Information and Entropy

- Shannon's Separation Principle
- Source Coding Principles
- Entropy
- Variable Length Codes
- Huffman Codes
- Joint Sources
- Arithmetic Codes
- Adaptive Codes

Shannon's Separation Principle

Assumptions:

- Single source and user
- Unlimited complexity and delay

Practical Systems

Many applications are not point-to-point transmissions:

- Consider feedback
- Networks

In any practical system, we cannot effort unlimited complexity neither unlimited delay:

- There will always be a small error rate unless we tolerate sub-optimality
- It might work better to consider source and channel coding jointly
- Consider effect of transmission errors on source decoding result

Source Coding Principles

- The source coder shall represent the video signal by the minimum number of (binary) symbols without exceeding an acceptable level of distortion.
- Two principles are utilized:
- 1. Properties of the information source that are known a priori result in redundant information that need not be transmitted ("redundancy reduction").
- 2. The human observer does not perceive certain deviations of the received signal from the original ("irrelevancy reduction").
- Lossless coding: completely reversible, exploit 1. principle only
- Lossy coding: not reversible, exploit 1. and 2. principle

Entropy of a Memoryless Source

• Let a memoryless source be characterized by an ensemble U_0 with:

Alphabet { $a_0, a_1, a_2, ..., a_{K-1}$ } Probabilities { $P(a_0), P(a_1), P(a_2), ..., P(a_{K-1})$ }

• Shannon: information conveyed by message " a_k ":

 $I(a_k) = -\log\left(P(a_k)\right)$

"Entropy of the source" is the <u>average</u> information contents:

$$H(U_0) = E\{I(a_k)\} = -\sum_{k=0}^{K-1} P(a_k) * \log (P(a_k))$$

• For $[\log^{\circ} = [\log_{2}^{\circ}]$ the unit is bits/symbol

Entropy and Bit-Rate

• Properties of entropy:

 $H(U_0) \geq 0$

max { $H(U_0)$ } = log K with $P(a_j) = P(a_k)$ for all j, k

- The entropy $H(U_0)$ is a lower bound for the average word length I_{av} of a decodable variable length code
- Conversely, the average word length I_{av} can approach $H(U_0)$, if sufficiently large blocks of symbols are encoded jointly.
- Redundancy of a code:

$$r = I_{av} - H(U_0) \ge 0$$

Encoding with Variable Word Lengths

• A code without redundancy, i.e.

$$I_{av} = H(U_0)$$

is achieved, if all individual code word lengths

$$I_{cw}(a_k) = -\log\left(P(a_k)\right)$$

• For binary code words, all probabilities would have to be binary fractions:

$$P(a_k) = 2^{-I_{CW}(a_k)}$$

Redundant Codes: Example

a _i	$P(a_i)$	redundant code	optimum code
a ₁	0.500	00	0
<i>a</i> ₂	0.250	01	10
<i>a</i> ₃	0.125	10	110
<i>a</i> ₄	0.125	11	111
<i>H</i> (<i>U₀</i>) =1.75 bits		$I_{av} = 2$ bits r = 0.25 bits	l_{av} =1.75 bits r = 0 bits

Variable Length Codes

- Unique decodabilty: Where does each code word start or end
- Insert start symbol: 01.0.010.1. wasteful
- Construct prefix-free code
- Kraft Inequality: test for uniquely decodable codes

Uniquely decodable code exists if	$V = \sum_{k=0}^{K-1} \frac{-I_{cw}(a_k)}{2} \leq 1$
	N=0

Application

Application:	a _i	P(a _i)	$-\log_2(P(a_i))$	Code A	Code B	
	a ₁	0.5	1	0	0	
	<i>a</i> ₂	0.2	2.32	01	10	
	<i>a</i> ₃	0.2	2.32	10	110	
	a_4	0.1	3.32	111	111	
				V = 1.125	V = 1	
Not uniquely decodable					Uniquely deco	odable
homas Wiegand: Digital Image Communication				Information and Entropy 9		

Prefix-Free Codes

- Prefix-free codes are instantaneously and uniquely decodable
- Prefix-free codes can be represented by trees

- Terminal nodes may be assigned code words
- Interior nodes cannot be assigned code words
- For binary trees: *N* terminal nodes: *N*-1 interior nodes
- Code 0, 01, 11 is not a prefix-free code and uniquely decodable but: non-instantaneous

Huffman Code

- Design algorithm for variable length codes proposed by D. A. Huffman (1952) always finds a code with minimum redundancy.
- Obtain code tree as follows:
 - 1 Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol.
 - 2 Calculate the probability of the auxiliary symbol.
 - 3 If more than one symbol remains, repeat steps
 - 1 and 2 for the new auxiliary alphabet.
 - 4 Convert the code tree into a prefix code.

