Information and Entropy

- Shannon's Separation Principle
- Source Coding Principles
- Entropy
- Variable Length Codes
- Huffman Codes
- Joint Sources
- Arithmetic Codes
- Adaptive Codes

Thomas Wiegand: Digital Image Communication

Information and Entropy 1

Shannon's Separation Principle

Assumptions:

- Single source and user
- Unlimited complexity and delay



Thomas Wiegand: Digital Image Communication

Information and Entropy 2

Practical Systems

- Many applications are not uni-directional point-to-point transmissions:
 - Feedback
 - Networks
- In any practical system, we cannot effort unlimited complexity neither unlimited delay:
 - There will always be a small error rate unless we tolerate sub-optimality
 - It might work better to consider source and channel coding jointly
 - Consider effect of transmission errors on source decoding result

Thomas Wiegand: Digital Image Communication

Information and Entropy 3

Source Coding Principles

- The source coder shall represent the video signal by the minimum number of (binary) symbols without exceeding an acceptable level of distortion.
- Two principles are utilized:
- 1. Properties of the information source that are known a priori result in redundant information that need not be transmitted ("redundancy reduction").
- 2. The human observer does not perceive certain deviations of the received signal from the original ("irrelevancy reduction").
- Lossless coding: completely reversible, exploit 1. principle only
- Lossy coding: not reversible, exploit 1. and 2. principle

from: Girod

Entropy of a Memoryless Source

• Let a memoryless source be characterized by an ensemble U_0 with:

Alphabet { $a_0, a_1, a_2, ..., a_{K-1}$ } Probabilities { $P(a_0), P(a_1), P(a_2), ..., P(a_{K-1})$ }

Shannon: information conveyed by message "a_k":

$$I(a_k) = -\log\left(P(a_k)\right)$$

• "Entropy of the source" is the <u>average</u> information contents:

$$H(U_0) = E\{I(a_k)\} = -\sum_{k=0}^{K-1} P(a_k) * \log (P(a_k))$$

• For "log" = "log₂" the unit is bits/symbol

from: Girod

from: Girod

Information and Entropy 6

Information and Entropy 5

Thomas Wiegand: Digital Image Communication

Entropy and Bit-Rate

• Properties of entropy:

$$H(U_0) \ge 0$$

max { $H(U_0)$ } = log K with $P(a_i) = P(a_k)$ for all j, k

- The entropy H(U₀) is a lower bound for the average word length I_{av} of a decodable variable length code
- Conversely, the average word length *I_{av}* can approach *H*(*U₀*), if sufficiently large blocks of symbols are encoded jointly.
- Redundancy of a code:

Thomas Wiegand: Digital Image Communication

 $\rho = I_{av} - H(U_0) \ge 0$

Encoding with Variable Word Lengths

A code without redundancy, i.e.

$$I_{av} = H(U_0)$$

is achieved, if all individual code word lengths

$$I_{cw}(a_k) = -\log\left(P(a_k)\right)$$

• For binary code words, all probabilities would have to be binary fractions:

$$P(a_k) = 2^{-l_{CW}(a_k)}$$
from: Girod
Thomas Wiegand: Digital Image Communication
Information and Entropy 7

Redundant Codes: Example

a _i	P(aį)	redundant code	optimum code
a ₁	0.500	00	0
<i>a</i> ₂	0.250	01	10
<i>a</i> ₃	0.125	10	110
<i>a</i> ₄	0.125	11	111
<i>H</i> (<i>U₀</i>) =1.75 bits		I_{av} = 2 bits ρ = 0.25 bits	l_{av} =1.75 bits ρ = 0 bits

Information and Entropy 8

Variable Length Codes

- Unique decodability: Where does each code word start or end
- Insert start symbol: 01.0.010.1. wasteful
- Construct prefix-free code

