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Information and EntropyInformation and Entropy

• Shannon’s Separation Principle
• Source Coding Principles
• Entropy
• Variable Length Codes
• Huffman Codes
• Joint Sources
• Arithmetic Codes
• Adaptive Codes
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Shannon's Separation PrincipleShannon's Separation Principle

Assumptions:
• Single source and user
• Unlimited complexity and delay

Information 
Source

Source 
Coding

Channel 
Coding

Generates information 
we want to transmit or
store

Reduces number of 
bits to store or 
transmit relevant
information

Increases number of 
bits or changes them 
to protect against 
channel errors
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Many applications are not point-to-point transmissions:
• Consider feedback
• Networks

In any practical system, we cannot effort unlimited 
complexity neither unlimited delay:
• There will always be a small error rate unless we 

tolerate sub-optimality
• It might work better to consider source and channel 

coding jointly
• Consider effect of transmission errors on source 

decoding result

Practical SystemsPractical Systems
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Source Coding PrinciplesSource Coding Principles

• Lossless coding: completely reversible, exploit 1. principle only 
• Lossy coding: not reversible, exploit 1. and 2. principle

• The source coder shall represent the video signal by the minimum 
number of (binary) symbols without exceeding an acceptable level 
of distortion.

• Two principles are utilized:

1. Properties of the information source that are known a priori
result in redundant information that need not be transmitted 
(“redundancy reduction“). 

2. The human observer does not perceive certain deviations of 
the received signal from the original  (“irrelevancy reduction“).

from: Girod
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• Let a memoryless source be characterized by an ensemble U0 with:

• Shannon: information conveyed by message “ak“:

• “Entropy of the source“ is the average information contents:

• For „log“ = „log2“ the unit is bits/symbol

Entropy of aEntropy of a MemorylessMemoryless SourceSource

Alphabet { a0, a1, a2, ... ,aK-1 }

Probabilities { P(a0), P(a1), P(a2), ..., P(aK-1) }

I(ak) = - log (P(ak))

H(U0) = E{I(ak)} = -∑ P(ak) * log (P(ak))
k=0

K-1

from: Girod
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Entropy and BitEntropy and Bit--RateRate

• The entropy H(U0) is a lower bound for the average word length lav of 
a decodable variable length code

• Conversely, the average word length lav can approach H(U0), if 
sufficiently large blocks of symbols are encoded jointly.

• Redundancy of a code:

• Properties of entropy:

H(U0) ≥ 0

max { H(U0) } = log K with  P(aj) = P(ak) for all j, k

ρ = lav - H(U0) ≥ 0

from: Girod
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Encoding with Variable Word LengthsEncoding with Variable Word Lengths

• A code without redundancy, i.e.

is achieved, if all individual code word lengths

• For binary code words, all probabilities would
have to be binary fractions: 

lav = H(U0)

lcw(ak) = - log (P(ak))

P(ak) = 2-lcw(ak)

from: Girod
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Redundant Codes: ExampleRedundant Codes: Example

ai P(ai)

a1 0.500                  00                        0

redundant
code

optimum 
code

a2 0.250                  01                       10

a3 0.125                  10                      110

a4 0.125                  11                      111

lav= 2 bits
ρ = 0.25 bits

lav=1.75 bits
ρ = 0 bits

H(U0) =1.75 bits
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Variable Length CodesVariable Length Codes
• Unique decodabilty: Where does each code word start or end
• Insert start symbol: 01.0.010.1. wasteful
• Construct prefix-free code
• Kraft Inequality: test for uniquely decodable codes

Uniquely decodable code exists if            ς = ∑ 2            ≤ 1
k=0

K-1        - lcw(ak)

• Application:

a1 0.5             1 0                      0

a2 0.2             2.32                 01              10

a3 0.2             2.32                10               110

a4 0.1             3.32               111   111

ai P(ai )      -log2(P(ai))        Code A            Code B

ς = 1.125         ς = 1
Not uniquely decodable Uniquely decodable
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0

0

0

0

10

1

1

1 110

111

root
node

interior
node

terminal 
node

branch

• Terminal nodes may be assigned code words
• Interior nodes cannot be assigned code words
• For binary trees: N terminal nodes: N-1 interior nodes 

• Prefix-free codes are instantaneously and uniquely decodable
• Prefix-free codes can be represented by trees

• Code 0, 01, 11 is not a prefix-free code and uniquely decodable 
but: non-instantaneous

PrefixPrefix--Free CodesFree Codes



Thomas Wiegand: Digital Image Communication Information and Entropy  11

Huffman CodeHuffman Code
• Design algorithm for variable length codes proposed by 

