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Abstract 
A new approach to video coding is presented, where 
video scenes are classified into textures with subjec-
tively relevant and irrelevant details. We apply this idea 
to improve video coding by using a texture analyzer and 
a texture synthesizer. The analyzer identifies the texture 
regions with no important subjective details and gener-
ates coarse masks as well as side information for the 
synthesizer at the decoder side. The synthesizer replaces 
the detail-irrelevant textures by inserting synthetic tex-
tures into the identified regions. Texture analyzer and 
synthesizer are based on MPEG-7 descriptors. The ap-
proach has been integrated into an H.264/AVC codec. 
Bit-rate savings up to 19.4 % are shown for a semi-
automatic texture analyzer given similar subjective qual-
ity as the H.264/AVC codec without the presented ap-
proach. 
 
1. Introduction 
Many video scenes contain textures like grass, trees, 
sand, water, clouds, etc. These textures are difficult to 
code because of the large amount of visible detail. How-
ever, the exact reproduction of these textures can be 
considered as not important if they are shown with a 
limited spatial accuracy – the details are often irrelevant. 
Moreover, since the viewer typically does not know the 
original video, it is very unlikely that the exact repro-
duction of details is important. The viewer should just 
be able to recognize the textures, which is often not the 
case when for instance a pre-filter is utilized or these are 
blurred due to strong quantization. We exploit this idea 
for video coding using a texture analyzer at the encoder 
side and a texture synthesizer at the decoder side as 
shown in Figure 1.  
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Figure 1 – Video coding using a texture analyzer (TA) 
and a texture synthesizer (TS) 
 

The texture analyzer identifies detail-irrelevant texture 
regions, creates coarse masks corresponding to these 
regions and signals these masks as side information to 
the decoder to run the texture synthesizer. The texture 
synthesizer replaces the textures identified by the masks 
via inserting synthetic textures. The most important un-
derlying assumption of the presented approach is that for 
the identified detail-irrelevant textures, known distortion 
criteria like mean squared error (MSE) are not suitable 
for efficient coding, since irrelevant detail may be re-
produced. 

In this paper, we show that it is often sufficient to 
represent detail-irrelevant textures using a similarity 
criterion such as an MPEG-7 texture descriptor [1],[2] as 
the coding distortion. The MPEG-7 similarity criteria 
lead to reproduced textures that show different details as 
the original textures. These detail differences are not 
visible to the viewer as long as the displayed spatial ac-
curacy of the textures remains unchanged and are also 
much less disturbing as if they were coded at a bit-rate 
which is equivalent to the bit-rate of the side information 
of the texture synthesizer. 

One important problem associated with the pre-
sented approach occurs, when a detail-irrelevant texture 
turns into a detail-relevant texture, e.g. when a zoom 
occurs and a detail is shown with much higher spatial 
accuracy then before. For that, a technique is needed to 
seamlessly switch between synthesized and MSE-
accurate texture representation. The approach presented 
in this paper also addresses this issue. 

Analysis-synthesis-based codecs have already been 
introduced for object-based video coding applications, 
e.g. see [3]. The purpose of the analyzer and synthesizer 
modules in this case is usually the identification and 
appropriate synthesis of moving objects [3]. Such ap-
proaches can be seen as complementary to the one pre-
sented in this paper as the texture analyzer shown in 
Figure 1 tends to identify background textures. 

A similar wavelet-based analysis-synthesis still im-
age and video coding approach was introduced by Yoon 
and Adelson [4]. The algorithm presented is optimized 
for still images. Solutions regarding temporal consis-
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tency of synthesized texture regions are not explicitly 
presented.  

The combination of multiple reference frames and 
affine motion-compensated prediction was introduced 
by Steinbach et al. [5]. In [5], a segmentation-free solu-
tion with more than two reference frames is presented. A 
suitable reference frame for motion compensation is 
selected using the Lagrangian cost function as the distor-
tion criterion. The chosen cost function is MSE-based 
whereas in this work MPEG-7 similarity measures are 
employed.  

Smolic et al. introduced an online sprite coding 
scheme [6] that is better suited for real-time applications 
than static sprite coding in MPEG-4 [7]. In MPEG-4 
static sprite coding, the background of a video scene is 
transmitted at the beginning of the sequence. A major 
drawback of the approach in [6] is the requirement for a 
very precise background segmentation, i.e. foreground 
objects have to be separated very accurately. 

