
VIDEO CODING USING TEXTURE ANALYSIS AND SYNTHESIS

Patrick Ndjiki-Nya, Bela Makai, Aljoscha Smolic, Heiko Schwarz, and Thomas Wiegand

Fraunhofer Institute for Communications Engineering – Heinrich Hertz Institute (HHI)
Image Processing Department

Einsteinufer 37, 10587 Berlin, Germany
{ndjiki/makai/smolic/hschwarz/wiegand}@hhi.de

Abstract
A new approach to video coding is presented, where
video scenes are classified into textures with subjec-
tively relevant and irrelevant details. We apply this idea
to improve video coding by using a texture analyzer and
a texture synthesizer. The analyzer identifies the texture
regions with no important subjective details and gener-
ates coarse masks as well as side information for the
synthesizer at the decoder side. The synthesizer replaces
the detail-irrelevant textures by inserting synthetic tex-
tures into the identified regions. Texture analyzer and
synthesizer are based on MPEG-7 descriptors. The ap-
proach has been integrated into an H.264/AVC codec.
Bit-rate savings up to 19.4 % are shown for a semi-
automatic texture analyzer given similar subjective qual-
ity as the H.264/AVC codec without the presented ap-
proach.

1. Introduction
Many video scenes contain textures like grass, trees,
sand, water, clouds, etc. These textures are difficult to
code because of the large amount of visible detail. How-
ever, the exact reproduction of these textures can be
considered as not important if they are shown with a
limited spatial accuracy – the details are often irrelevant.
Moreover, since the viewer typically does not know the
original video, it is very unlikely that the exact repro-
duction of details is important. The viewer should just
be able to recognize the textures, which is often not the
case when for instance a pre-filter is utilized or these are
blurred due to strong quantization. We exploit this idea
for video coding using a texture analyzer at the encoder
side and a texture synthesizer at the decoder side as
shown in Figure 1.

Encoder

TA TS

DecoderVideo In

Side
Info

Data
Video OutEncoder

TA TS

DecoderVideo In

Side
Info

Data
Video Out

Figure 1 – Video coding using a texture analyzer (TA)
and a texture synthesizer (TS)

The texture analyzer identifies detail-irrelevant texture
regions, creates coarse masks corresponding to these
regions and signals these masks as side information to
the decoder to run the texture synthesizer. The texture
synthesizer replaces the textures identified by the masks
via inserting synthetic textures. The most important un-
derlying assumption of the presented approach is that for
the identified detail-irrelevant textures, known distortion
criteria like mean squared error (MSE) are not suitable
for efficient coding, since irrelevant detail may be re-
produced.

In this paper, we show that it is often sufficient to
represent detail-irrelevant textures using a similarity
criterion such as an MPEG-7 texture descriptor [1],[2] as
the coding distortion. The MPEG-7 similarity criteria
lead to reproduced textures that show different details as
the original textures. These detail differences are not
visible to the viewer as long as the displayed spatial ac-
curacy of the textures remains unchanged and are also
much less disturbing as if they were coded at a bit-rate
which is equivalent to the bit-rate of the side information
of the texture synthesizer.

One important problem associated with the pre-
sented approach occurs, when a detail-irrelevant texture
turns into a detail-relevant texture, e.g. when a zoom
occurs and a detail is shown with much higher spatial
accuracy then before. For that, a technique is needed to
seamlessly switch between synthesized and MSE-
accurate texture representation. The approach presented
in this paper also addresses this issue.

Analysis-synthesis-based codecs have already been
introduced for object-based video coding applications,
e.g. see [3]. The purpose of the analyzer and synthesizer
modules in this case is usually the identification and
appropriate synthesis of moving objects [3]. Such ap-
proaches can be seen as complementary to the one pre-
sented in this paper as the texture analyzer shown in
Figure 1 tends to identify background textures.