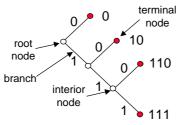
╞

Kraft Inequality: test for uniquely decodable codes

Uniquely deco	odable	code ex	ists if	$\varsigma = \sum_{k=0}^{K-1} \frac{-I_c}{2}$	_{sw} (a _k) ≤ 1	
Application:	a _i	$P(a_i)$	-log ₂ (<i>P</i> (<i>a_i</i>))	Code A	Code B	
	<i>a</i> ₁	0.5	1	0	0	
	a ₂	0.2	2.32	01	10	
	<i>a</i> ₃	0.2	2.32	10	110	
	a_4	0.1	3.32	111	111 5 = 1	
No	Not uniquely decodable $\zeta = 1.125$					
Thomas Wiegand: Digital Image Communication					rmation and Entropy 9	

Prefix-Free Codes

- Prefix-free codes are instantaneously and uniquely decodable
- Prefix-free codes can be represented by trees



- Terminal nodes may be assigned code words
- · Interior nodes cannot be assigned code words
- For binary trees: N terminal nodes: N-1 interior nodes
- Code 0, 01, 11 is not a prefix-free code and uniquely decodable but: non-instantaneous

Thomas Wiegand: Digital Image Communication

Huffman Code

- Design algorithm for variable length codes proposed by D. A. Huffman (1952) always finds a code with minimum redundancy.
- Obtain code tree as follows:
 - 1 Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol.
 - 2 Calculate the probability of the auxiliary symbol.
 - 3 If more than one symbol remains, repeat steps 1 and 2 for the new auxiliary alphabet.

from: Girod

- 4 Convert the code tree into a prefix code.
- Thomas Wiegand: Digital Image Communication Information and Entropy 11

Huffman Code: Example "11" p(7)=0,29 "1" p=0,57 <u></u>"1" "0" p(6)=0,28 "10" "01" p(5)=0,16 "1" "0" p(4)=0,14 "001" p=0,43 "0" "0001" p(3)=0,07 p=0,27 "0" "00001" p(2)=0,03 p=0,13 "0" p=0,06 "000001" p(1)=0,02 "0' Pick the two symbols with lowest probabilities "0" p=0,03 and merge them into a new auxiliary symbol.2 Calculate the probability of the auxiliary symbol. "000000" p(0)=0.01 If more than one symbol remains, repeat steps 1 and 2 for the new auxiliary alphabet.
 Convert the code tree into a prefix code. Thomas Wiegand: Digital Image Communication Information and Entropy 12

Joint Sources

- Joint sources generate N symbols simultaneously. A coding gain can be achieved by encoding those symbols jointly.
- The lower bound for the average code word length is the joint entropy:

 $H(U_1, U_2, \cdots, U_N) = -\sum_{u_1} \sum_{u_2} \cdots \sum_{u_N} P(u_1, u_2, \cdots, u_N) \cdot \log (P(u_1, u_2, \cdots, u_N))$

It generally holds that

 $H(U_1, U_2, \dots, U_N) \le H(U_1) + H(U_2) + \dots + H(U_N)$

with equality, if U_1 , U_2 , ..., U_N are statistically independent.

Thomas Wiegand: Digital Image Communication

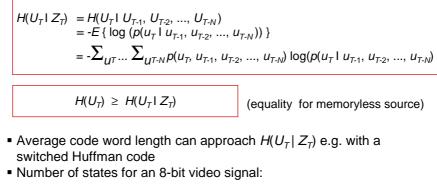
Information and Entropy 13

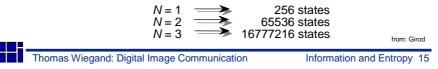
from: Girod

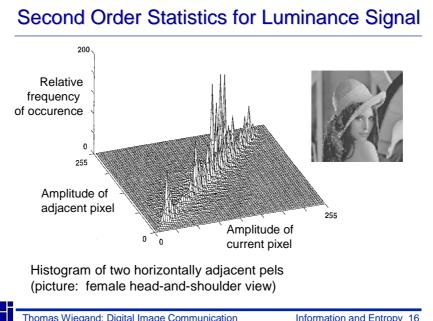
<section-header><section-header><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Entropy of Source with Memory

