpolated, filtered coarser signals, to obtain

, , and a forward motion estimation on the current
level, to obtain , , respectively. We then compute
both the backward and forward Lagrangian costs for this node,

and as

ZR

NZ ZR

(14)

Here denotes the codeword length for sending the en-
closed (tree or motion) symbol. Note that in the forward case, in
addition to differentially coding the forward motion vector, we
need to send(NZ) bits for the current node to indicate the for-
ward mode choice, and(ZR) bits for each of its four children,
which, together with their descendants, are still defaulted to be
in backward mode.

The initial aggregated Lagrangian gain is com-
puted by taking the difference of the backward and forward
Lagrangian costs and thresholding by zero. The reason for
zero-thresholding is that is defined as the maximum
Lagrangian gain one can achieve by considering a mode change
at . The gain is zero if remains to be ZR. Therefore,
the optimal gain must be always greater than or equal
to zero

(15)

Finally, we set the optimal tree symbol at levelaccording
to whether is larger than 0

NZ if
ZR otherwise.

(16)

2) Tracing Back the Tree:At the second stage, we trace back
from level toward the root node. For each intermediate node

along the tree path, we first examine whether is ZR.
If it is not ZR, we can immediately grant all its descendants up
to level their optimal tree symbols. If ZR, however,
we compute the aggregated Lagrangian gain as the sum
of those from all its children nodes, with the increased cost of
sending the IZ symbol deducted, and thresholded by 0

IZ ZR

(17)
The optimal symbol for is set as

IZ if
ZR otherwise.

(18)

3) Updating the Tree:Eventually when we reach the top
level, each node at this level is a root node. Here the final
decision is made according to whether is greater than 0

if then

grant and all its descendants their

optimal symbols

otherwise

and all its descendants remain in their default

(backward) states

A toy example illustrating the optimization algorithm is
shown in Fig. 10.
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Fig. 10. A toy example of our mode optimization algorithm. Here the bottom
level is the current coding levelk. The numbers inside and outside each box
represent the aggregated Lagrangian gain in that node, before and after zero
thresholding, respectively. Letters ZR, NZ, and IZ are tree symbols, N/A stands
for “not applicable”: (a) the initial tree status when the backward and forward
motion estimation have been performed, (b) the dynamic programming process
to compute aggregated Lagrangian gain at each node, here the term� (l(IZ)�
l(ZR)) is assumed to be 100, and (c) the final optimized tree status.

D. Choice of

We now address the issues regarding how to choose a suit-
able for our quadtree optimization on mode selections. As
has been pointed out, is different from the used in motion
compensated residue coding, because the distortion here is the
motion predicted error energy, not the final reconstructed error
energy [28]. While minimizing the latter subject to a constraint
on total bit rate is our ultimate coding goal, direct usage of this
quantity would require a joint optimization of motion estimation
and residue coding—a computationally infeasible task. Fortu-
nately, there is a simple and efficient way to find a connection
between these two Lagrangian parameters, as explained here.

TABLE II
AVERAGE VALUES OF RAW DIFFERENCEENERGY, AND BACKWARD MOTION

COMPENSATEDERRORENERGY BY DIRECT ESTIMATION, INTERPOLATED

ESTIMATION WITH G (!), AND INTERPOLATEDESTIMATION WITH L(!),
RESPECTIVELY, ON EACH RESOLUTIONLEVEL OF 100 FOOTBALL FRAMES

Let us denote by the motion predicted error energy
associated with a certain candidate motion vector, and
the final reconstruction error energy after residue coding.
Further, and denote the number of bits spent
on coding and its residue signal, respectively. We seek to
minimize . However,
since and are not directly available in motion
estimation, we attempt to use an alternative cost function,

that gives us the same
optimal . To this end, we introduce the notion of “Lagrangian
compression ratio” for residue coding, defined as a
function of the input signal, and the Lagrangian parameter

(19)

Where is the quantized signal and the number of bits
to code . Initially, before residue coding, we spend 0 bits on,
with a distortion of , or a Lagrangian of . After residue
coding, we spend bits, and achieve a distortion of .
Therefore the above definition measures the Lagrangian gain
due to residue coding.

An interesting and intuitively reasonable phenomenon we
have observed through our experiments on motion compen-
sated residue signals is that, the above defined Lagrangian
compression ratio is almost solely a function of .
Given a certain , achieves a constant value within a
large range of residue signals. Therefore we decide to ignore
the dependency of on and write it as . This
observation is the key to establishing a tie betweenand .