Huffman Code: Example

Joint Sources

- Joint sources generate *N* symbols simultaneously. A coding gain can be achieved by encoding those symbols jointly.
- The lower bound for the average code word length is the joint entropy:

$$H(U_1, U_2, \dots, U_N) = -\sum_{u_1} \sum_{u_2} \dots \sum_{u_N} P(u_1, u_2, \dots, u_N) \cdot \log (P(u_1, u_2, \dots, u_N))$$

• It generally holds that

$$H(U_1, U_2, \dots, U_N) \le H(U_1) + H(U_2) + \dots + H(U_N)$$

with equality, if U_1 , U_2 , ..., U_N are statistically independent.

Markov Process

 Neighboring samples of the video signal are **not** statistically independent:

Source with memory

 $P(u_T) \neq P(u_T \mid u_{T-1}, u_{T-2}, ..., u_{T-N})$

- A source with memory can be modeled by a Markov random process.
- Conditional *p* robabilities of the source symbols u_T of a Markov source of order *N*:

$$P(u_T \mid Z_T) = P(u_T \mid u_{T-1}, u_{T-2}, ..., u_{T-N})$$

state of the Markov source at time T from: Girod

Information and Entropy 14

Entropy of Source with Memory

• Markov source of order *N*: conditional entropy

$$\begin{split} H(U_T \mid Z_T) &= H(U_T \mid U_{T-1}, U_{T-2}, ..., U_{T-N}) \\ &= -E \, \{ \, \log \, (p(u_T \mid u_{T-1}, \, u_{T-2}, \, ..., \, u_{T-N})) \, \} \\ &= -\sum_{UT} \ldots \sum_{UT-N} p(u_T, \, u_{T-1}, \, u_{T-2}, \, ..., \, u_{T-N}) \, \log(p(u_T \mid u_{T-1}, \, u_{T-2}, \, ..., \, u_{T-N})) \, \} \end{split}$$

 $H(U_T) \geq H(U_T | Z_T)$

(equality for memoryless source)

- Average code word length can approach $H(U_T | Z_T)$ e.g. with a switched Huffman code.
- Number of states for an 8-bit video signal:

$$N = 1$$
 256 states $N = 2$ 65536 states $N = 3$ 16777216 states

Second Order Statistics for Luminance Signal

Histogram of two horizontally adjacent pels (picture: female head-and-shoulder view)

Arithmetic Coding

- Universal entropy coding algorithm for strings
- Representation of a string by a subinterval of the unit interval [0,1)
- Width of the subinterval is approximately equal to the probability of the string p(s)

 Interval of width p(s) is guaranteed to contain one number that can be represented by b binary digits, with

 $-\log(p(s)) + 1 \le b \le -\log(p(s)) + 2$

• Each interval can be represented by a number which needs 1 to 2 bits more than the ideal code word length

Arithmetic Coding: Probability Intervals

• Random experiment: pmf $p("s") = (0.01)_{b}$ and $p("w") = (0.11)_{b}$

• Multiplications and additions with (potentially) very long word length

- Universal coding: probabilities can be changed on the fly:
 - e.g., use p("s" I "s"), p("s" I "w"), p("w" I "s"), p("w" I "w")

Arithmetic Encoding and Decoding

- Encoding: "w", "s", "s", "s" → 010000
- Decoding: 010 → "w", "s"

Code intervals

Adaptive Entropy Coding

- For non-adaptive coding methods: pdf of source must be known a priori (inherent assumption: stationary source)
- Image and video signals are not stationary: sub-optimal performance
- Solution: adaptive entropy coding
- Two basic approaches to adaptation:
 - **1.Forward Adaptation**
 - Gather statistics for a large enough block of source symbols
 - Transmit adaptation signal to decoder as side information
 - Drawback: increased bit-rate
 - 2.Backward Adaptation
 - Gather statistics simultaneously at coder and decoder
 - Drawback: error resilience
- Combine the two approaches and circumvent drawbacks (Packet based transmission systems)

Forward vs. Backward Adaptive Systems

Summary

- Shannon's information theory vs. practical systems
- Source coding principles: redundancy & irrelevancy reduction
- Lossless vs. lossy coding
- Redundancy reduction exploits the properties of the signal source.
- Entropy is the lower bound for the average code word length.
- Huffman code is optimum entropy code.
- Huffman coding: needs code table.
- Arithmetic coding is a universal method for encoding strings of symbols.
- Arithmetic coding does not need a code table.
- Adaptive entropy coding: gains for sources that are not stationary