A similar wavelet-based analysis-synthesis still im-
age and video coding approach was introduced by Yoon
and Adelson [4]. The algorithm presented is optimized
for still images. Solutions regarding temporal consis-

mailto:{ndjiki/makai/smolic/hschwarz/wiegand}@hhi.de

tency of synthesized texture regions are not explicitly
presented.

The combination of multiple reference frames and
affine motion-compensated prediction was introduced
by Steinbach et al. [5]. In [5], a segmentation-free solu-
tion with more than two reference frames is presented. A
suitable reference frame for motion compensation is
selected using the Lagrangian cost function as the distor-
tion criterion. The chosen cost function is MSE-based
whereas in this work MPEG-7 similarity measures are
employed.

Smolic et al. introduced an online sprite coding
scheme [6] that is better suited for real-time applications
than static sprite coding in MPEG-4 [7]. In MPEG-4
static sprite coding, the background of a video scene is
transmitted at the beginning of the sequence. A major
drawback of the approach in [6] is the requirement for a
very precise background segmentation, i.e. foreground
objects have to be separated very accurately.

The remainder of the paper is organized as follows.
In Section 2 we introduce the texture analyzer, while in
Section 3 we present the texture synthesizer. In Section
4 we describe the system integration. Finally, in Section
5 we present the experimental results.

2. Texture Analyzer
The texture analyzer performs a split and merge seg-
mentation of each frame of a given video sequence. The
splitting step consists in analyzing a frame using a multi-
resolution quadtree [8]. The latter encompasses several
levels with the first level (level 0) being the original
frame itself. In level 1, the original frame is split into 4
non-overlapping blocks, while it is split into 16 non-
overlapping blocks in level 2, etc. The amount of blocks
in level L is given by 2L.

2.1 Homogeneity Criteria
A block in level L is considered to have homogeneous
content if its four sub-blocks in level L+1 have “similar”
statistical properties. Inhomogeneous blocks are split
further, while homogeneous blocks remain unchanged.
The splitting stops and the related samples are marked as
not classified when the smallest allowed block size is
reached. This smallest allowed block size can be set
according to a priori knowledge concerning the size of
the structures in the given video sequence.

The segmentation mask obtained after the splitting
step typically shows a clearly over-segmented frame.
Thus post-processing of the former is required, which
leads to the second step implemented by the texture ana-
lyzer - the merging step. For that, homogeneous blocks
identified in the splitting step are compared pairwise and
similar blocks are merged into a single cluster forming a
homogeneous block itself. The merging stops if the ob-
tained clusters are stable, i.e. if they are pairwise dis-

similar. The final number of clusters is often considera-
bly reduced by the merging step.

Figure 2 shows the segmentation masks of a frame
after the splitting (left frame) and after the merging step
(right frame). Regions labelled as not classified are
marked by a black border, while classified regions are
marked by a non-black border. It can be seen that the
number of homogeneous clusters is substantially re-
duced after the merging step.

Figure 2 – Segmented image after the splitting step (left)
and after the merging step (right)

2.2 Similarity Estimation
The similarity assessment between two blocks is done
based on MPEG-7 descriptors [1],[2]. We used the
"Edge Histogram” (EH) texture descriptor and the SCal-
able Color (SCC) descriptor.

The EH descriptor represents the spatial distribution
of four directional edges (one horizontal, one vertical,
and two diagonal edges) and one non-directional edge
for 16 local non-overlapping regions of a given image.
The frequency of occurrence of each edge class is de-
termined for each local region. This leads to an 80
(16x5) dimensional feature vector.

The SCC descriptor is basically a colour histogram
in the HSV colour space. The resolution (number of
colours or bins) of the SCC descriptor can be varied
from 16 to 256 colours. The number of possible colours
is thereby doubled for each resolution step. We use the
highest resolution step for best possible segmentation
results given the SCC descriptor. Note that the SCC de-
scriptor can in principle be used in combination with
other colour spaces.