Markov source of order N: conditional entropy

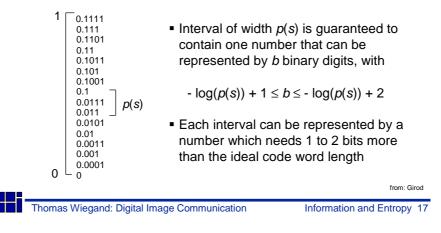






Arithmetic Coding

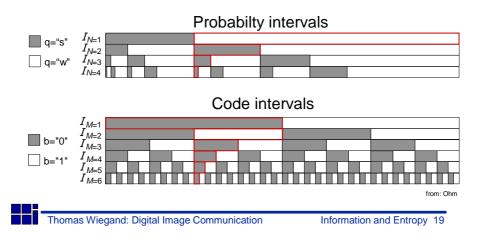
- Universal entropy coding algorithm for strings
- Representation of a string by a subinterval of the unit interval [0,1)
- Width of the subinterval is approximately equal to the probability of the string p(s)



Arithmetic Coding: Probability Intervals • Random experiment: pmf $p("s") = (0.01)_{b}$ and $p("w") = (0.11)_{b}$ "s" "s" "s" Symbol "w" "w" 40.010011 r 40.01000011 ▶ 0.01000011 1 0.0111 1 "w" "w' 'w "w" "w' "s" "s' "s" "s" "s" 0.01 0 ♦0.01 **→**0.01 ▶0.01 0.010000011 Multiplications and additions with (potentially) very long word length • Universal coding: probabilities can be changed on the fly: e.g., use p("s" | "s"), p("s" | "w"), p("w" | "s"), p("w" | "w") Thomas Wiegand: Digital Image Communication Information and Entropy 18

Arithmetic Encoding and Decoding

- Encoding: "w", "s", "s", "s" → 010000
- Decoding: 010 → "w", "s"



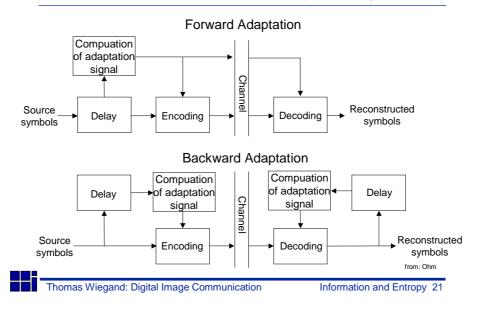
Adaptive Entropy Coding

- For non-adaptive coding methods: pdf of source must be known a priori (inherent assumption: stationary source)
- Image and video signals are not stationary: sub-optimal performance
- Solution: adaptive entropy coding
- Two basic approaches to adaptation:
 - 1. Forward Adaptation
 - · Gather statistics for a large enough block of source symbols
 - Transmit adaptation signal to decoder as side information
 - Drawback: increased bit-rate
 - 2. Backward Adaptation
 - · Gather statistics simultaneously at coder and decoder Drawback: error resilience
- Combine the two approaches and circumvent drawbacks (Packet based transmission systems)

Thomas Wiegand: Digital Image Communication

Information and Entropy 20

Forward vs. Backward Adaptive Systems



Summary

- Shannon's information theory vs. practical systems
- Source coding principles: redundancy & irrelevancy reduction
- Lossless vs. lossy coding
- Redundancy reduction exploits the properties of the signal source.
- Entropy is the lower bound for the average code word length.
- Huffman code is optimum entropy code.
- Huffman coding: needs code table.
- Arithmetic coding is a universal method for encoding strings of symbols.
- Arithmetic coding does not need a code table.
- Adaptive entropy coding: gains for sources that are not stationary