Using , and substituting
, we can rewrite as

(20)

Now it is seen that is proportional to ,
Therefore to minimize , we can equivalently minimize

, with the substitution that . In our
coder, we find by training, and send it as side informa-
tion.

V. COMPUTATIONAL COMPLEXITY

This section addresses the computational complexity issues
in our coder. A casual look at our previous description may give
the impression of highly intensive computation, because of the
multiple motion estimation processes needed. However, great
computational savings can be achieved by taking advantage of
the striking similarities between motion vectors in successive
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Fig. 11. The backward motion compensated error energy on 100 frames of the football sequence at three resolution levels. The three curves (solid, “-.,” and
“ . . .”) correspond to three different motion estimation schemes: direct estimation, interpolated estimation withG (!), and interpolated estimation withL(!),
respectively.

resolution levels, and between the backward and forward mo-
tion vectors. Usually, the lower resolution motion vector can be
used as a good initial estimate for its finer resolution counter-
part, and so does the backward motion vector for its forward
one. Therefore, typically, a much smaller neighborhood search
is sufficient in our motion estimation. When log-scale search
range sizes are used across resolution levels, the total compu-
tational complexity of our entire hierarchical backward motion
estimation is equal to that of the well known three-step search
method for block matching [25]. Our forward motion estima-
tion does incur additional computation over this estimate. The
increment is proportional to the square of the ratio between for-
ward search range and backward search range, which is typi-
cally 20%–30%.

Another source of concern is the quadtree optimization algo-
rithm in our backward/forward hybrid mode. As mentioned ear-
lier, the optimization is greatly simplified by the use of a greedy
search algorithm, in which the modes at each level are optimized
when it is coded, and remain unchanged in the optimization of
finer levels. The optimization at each level is implemented as
dynamic programming, which involves accumulating the ag-
gregated Lagrangian gain from that level up to the root level.
At each node, only a simple summation over its four children
nodes is needed. The total computation for the optimization is
therefore of O( ) complexity ( is the total number of pixels),
which is negligible compared to the O( ) complexity of mo-
tion estimation.

While the proposed coder saves complexity at the encoder, it
requires an increase in decoder complexity, because the decoder
has to repeat the backward motion estimation. This is a chief
disadvantage of our coder. Nowadays, an increasing number

Fig. 12. Coding results. Final coded PSNR for luminance versus frame
number. Here the solid, dotted, and dashed lines represent the results from
H.263 with full option, our coder with the usage ofG (!), and our coder with
the usage ofL(!), respectively. (a) MaD sequence at 48 kb/s and 15 frames/s
and (b) Missa sequence at 24 kb/s and 15 frames/s.

of multimedia applications support symmetric complexity sys-
tems, with common software or hardware task modules installed
in both the encoder and decoder (e.g., those for motion estima-
tion). Improving the design of such modules will accelerate the
computation at both ends. Our coder is better suited for such ap-
plications. We also envision that with the inevitable growth in
computing power (the so-called Moore’s law phenomenon), in-
creased performance for future coding systems will depend on
the ability to have more powerful decoders than exist today.
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Fig. 13. Scalable decoding of a typical football frame at four resolution levels. The coding bit rate for full resolution is 0.5 Mb/s.

TABLE III
COMPARISON ON THEPSNR VALUES BETWEENOUR CODER AND H.263

TABLE IV
COMPARISON ON THEPSNR VALUES BETWEEN OUR CODER AND

MPEG-2ON FOOTBALL AND 30 frames/s

VI. CODING RESULTS

The proposed video coder was implemented in software and
tested on standard video testing sequences. The first experiment
justified the utility of our optimized interpolation filter
in improving the performance of backward motion estimation.
Here we compared the backward motion compensation error en-
ergy on each resolution level of the “football” sequence using
three different motion estimation schemes: direct estimation, in-
terpolated estimation using the synthesis lowpass filter ,
and interpolated estimation using . Fig. 11 gives the re-
sults on the first 100 frames of football. Table II lists the average
values for raw difference energy and motion compensated error
energy. As can be seen, interpolation by gives us 30–40%

Fig. 14. Coding results on football. Final coded PSNR for luminance versus
frame number at 30 frames/s, and different bit rates of 0.5, 2, 7, and 10 Mb/s.
The solid and dotted lines represent the results from our proposed coder and
MPEG-2 respectively.

