2004 |IEEE 6th Workshop on Multimedia Signal Processing

Representation, Coding, and Rendering of 3D
Video Objects with MPEG-4 and H.264/AVC

A. Smolié, K. Mueller, P. Merkle, T. Rein, M. Kautzner, P. Eisert, and T, Wiegand
Image Processing Department
Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institute
Einsteinufer 37, 10587 Berlin, Germany

Abstract—3D video objects provide the same functionalities
as virtual computer graphics objects but depict the motion and
appearance of real world moving objects. They can be viewed
interactively from any direction and integrated in complete 3D
scenes with other virtual and real world elements. So far, related
work only considered extraction, representation, and rendering
methods. Compression and transmission has not yet been studied
in detail and combined with the other compeonents into one
complete systern. In this paper, we present such a complete
system for efficient 3D video object extraction, representation,
coding, and interactive rendering. Data representation is based
on 3D mesh models and view-dependent texture mapping using
video textures. The geometry extraction is based on a shape-
from-silhouetie algorithm. The resulting voxel models are
converted into 3D meshes that are ceded wsing MPEG-4 SNHC
tools. The corresponding video textures are preprocessed taking
the object’s shape into account and coded using an H.264/AVC
codec. The presented results illustrate that based on the proposed
methods a complete transmission system for 3D video objects can
be built.

Keywords—3D video objects; free viewpoint video; visual hull;
shape-from-silhouette; 3D mesh coding; H.264/AVC.

I INTRODUCTION

Free viewpoint video is a novel representation format for
visual media that allows the user to navigate freely within
dynamic real world scenes by choosing arbitrary viewpoints
and view directions. This functionality ts well-known from
computer graphics, computer games and virtual reality
applications. However, in these cases, most of the scenes and
objects are either purely computer generated or contain static
21> views of real world objects represented by still pictures or
moving textures. In contrast free viewpoint video targets at
real world scenes and objects as captured by real imagery.

Typically scenes and objects are captured using
synchronized multi-camera systems. This can be dome-like
settings as illustrated in Fig. 2, but also parailel settings and
other types of camera arrangements. The video signals are
processed and converted into a certain format that allows
generation of virtual intermediate views and thus enables free
navigation. Of course the range of navigation is restricted by
the camera arrangement, and in general the overall quality of
rendered views increases with the number of available
cameras,

0-7803-8578-0/04/$20.00 ©2004 |IEEE

A 3D video object is a special case of free viewpoint
video. Here the representation does not include the whole
scene but is restricted to a certain object, typically related to
physical objects such as humans. 3D video objects rely on a
certain geometry representation with associated texture, which
are both changing over time. They provide the same
functionalities as classical computer graphics objects (fTee
navigation, integration in complete scenes), but depict the
motion and appearance of real world moving objects. This is
illustrated in Fig. 1. Here 4 rendered views at 4 different time
instances from 4 different virtual viewpoints are shown. These
are snapshots from a virtual camera fly around the object as it
moves,

Fig. 1: Virtual camera fly, rendered views at 4 different times from 4 different
virtual viewpoints.

In this paper, we present a complete system for 3D video
objects including compression. It uses conventional 3D mesh
models and view-dependent mapping of muitiple textures as
acquired from real cameras. The 3D geometry is reconstructed
using a shape-from-silhouette algorithm that calculates a voxel
approximation of the visual hull [1]. The voxel model is
converted into a 3D mesh using a marching cubes algorithm
and mesh reduction [2]. The geometry is coded vsing 3D mesh
coding as standardized in MPEG-4 SNHC [3]. The multiple
video textures are compressed using H.264/AVC [4]. For that

379

we developed a special shape-oriented preprocessing of the
video sequences that significantly improves texture coding.
For view-dependent texture mapping with unstructured
Lumigraph rendering [5] we developed a new tool that was
accepted as extension to MPEG-4 AFX [6].

This paper is organized as follows. In the next section, we
briefly describe the process of geometry extraction from
multiple video streams and rendering using view-dependent
texture mapping. Coding and preprocessing is described in
section 3. Section 4 presents experimental results.

II. GEOMETRY RECONSTRUCTION AND RENDERING

Acquisition of 3D video objects typically relies on a muiti-
camera setup as shown in Fig. 2. In general, the quality of the
rendered views increases with the number of available
cameras. However, equipment costs and often the complexity
costs required for processing increase as well. We therefore
consider a classical tradeoff between quality and costs by
limiting the number of cameras and compensating this by
geometry extraction.

e

Fig. 2: 3D video object acquisition.