The remainder of the paper is organized as follows. 
In Section 2 we introduce the texture analyzer, while in 
Section 3 we present the texture synthesizer. In Section 
4 we describe the system integration. Finally, in Section 
5 we present the experimental results. 
 
2. Texture Analyzer 
The texture analyzer performs a split and merge seg-
mentation of each frame of a given video sequence. The 
splitting step consists in analyzing a frame using a multi-
resolution quadtree [8]. The latter encompasses several 
levels with the first level (level 0) being the original 
frame itself. In level 1, the original frame is split into 4 
non-overlapping blocks, while it is split into 16 non-
overlapping blocks in level 2, etc. The amount of blocks 
in level L is given by 2L.  
 
2.1 Homogeneity Criteria 
A block in level L is considered to have homogeneous 
content if its four sub-blocks in level L+1 have “similar” 
statistical properties. Inhomogeneous blocks are split 
further, while homogeneous blocks remain unchanged. 
The splitting stops and the related samples are marked as 
not classified when the smallest allowed block size is 
reached. This smallest allowed block size can be set 
according to a priori knowledge concerning the size of 
the structures in the given video sequence.  

The segmentation mask obtained after the splitting 
step typically shows a clearly over-segmented frame. 
Thus post-processing of the former is required, which 
leads to the second step implemented by the texture ana-
lyzer - the merging step. For that, homogeneous blocks 
identified in the splitting step are compared pairwise and 
similar blocks are merged into a single cluster forming a 
homogeneous block itself. The merging stops if the ob-
tained clusters are stable, i.e. if they are pairwise dis-

similar. The final number of clusters is often considera-
bly reduced by the merging step. 

Figure 2 shows the segmentation masks of a frame 
after the splitting (left frame) and after the merging step 
(right frame). Regions labelled as not classified are 
marked by a black border, while classified regions are 
marked by a non-black border. It can be seen that the 
number of homogeneous clusters is substantially re-
duced after the merging step. 
 

 
Figure 2 – Segmented image after the splitting step (left) 
and after the merging step (right)  
 
 
2.2 Similarity Estimation 
The similarity assessment between two blocks is done 
based on MPEG-7 descriptors [1],[2]. We used the 
"Edge Histogram” (EH) texture descriptor and the SCal-
able Color (SCC) descriptor.  

The EH descriptor represents the spatial distribution 
of four directional edges (one horizontal, one vertical, 
and two diagonal edges) and one non-directional edge 
for 16 local non-overlapping regions of a given image. 
The frequency of occurrence of each edge class is de-
termined for each local region. This leads to an 80 
(16x5) dimensional feature vector.  

The SCC descriptor is basically a colour histogram 
in the HSV colour space. The resolution (number of 
colours or bins) of the SCC descriptor can be varied 
from 16 to 256 colours. The number of possible colours 
is thereby doubled for each resolution step. We use the 
highest resolution step for best possible segmentation 
results given the SCC descriptor. Note that the SCC de-
scriptor can in principle be used in combination with 
other colour spaces. 

Two blocks are considered to be similar if the dis-
tance between the corresponding feature vectors lies 
below a given threshold. The latter is implemented as a 
proportion of the maximum possible distance that is 
dependent on the selected metric (l1, l2) and the used 
descriptor (SCC, EH). A threshold of zero indicates that 
two feature vectors must show a 100 % match to be seen 
as similar while a threshold of one means a 0 % match is 
sufficient to be seen as similar. The similarity threshold 
is manually selected and fixed for a given sequence.  
 
2.3 Temporal Consistency 
The splitting and merging steps segment each frame of a 
given sequence independently of the other frames of the 



same sequence. This yields inconsistent temporal texture 
identification. Thus a mapping of textures identified in a 
frame to textures identified in previous frames of the 
same sequence is required. However, in our approach it 
is important that the temporal consistency of identified 
textures is provided for a group-of-frames (GoF). A GoF 
encompasses two key frames (first and last frame of the 
GoF) and several partially synthesized frames between 
the key frames. Key frames are either I or P frames and 
coded using MSE as distortion criterion. This GoF ap-
proach enables seamless switching between between 
synthesized and MSE-accurate texture representation 
after each key frame.  