TABLE V
AVERAGE BITS/FRAME AND AVERAGE CODED PSNR VALUES OF OUR

SCALABLE CODER ON FOOTBALL AT FOUR RESOLUTION LEVELS.
THE CODING BIT RATE IS 0.5 Mb/s
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Fig. 15. Comparison of final coded subjective quality. On the left are the reconstructed frames from the standard video coders. On the right are the same
reconstructed frames from our proposed coder. Top: MaD, compared with H.263 at 48 b/s. Middle: Missa, with H.263, 24 Kb/s. Bottom: football, with MPEG-2,
2 Mb/s.

less error energy than direct estimation, and 20–25% less than
interpolation by .

Other experiments compare our coding efficiency with
popular video coding standard simulation models, H.263, and
MPEG-2 for low and high bit rates, respectively. In each test,
a total of 100 frames of the original sequence were coded.
Figs. 12 and 13 give the comparison results, in which the final
coded PSNR for luminance is plotted against the frame number.

The first comparison addresses H.263. Here the input se-
quences were in CIF ( ) resolution. Fig. 12(a) shows
the results on “mother and daughter (MaD)” sequence coded at
a fixed bit rate of 48 kb/s, and a frame rate of 15 frames/s, and
Table III lists the numerical values. The solid curves represent
the performance of H.263, while the dotted and dashed curves

represent those from our proposed coder, with the interpolation
filter chosen as for the former, and the optimized filter

for the latter. Note that in generating the results of H.263,
we have chosen to turn on all of the enhancing modes (except
the PB-frame mode), i.e., the unrestricted motion vector mode,
the advanced prediction mode, and the syntax-based arithmetic
coding mode, in order to fully demonstrate the power of our
coder. As can be seen, when the optimized filter is used,
our coder generally achieves 0.5–1.5 dB (average 0.87 dB)
improvement in PSNR over H.263. Moreover, the advantage
of using over can be clearly seen, as there is an
average of 0.5 dB difference between the dotted and dashed
curves. Fig. 12(b) shows the results on “Miss America (Missa)”
sequence at 24 kb/s and 15 frames/s. Again we achieved 0.63
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dB gain in average PSNR when using and 0.33 dB gain
when using .

The second comparison (Fig. 14) was with MPEG-2 on “foot-
ball” sequence ( ), at 30 frames/s, and various bit rates
of 0.5, 2, 7, and 10 Mb/s. The solid curves are for our proposed
coder (with )), and the dotted curves for MPEG-2. Table IV
gives their numeric PSNR results. As can be seen, our coder al-
ways outperforms MPEG-2, with however a much larger gain
at lower bit rates, which can be attributed to the fact the savings
in motion bits by backward motion compensation in our coder
constitute a larger portion at lower bit rates.

As mentioned earlier, a scalable decoding is possible in our
coder. Table V demonstrates the scalable feature for football at
0.5 Mb/s, in which the average bits/frame and the average PSNR
values at the four resolution levels are listed.4 Fig. 13 shows a
typical reconstructed frame at different resolution levels.

Finally, Fig. 15 gives the comparison in subjective reconstruc-
tion quality corresponding to the above tests. On the left are the
decoded frames from the standards, on the right are the same de-
coded frames from our coder. As is expected, our coder suffers
from less blocky artifacts and hence leads to more subjectively
pleasing reconstructed pictures. However, as is well known with
wavelet coders, our reconstructed frames are contaminated by
“mosquito” noise. We are currently researching techniques to
reduce this noise through the use of shorter filters, which how-
ever result in less energy compaction—this tradeoff will be part
of our future study.

VII. CONCLUSIONS ANDFUTURE RESEARCH

We have introduced a multiresolutional video coding system
based on performing motion estimation directly in the wavelet
transform domain. Our coder alleviates the aliasing problem
in motion estimation by upsampling and filtering the coarser
signals using a specially designed interpolation filter. Further,
in order to attack the instability problem caused by quantiza-
tion noise inherent in a purely backward coder, we designed
a novel backward/forward hybrid motion compensation frame-
work using zerotree coding and dynamic programming. Exper-
imental results showed up to 2 dB improvement in PSNR over
the H.263 and MPEG-2 video coding standards, with also much
better subjective quality. In addition, our coder is spatially scal-
able and allows for robust operation over a wider range of video
sequences and bit rates. Ringing effects as a result of wavelet
transform coding is a major problem that causes deterioration in
subjective coding quality. We propose to address this problem
in future research, as well as the issues related to object uncov-
ering, occlusion, and camera zooming, etc.
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