Two blocks are considered to be similar if the dis-
tance between the corresponding feature vectors lies
below a given threshold. The latter is implemented as a
proportion of the maximum possible distance that is
dependent on the selected metric (l1, l2) and the used
descriptor (SCC, EH). A threshold of zero indicates that
two feature vectors must show a 100 % match to be seen
as similar while a threshold of one means a 0 % match is
sufficient to be seen as similar. The similarity threshold
is manually selected and fixed for a given sequence.

2.3 Temporal Consistency
The splitting and merging steps segment each frame of a
given sequence independently of the other frames of the

same sequence. This yields inconsistent temporal texture
identification. Thus a mapping of textures identified in a
frame to textures identified in previous frames of the
same sequence is required. However, in our approach it
is important that the temporal consistency of identified
textures is provided for a group-of-frames (GoF). A GoF
encompasses two key frames (first and last frame of the
GoF) and several partially synthesized frames between
the key frames. Key frames are either I or P frames and
coded using MSE as distortion criterion. This GoF ap-
proach enables seamless switching between between
synthesized and MSE-accurate texture representation
after each key frame.

Temporal consistency of the synthesizable parts of a
GoF is ensured by setting up a "texture catalogue”,
which contains information about the textures present in
the given sequence. The texture catalogue is initialized
with the feature vectors of the textures identified in the
first frame of the sequence. In case no texture is identi-
fied in the starting frame, the catalogue is initialized
with the textures of the first frame where at least one
texture is found. The textures identified in the following
frames are first compared to the indexed texture(s) and
mapped to one of them if similar. The former are added
to the texture catalogue otherwise.

2.4 Warping of Segmented Areas
The reliability of the colour- or texture-based identifica-
tion of synthesizable parts of a GoF is increased by
matching the texture regions into the partially synthe-
sized frames with the corresponding texture regions in
the key frames. This mapping is achieved by warping of
the identified texture regions in the current frame to-
wards the corresponding textures in the first or the last
frame of the GoF. Warping is done using the planar per-
spective model as defined by the Parametric Motion
Descriptor in MPEG-7 [1],[2]:

yyaxayaxaay
xyaxayaxaax
 +)]+ + (1 /)+ + [(= ′
 +)]+ + (1 /)+ + [(= ′

87652

87431 (1)

where (x’, y’) represent the warped coordinates of the
original sample (x, y). a1,…,a8 are the eight model pa-
rameters. The perspective motion model is suitable to
describe arbitrary rigid object motion, if camera opera-
tion is restricted to pure rotation and zoom. It is also
suitable for rigid motion of planar objects with arbitrary
camera operation. In practice these assumptions often
hold approximately over the short period of a GoF as
considered here. The parametric motion (parameters ai)
of each identified texture region in relation to the first
and last frame of the GoF is estimated as described in
[9].

The warping can only be performed if correspond-
ing regions can be found in the first or last frame of the

GoF. Therefore a given identified texture region in the
actual frame is warped towards the first frame of the
GoF. The samples of the warped texture region that lie
within the corresponding texture region of the first
frame of the GoF are kept, while the others are labelled
as not classified in the current frame. This leads to a
reduced texture region in the current frame. The proce-
dure is repeated using the last frame of the GoF as a
reference. We have found that this approach yields good
but sometimes too conservative results in that the result-
ing regions are often too small.

Figure 3 – Example for segmentation mask generation
using warping. Top left: segmentation mask of the key
frame with one synthesizable (hatched) texture region.
Top right: segmentation mask of current frame to syn-
thesize with one synthesizable (hatched) texture region
of the same class as hatched region in the key frame.
Bottom left: segmentation mask of key frame with
warped synthesizable texture region of current frame to
synthesize. Bottom right: Resulting segmentation mask
of current frame to synthesize after motion compensa-
tion.

Figure 3 depicts an example of how motion compensa-
tion of segmentation masks is done. The hatched texture
regions are of the same class and represent a synthesiz-
able texture area. It is assumed that the synthesizable
texture region is subject to translational motion. Only
the intersection of the warped texture region in the cur-
rent frame and the corresponding texture region in the
reference frame is used for synthesis. It can be seen that
part of the current texture region lies outside the key
frame. Figure 3 (bottom right) depicts the segmentation
mask resulting from the motion compensation.