Temporal consistency of the synthesizable parts of a 
GoF is ensured by setting up a "texture catalogue”, 
which contains information about the textures present in 
the given sequence. The texture catalogue is initialized 
with the feature vectors of the textures identified in the 
first frame of the sequence. In case no texture is identi-
fied in the starting frame, the catalogue is initialized 
with the textures of the first frame where at least one 
texture is found. The textures identified in the following 
frames are first compared to the indexed texture(s) and 
mapped to one of them if similar. The former are added 
to the texture catalogue otherwise.  
 
2.4 Warping of Segmented Areas 
The reliability of the colour- or texture-based identifica-
tion of synthesizable parts of a GoF is increased by 
matching the texture regions into the partially synthe-
sized frames with the corresponding texture regions in 
the key frames. This mapping is achieved by warping of 
the identified texture regions in the current frame to-
wards the corresponding textures in the first or the last 
frame of the GoF. Warping is done using the planar per-
spective model as defined by the Parametric Motion 
Descriptor in MPEG-7 [1],[2]: 
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where (x’, y’) represent the warped coordinates of the 
original sample (x, y). a1,…,a8 are the eight model pa-
rameters. The perspective motion model is suitable to 
describe arbitrary rigid object motion, if camera opera-
tion is restricted to pure rotation and zoom. It is also 
suitable for rigid motion of planar objects with arbitrary 
camera operation. In practice these assumptions often 
hold approximately over the short period of a GoF as 
considered here. The parametric motion (parameters ai) 
of each identified texture region in relation to the first 
and last frame of the GoF is estimated as described in 
[9]. 

The warping can only be performed if correspond-
ing regions can be found in the first or last frame of the 

GoF. Therefore a given identified texture region in the 
actual frame is warped towards the first frame of the 
GoF. The samples of the warped texture region that lie 
within the corresponding texture region of the first 
frame of the GoF are kept, while the others are labelled 
as not classified in the current frame. This leads to a 
reduced texture region in the current frame. The proce-
dure is repeated using the last frame of the GoF as a 
reference. We have found that this approach yields good 
but sometimes too conservative results in that the result-
ing regions are often too small.  
 
 

 
 
Figure 3 – Example for segmentation mask generation 
using warping. Top left: segmentation mask of the key 
frame with one synthesizable (hatched) texture region. 
Top right: segmentation mask of current frame to syn-
thesize with one synthesizable (hatched) texture region 
of the same class as hatched region in the key frame. 
Bottom left: segmentation mask of key frame with 
warped synthesizable texture region of current frame to 
synthesize. Bottom right: Resulting segmentation mask 
of current frame to synthesize after motion compensa-
tion.  
 
Figure 3 depicts an example of how motion compensa-
tion of segmentation masks is done. The hatched texture 
regions are of the same class and represent a synthesiz-
able texture area. It is assumed that the synthesizable 
texture region is subject to translational motion. Only 
the intersection of the warped texture region in the cur-
rent frame and the corresponding texture region in the 
reference frame  is used for synthesis. It can be seen that 
part of the current texture region lies outside the key 
frame. Figure 3 (bottom right) depicts the segmentation 
mask resulting from the motion compensation. 

Note that parameters like the smallest allowed block 
size (Section 2.2) and the similarity thresholds (Section 
2.3) are optimized manually. The texture analyzer pre-
sented above is therefore a semi-automatic segmentation 
algorithm. 
 
 



3. Texture Synthesizer 
For the texture synthesizer, we assume rigid objects. We 
further assume that the frame-to-frame displacement of 
the objects can be described using the perspective mo-
tion model. Synthesis for textures like water that are not 
rigid are currently under investigation.  

The texture synthesizer warps the texture from the 
first or the last frame of the considered GoF towards 
each synthesizable texture region identified by the tex-
ture analyzer as illustrated in Figure 4. A motion pa-
rameter set and a control parameter are required by the 
texture synthesizer for each synthesizable texture region 
identified by the texture analyzer [9]. The control pa-
rameter indicates whether the current texture region is to 
be synthesized using the first or the last frame of the 
considered GoF. The key frame that leads to the best 
synthesis result is used. That is, the motion parameters 
a1,…,a8 that lead to the smallest MSE between synthe-
sized and original texture region are kept. 
 