The first step of our algorithm consists of deriving intrinsic
and extrinsic parameters for all cameras that relate the 2D
images to a 3D world coordinate system since our geometry
extraction and rendering algorithms require knowledge of
these parameters. These parameters are computed from
reference points using a standard calibration algorithm [7].

In the next step, the object to be extracted is segmented in
all camera views. For that we use the combination of an
adaptive background subtraction algorithm and Kalman filter
tracking. The results of this step are silhouette videos that
indicate the object’s contour for all cameras. For details please
refer to [8). The 3D volume containing the object is
reconstructed from the silhouette images using an octree-
based shape-from-silhouette algorithm [9). After visual huil
approximation the object’s surface is extracted from the voxel
model by applying a marching cubes algorithm and
represented with a 3D mesh [2].

For photo-realistic rendering, the original videos are
mapped onto the reconstructed geometry, Natural materials
may appear very different from different viewing directions
depending on their reflectance properties and the lighting
conditions. Static texturing (e.g. interpolating the available
views) therefore often leads to poor rendering results, We
have developed an algorithm for view-dependent texture
mapping that more closely approximates natural appearance
when navigating through the scene.

As illustrated in Fig. 3, the textures are projected onto the
geometry using the calibration information. For each projected
texture a normal vector r; is defined pointing into the direction
of the original camera. For generation of a virtuat view into a
certain direction vypw a weight is caleulated for each textore,
which depends on the angle between vyew and n. The
weighted interpolation ensures that at original camera
positions the virtual view is exactly the original view. The
closer the virtual viewpoint is to an original camera position
the greater the influence of the corresponding texture on the
virtual view.

&l VYIEW

Fig. 3: Weighted virtual view interpolation.

@ are the angles between the virtual viewing direction and
the camera directions n;. First individual weights w; are
calculated as described in [10]:

cosd;
Wy =< 1-cos@,’
Float _Max, cosg, =1

cosd =1

(1)

If one angle approaches zero, the weight approaches
infinity. All other weights can be neglected in this case. In
order to avoid overlighting the weights are normalized such
that they always sum up to one:

1

W

2)

a4 ==
W;
vi

This weighted interpolation approximates realistic
intermediate views enabling realistic virtual camera flights
through the scene.

III. REPRESENTATION, RENDERING, AND CODING WITH
MPEG-4 AND H.264/AVC

Previous work on 3D video objects was mainly
concentrated on extraction and rendering. Coding and
transmission issues have not been considered in detail so far.
To investigate these issues, MPEG has established a working
group called 3DAV [11]. MPEG-4 is a suitable framework for
3D video objects since it already provides state-of-the-art
components for computer graphics and video representation
and coding. However, view-dependent texture mapping as
described in the pr:evious section is not supported so far. We
therefore did propose the technology as a new part of the
Animation Framework eXtension (AFX) of MPEG-4. This
part of the standard specifies advanced computer graphics
tools [12]. Our proposal for view-dependent texture mapping
was adopted for an upcoming amendment since the
technology is not only suitable for 3D video objects but for
other computer graphics applications as well.

380

For coding of the 3D meshes, MPEG-4 already provides
efficient tools [3] that can readily be used for our 3D video
object representation. For coding of the dynamic textures that
are in fact video sequences we investigated several video
codecs, The most advanced open standard codec is the recent
H.264/AVC [4], which is a joint standard of ITU-T VCEG and
MPEG. It outperforms all other available standard codecs but
only supports standard rectangular video.

However, for rendering of 3D video objects at the decoder,
we don’t need to transmit the complete rectangular video as
acquired by the cameras. Only the area covered by the object
of interest needs to be transmitted. Therefore, the video
sequences are preprocessed prior to encoding as illustrated in
Fig. 4. We cut out a bounding box that completely contains
the object and that has dimensions in pixels that are multiples
of the macrobiock size (16x16). Within the bounding bex all
empty macroblocks that do not contain the object are set to a
constant value of 128. This preprocessing ensures that only the
minimum information that the decoder needs to render the 3D
video object is actually encoded. Note that we do not need to
transmit the shape information since it is already given at the
decoder by the 3D mesh model. Finally, the video is encoded
using standard H.264/AVC syntax.

Fig. 4: Preprocessing for H.264/AVC coding.