Note that parameters like the smallest allowed block
size (Section 2.2) and the similarity thresholds (Section
2.3) are optimized manually. The texture analyzer pre-
sented above is therefore a semi-automatic segmentation
algorithm.

3. Texture Synthesizer
For the texture synthesizer, we assume rigid objects. We
further assume that the frame-to-frame displacement of
the objects can be described using the perspective mo-
tion model. Synthesis for textures like water that are not
rigid are currently under investigation.

The texture synthesizer warps the texture from the
first or the last frame of the considered GoF towards
each synthesizable texture region identified by the tex-
ture analyzer as illustrated in Figure 4. A motion pa-
rameter set and a control parameter are required by the
texture synthesizer for each synthesizable texture region
identified by the texture analyzer [9]. The control pa-
rameter indicates whether the current texture region is to
be synthesized using the first or the last frame of the
considered GoF. The key frame that leads to the best
synthesis result is used. That is, the motion parameters
a1,…,a8 that lead to the smallest MSE between synthe-
sized and original texture region are kept.

I Frame Actual Frame

Figure 4 – Texture synthesizer filling texture region
identified by texture analyzer using left reference frame

4. System Integration
We have incorporated the texture analyzer and synthe-
sizer into the reference software (JM 2.1) of the
H.264/AVC project [10]. In this implementation, I and P
frames are always conventionally coded; only B frames
are candidates for a possible texture synthesis. In case a
B frame contains identified synthesizable texture re-
gions, the corresponding segmentation mask, the corre-
sponding motion parameters as well as the correspond-
ing control flags have to be transmitted (Sections 2.1
and 2.2).

For macroblocks that are marked by the control pa-
rameter, the texture synthesizer is used at the decoder
and all reconstructed samples of macroblocks belonging
to a synthesizable texture region are generated.

5. Experimental Results
We have conducted tests on the two well known test
sequences Flowergarden and Concrete. Both of them
contain textures useful to demonstrate that an approxi-
mate representation of some textures can be done with-
out subjectively noticeable loss of quality.

The following set-up was used for the H.264/AVC
codec: three B frames, one reference frame for each P

frame, CABAC (entropy coding method), rate distortion
optimization, 30 Hz progressive video. The quantization
parameter QP was set to 16, 20, 24, 28 and 32.

Figure 5 depicts the bit-rate savings obtained for
each of the test sequences. It can be seen that the highest
savings were measured for the highest quantization ac-
curacy considered (QP=16). Substantial bit-rate savings
of 19.4 % (Flowergarden) and 18.5 % (Concrete) were
measured at this QP value using semi-automatically gen-
erated masks. The bit-rate savings decrease with the
quantization accuracy due to the fact that the volume of
the side information remains constant over the different
QP settings. It can be seen that for the highest QP value
considered (QP=32) the bit-rate savings are still of
3.41% (Flowergarden) and 1.26% (Concrete).

16 18 20 22 24 26 28 30 32 34
0

5

10

15

20

25

QP

Bi
t-r

at
e

sa
vi

ng
s

[%
]

Flowergarden&Concrete, CIF, 30 Hz

Semi-automatically segmented FG sequence
Semi-automatically segmented Concrete sequence

Figure 5 − Bit-rate savings vs. quantization accuracy

The visual quality at the selected QP values was in all
cases comparable to the quality of the decoded se-
quences using the standard codec. Sequences for subjec-
tive evaluation can be down-loaded from
http://bs.hhi.de/~ndjiki/SE.htm.