I Frame Actual Frame 

 
 
Figure 4 – Texture synthesizer filling texture region 
identified by texture analyzer using left reference frame 
 
4. System Integration 
We have incorporated the texture analyzer and synthe-
sizer into the reference software (JM 2.1) of the 
H.264/AVC project [10]. In this implementation, I and P 
frames are always conventionally coded; only B frames 
are candidates for a possible texture synthesis. In case a 
B frame contains identified synthesizable texture re-
gions, the corresponding segmentation mask, the corre-
sponding motion parameters as well as the correspond-
ing control flags have to be transmitted (Sections 2.1 
and 2.2). 

For macroblocks that are marked by the control pa-
rameter, the texture synthesizer is used at the decoder 
and all reconstructed samples of macroblocks belonging 
to a synthesizable texture region are generated. 
 
5. Experimental Results 
We have conducted tests on the two well known test 
sequences Flowergarden and Concrete. Both of them 
contain textures useful to demonstrate that an approxi-
mate representation of some textures can be done with-
out subjectively noticeable loss of quality. 

The following set-up was used for the H.264/AVC 
codec: three B frames, one reference frame for each P 

frame, CABAC (entropy coding method), rate distortion 
optimization, 30 Hz progressive video. The quantization 
parameter QP was set to 16, 20, 24, 28 and 32.  

Figure 5 depicts the bit-rate savings obtained for 
each of the test sequences. It can be seen that the highest 
savings were measured for the highest quantization ac-
curacy considered (QP=16). Substantial bit-rate savings 
of 19.4 % (Flowergarden) and 18.5 % (Concrete) were 
measured at this QP value using semi-automatically gen-
erated masks. The bit-rate savings decrease with the 
quantization accuracy due to the fact that the volume of 
the side information remains constant over the different 
QP settings. It can be seen that for the highest QP value 
considered (QP=32) the bit-rate savings are still of 
3.41% (Flowergarden) and 1.26% (Concrete). 
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Figure 5 − Bit-rate savings vs. quantization accuracy 
 
The visual quality at the selected QP values was in all 
cases comparable to the quality of the decoded se-
quences using the standard codec. Sequences for subjec-
tive evaluation can be down-loaded from 
http://bs.hhi.de/~ndjiki/SE.htm. 
 
Figure 6 depicts the result obtained for the sixth frame 
of the “Flowergarden” sequence. It can be seen that the 
difference signal is nearly zero in the sky texture region, 
while it is quite significant in the flower texture region. 
However, there is hardly any difference visible when 
comparing the synthesized and the original sequences. 
This shows that PSNR may not be a suitable measure for 
this part of the video. We are not aware of suitable alter-
native quality measures matching the human subjective 
perception of the video. Thus no video quality evalua-
tions based on objective measures are presented in this 
paper. Note that due to some misclassifications in the 
sky texture region (some leaves of the tree assigned to 
the sky texture class), some details are missing in the 
partially synthesized frame. As can be seen in bottom of 
Figure 6 this artefact is not noticeable if the original 
frame is not available at the decoder as is the case in 
transmission systems.  



 
 
 

 

 
 
Figure 6 − Coding result for Flowergarden. Top left : Original frame (#6). Bottom left: Frame with synthesized texture 
regions. Top right: Difference signal (gain factor 3). Bottom right: Conservative motion compensated segmentation mask 
(color black corresponds to detail-relevant texture region). 
 
 
 
 
Conclusions and future work 
We have presented a new video coding approach based 
on texture analysis and synthesis. We classify a given 
video scene into detail-relevant and detail-irrelevant 
texture regions. Detail-irrelevant texture regions are de-
tected by a texture analyzer and reproduced by a texture 
synthesizer. 

We have tested our idea by integrating our modules 
into an H.264/AVC codec. Bit-rate savings up to 19.4 % 
are shown for a semi-automatic texture analyzer given 
similar subjective quality as the standard H264/AVC 
codec. 

The interaction between texture analyzer and syn-
thesizer is subject to further work. Especially a more 

precise analysis of the synthesizable texture regions is 
required to avoid synthesizing texture regions with low 
texturization and thus little bit-rate to code them using 
MSE. For these textures, the gain is rather small. More-
over, incorporating more motion features into the ana-
lyzer might help to improve consistency of identified 
textures for synthesis. 

We are also investigating synthesis for textures like 
water that contain local motion and therefore require 
different synthesizer approaches. 
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