Additionally, the camera calibration parameters have to be
transmitted once to the decoder as side information, which
means 10 float values per camera and session.

IV. EXPERIMENTAL RESULTS

The experiments were performed with several data sets
made available to the MPEG 3DAYV group. As illustrated Fig.
2, humans in motion were captured in a dome-like multi-
camera selting. The geometry was reconstructed as explained
in section 2. The resulting wire frames were encoded using
MPEG-4 mesh coding, which allows varying the number of
bits used per vertex. The resulting bitrates using the Doo
Young data set (16 sequences, 640x480) are shown for some
settings in TABLE I (2000 vertices/mesh). Examples of
decoded meshes are shown in Fig. 5. We have found that
increasing the number of bits per vertex above 8 bits does not
significantly increase visual gquality, when the texture is
mapped ento the mesh.

Current MPEG-4 mesh coding only allows encoding the
meshes for each frame separately {corresponding to I-frame
coding in video). However, the meshes describe the same
object moving over time, and therefore the compressed data
still contain a huge amount of temporal statistical dependency.

381

Our future research will therefore be to develop predictive
coding for moving and deforming 3D meshes, We also plan to
constrain the geometry reconstruction in order to produce
more fime-consistent meshes, since this process also still
works independently for each time instant.

TABLEL BITRATES FOR GEOMETRY IN KBIT/S
bit/vertex 6 7 8 10
bitrate [kbit/s]] 556.42 685,33 831,08 1088,25

Fig. 5: Original mesh (left) and decoded meshes at 8 (middle) and 6 (right) bit
per vertex.

The state-of-the-art open standard codec with shape
support is currentlty MPEG-4 Core Profile [3]. We therefore
encoded the selected test set with MPEG-4 in arbitrary shape
mode at different bitrates as reference (using Microsoft
reference software). Then we encoded the complete
(rectangular) sequences with H.264/AVC (JVT reference
software with similar settings to MPEG-4 test). The PSNR
was evaluated only within the object shape in both cases. In all
our experiments H.264/AVC outperformed MPEG-4
significantly for several dB, even if the bits used for shape by
the MPEG-4 codec are subtracted. A typical example result
for one sequence is shown in Fig. 6. For such sequences with
relatively static background as shown in Fig. 4 (changes only
due to noise, shadows and lighting effects) H.264/AVC is
much more efficient even if the complete video is encoded.

l:-o—MPAwm«out Ehapa - - <M= - MY —-g— H.264/AVC —8— preprocessod H2640AVC

42

" |
o L i
o
=
H * "
o

04— —— — g

/ .
il
50 100 150 200 250 300
ilirate [Kbit/s]

Fig. 6: PSNR within object for several codecs over bitrate.

However, encoding the background with H264/AVC is a
waste of bits in our application scenario. We therefore applied
preprocessing as described in Section 3 to all the test
sequences and encoded the owtcome with H.264/AVC, A
result is also included in Fig. 6. We get a significant gain for
the mean object PSNR of wp to 2.6 dB compared to
H.264/AVC without preprocessing. The gain depends on the
content and most of all on the size of the resulting bounding
box. TABLE II shows the results for the selected subset of 8
cameras. We get the largest gain for small bounding boxes.

For large bounding boxes we get small gains and even losses.
The mean gain increases with the bitrate from 0.99 and 1.13 to
1.31 dB for 64, 128 and 256 kbit/s/view respectively. These
results show that even such simple preprocessing can
significantly improve the results for video object coding. Our
future research will therefore be a further improvement
through better integration of shape-adaptive coding algorithms
into H.264/AVC,

TABLE IL OBRJECT PSNR GAIN USING PREPROCESSED VIDEQ
Sequence | Sizeof | PSNRgain | PSNRgain | PSNRgain
number | bounding @64 @ 128 @ 256

box kbit/s/view | Kbit/sfview kbit/s/view

11 352x336 1,04 1,25 1,46

13 352x320 045 0,67 1,05

14 416x432 -0,18 0,15 0,22

16 4163448 -0.25 .01 0,28

2 192x336 136 151 1,65

4 192x320 261 2,54 2,39

7 224x352 1,7 1.57 1,77

9 176x320 1.2 137 1,68

Fig. 7 compares details of virtval rendered views in the
middle between original views. The left example was rendered
with uncompressed textures. The other images show examples
with textures coded at 128 and 64 kbit/s/view illustrating the
degradation of image quality with reduced bitrate.