Figure 6 depicts the result obtained for the sixth frame
of the “Flowergarden” sequence. It can be seen that the
difference signal is nearly zero in the sky texture region,
while it is quite significant in the flower texture region.
However, there is hardly any difference visible when
comparing the synthesized and the original sequences.
This shows that PSNR may not be a suitable measure for
this part of the video. We are not aware of suitable alter-
native quality measures matching the human subjective
perception of the video. Thus no video quality evalua-
tions based on objective measures are presented in this
paper. Note that due to some misclassifications in the
sky texture region (some leaves of the tree assigned to
the sky texture class), some details are missing in the
partially synthesized frame. As can be seen in bottom of
Figure 6 this artefact is not noticeable if the original
frame is not available at the decoder as is the case in
transmission systems.

Figure 6 − Coding result for Flowergarden. Top left : Original frame (#6). Bottom left: Frame with synthesized texture
regions. Top right: Difference signal (gain factor 3). Bottom right: Conservative motion compensated segmentation mask
(color black corresponds to detail-relevant texture region).

Conclusions and future work
We have presented a new video coding approach based
on texture analysis and synthesis. We classify a given
video scene into detail-relevant and detail-irrelevant
texture regions. Detail-irrelevant texture regions are de-
tected by a texture analyzer and reproduced by a texture
synthesizer.

We have tested our idea by integrating our modules
into an H.264/AVC codec. Bit-rate savings up to 19.4 %
are shown for a semi-automatic texture analyzer given
similar subjective quality as the standard H264/AVC
codec.

The interaction between texture analyzer and syn-
thesizer is subject to further work. Especially a more

precise analysis of the synthesizable texture regions is
required to avoid synthesizing texture regions with low
texturization and thus little bit-rate to code them using
MSE. For these textures, the gain is rather small. More-
over, incorporating more motion features into the ana-
lyzer might help to improve consistency of identified
textures for synthesis.

We are also investigating synthesis for textures like
water that contain local motion and therefore require
different synthesizer approaches.

References

[1] ISO/IEC JTC1/SC29/WG11/N4358, „Text of

ISO/IEC 15938-3/FDIS Information technology –
Multimedia content description interface – Part 3
Visual“, Sydney, Australia, July 2001.

[2] ISO/IEC JTC1/SC29/WG11/N4362, „MPEG-7
Visual Part of eXperimentation Model Version
11.0“, Sydney, Australia, July 2001.

[3] M. Wollborn, „Prototype Prediction for Colour
Update in Object-Based Analysis-Synthesis Cod-
ing”, IEEE Transactions on Circuits and Systems
for Video Technology, Special Issue on Very Low
Bit Rate Video Coding, Vol. 4, No. 3, pp. 236-245,
June 1994.

[4] S.-Y. Yoon and E. H. Adelson, „Subband texture-
synthesis for image coding“, Proceedings of SPIE
on Human Vision and Electronic Imaging III, Vol.
3299, pp. 489-497, San Jose, CA, USA, January
1998.

[5] E. Steinbach , T. Wiegand, and B. Girod, „Using
Multiple Global Motion Models for Improved
Block-Based Video Coding“, Proc. ICIP1999,
IEEE International Conference on Image Process-
ing, Vol. 2, pp. 56-60, Kobe, Japan, October 1999.

[6] A. Smolic, T. Sikora and J.-R. Ohm, „Long-Term
Global Motion Estimation and its Application for
Sprite Coding, Content Description and Segmenta-
tion“, IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 9, No. 8, pp. 1227-
1242, December 1999.

[7] ISO/IEC JTC1/SC29/WG11/N3515, „MPEG-4
Video VM Version 17.0“, Beijing, China, July
2000.

[8] J. Malki et al., „Region Queries without Segmenta-
tion for Image Retrieval by Content”, VISUAL'99,
pp.115-22, 1999.

[9] A. Smolic and J.-R. Ohm, „Robust Global Motion
Estimation Using a Simplified M-Estimator Ap-
proach“, Proc. ICIP2000, IEEE International Con-
ference on Image Processing, Vancouver, Canada,
September 2000.

[10] T. Wiegand (Ed.) „Editor’s Proposed Draft Text
Modifications for Joint Video Specification (ITU-T
Rec. H.264 | ISO/IEC 14496-10 AVC), Awaji
draft“, Awaji, Japan, January 2003.