Fig. 7: Details of rendered views uncoded, 128 and 64 kbit/s/view.

Fig. 8: Rendered views using 4 and 8 textures at sarme toial texture bitrate of
512 kbit/s.

In general, the quality of view-dependent texture mapping
increases with the pumber of textures used. On the other hand,
also the data rate and the processing and rendering complexity
increase. We therefore tested our algorithms with subsets
including 4 and 8 video textures. Fig. 8 compares rendered
views generated using 4 and 8 textures at the same total
texture bitrate of 512 kbit/s. This means that the 4-view set
was coded at 128 kbit/s/view and the B-view set was coded at

64 kbit/s/view. Rendering artifacts decrease with the number
of views, however, coding artifacts increase with the number
of views, This illustrates that for coding of 3D video objects, a
tradeoff has to be found regarding the number of views for
optimum overall visual quality at a particular given bitrate.

V. SUMMARY AND FUTURE WORK

The presented system for 3D video objects covers the
entire processing and transmission chain from cameras to
interactive display including data compression, Qur results
indicate suitability of the tested approaches for the envisaged
application. Predictive mesh coding to exploit temporal
redundancy and constrained geometry reconstruction for time
consistent mesh generation are subject to further research.
Also improved shape-adaptive H.264/AVC coding will be
studied in the future,

ACKNOWLEDGMENT

We would like to thank the Computer Graphics Lab of
ETH Zurich for providing the Doo Young multi-camera data
set.

REFERENCES

[1] P. Eisert, E. Steinbach, and B. Girod, “Multi-hypothesis, Volumetric
Reconstruction of 3-D Objects from Multiple Calibrated Camera
Views,” Proc. JICASSP, pp. 3509-3512, Phoenix, Mar. 1999.

[2] W.E. Lorensen, and H. E. Cline, “Marching Cubes: A high resolution
3D surface reconstruction algorithm,” Proc. SIGGRAPH, vol. 21, no. 4,
pp 163-169, 1987,

[3] ISOJIEC JTCU/SC29WG11, “Information Technology - Coding of
Audio-Visual Objects, Part 2: Visual: 2001 Edition,” Doc. N4350,
Sydney, Australia, July 2001.

[4] ITU-T Recommendation H.264 & ISOMEC 14496-10 AVC. “Advanced
Video Coding for Genenic Audic-Visual Services,” 2003,

[51 C. Buehler, M. Bosse, L. McMiltan, S. Gortler, and M, Cohen,
“Unstructured Lumigraph Rendering,™ Proe. SIGGRAPH, pp. 425-432,
2001, .

[6] K. Mueller, and A, Smolic, “Study on View-Dependent Muliitexturing
for MPEG-4 AFX* ISO/IEC JTC1/SC29/WG11, MPEGO3/M10152,
Gold Coast, Australia, October 2003,

[71 R.Y. Tsai, “A versatile camera calibration technique for high-accuracy
3D machine vision mewology using off-the-shelf TV camera and
lenses,” IEEE Journal of Robotics and Automarion, vol. RA-3, no. 4,
August 1987.

[8] K. Mueller, A. Smolic, M, Droese, F. Voigt, and T. Wicgand, *Muli-
Texture Modelling of 3D Traffic Scenes,” Proc. ICME, Baltimore, MD,
USA, July 6.-9. 2003,

[9] A. Smolic, K. Mueller, P. Merkle, T. Rein, M. Kawtzner, P. Eisert, and
T. Wiegand, “Free Viewpoinmt Video Extraction, Representation,
Coding, and Rendering,” Proc. ICIP, Singapore, October 24.-27, 2004.

[10] D. Vlasic, H. Plister, s. Molinov, R Grzeszczuk and W. Matusik,
“Opacity Light Fields: Interactive Rendering of Surface Light Fields
with View-dependent Opacity”, Prec. 2003 Symposium on Interactive
3D graphics, pp. 65-74, 2003,

[11} A. Smolic, and D. McCutchen, “3DAV Exploration of Video-Based
Rendering Techndlogy in MPEG," IEEE Trans. on CSVT, vol. 14.no. 8,
pp- 348-356, March 2004.

[12] ISOAEC JTCLISC29/WG11, “Text of ISOAEC
16:2003/FDAMA4,” Daoc. N5397, Awaji, Japan, December 2002,

14496-

382