D. A. Huffman (1952) always finds a code with minimum 
redundancy.

• Obtain code tree as follows:

1 Pick the two symbols with lowest probabilities 
and merge them into a new auxiliary symbol.   

2 Calculate the probability of the auxiliary symbol. 
3 If more than one symbol remains, repeat steps 

1 and 2 for the new auxiliary alphabet.
4 Convert the code tree into a prefix code.

from: Girod
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Huffman Code: Huffman Code: ExampleExample

p=0,03"0"
"1"

p=0,06
"0"

"1" p=0,13
"0"

"1" p=0,27
"0"

"1" p=0,43
"0"

"1"

p=0,57
"0"
"1"

"0"

"1"

p(7)=0,29

p(6)=0,28

p(5)=0,16

p(4)=0,14

p(3)=0,07

p(2)=0,03

p(1)=0,02

p(0)=0,01 

"11"

"10"

"01"

"001"

"0001"

"00001"

"000001"

"000000"
1 Pick the two symbols with lowest probabilities 

and merge them into a new auxiliary symbol.   
2 Calculate the probability of the auxiliary symbol. 
3 If more than one symbol remains, repeat steps 

1 and 2 for the new auxiliary alphabet.
4 Convert the code tree into a prefix code.

from: Ohm
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Joint SourcesJoint Sources

• Joint sources generate N symbols simultaneously. A coding gain can 

be achieved by encoding those symbols jointly. 

• The lower bound for the average code word length is the joint 

entropy:

• It generally holds that 

with equality, if U1, U2, ..., UN are statistically independent.

H U1, U2, ,UN = - P u1,u2, ,uN ⋅log P u1,u2, ,uN
uNu2u1

H U1, U2, ,UN ≤ H U1 + H U2 + + H UN

∑ ∑ ∑ ...

......

......

from: Girod

...
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• Neighboring samples of the video signal are not statistically 
independent:

Source with memory 

• A source with memory can be modeled by a Markov random process.
• Conditional p robabilities of the source symbols uT of a Markov source 

of order N:

Markov ProcessMarkov Process

P(uT | ZT) = P(uT I uT-1, uT-2, ..., uT-N)

state of the Markov source at time T

P(uT) ≠ P(uT I uT-1, uT-2, ..., uT-N)

from: Girod
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• Markov source of order N: conditional entropy

(equality  for memoryless source)

• Average code word length can approach H(UT | ZT)
e.g. with a switched Huffman code.

• Number of states for an 8-bit video signal:

Entropy of Source with MemoryEntropy of Source with Memory

N = 1 
N = 2 
N = 3

256 states 
65536 states 

16777216 states

H(UT I ZT) = H(UT I UT-1, UT-2, ..., UT-N )
= -E { log (p(uT I uT-1, uT-2, ..., uT-N )) }

= -ΣuT ... ΣuT-N p(uT, uT-1, uT-2, ..., uT-N) log(p(uT I uT-1, uT-2, ..., uT-N) 

H(UT) ≥ H(UT I ZT)

from: Girod
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Second Order Statistics for Luminance SignalSecond Order Statistics for Luminance Signal

Relative
frequency 

of occurence

Amplitude of
adjacent pixel

Amplitude of
current pixel 

Histogram of two horizontally adjacent pels 
(picture:  female head-and-shoulder view)
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• Universal entropy coding algorithm for strings
• Representation of a string by a subinterval of the unit interval  [0,1)
• Width of the subinterval is approximately equal to the probability of 
the string p(s)

Arithmetic CodingArithmetic Coding

0.1

0.01

0.11

0

0.001

0.011

0.101

0.111

0.0001

0.0011

0.0101

0.0111

0.1001

0.1011

0.1101

0

1

p(s)

0.1111
• Interval of width p(s) is guaranteed to 
contain one number that can be 
represented by b binary digits, with

- log(p(s)) + 1 ≤ b ≤ - log(p(s)) + 2

• Each interval can be represented by a 
number which needs 1 to 2 bits more 
than the ideal code word length

from: Girod
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“s“

“w“

“s“

“w“

“s“

“w“

“s“

“w“

“s“

“w“

0 0.01 0.01 0.01 0.01

1 1 0.0111 0.010011 0.01000011

• • •

Symbol  “w“ “s“ “w““s“ “s“

Arithmetic Coding: Probability IntervalsArithmetic Coding: Probability Intervals
• Random experiment: pmf  p(“s“) = (0.01)b and p(“w“) = (0.11)b

• Multiplications and additions with (potentially) very long word length
• Universal coding: probabilities can be changed on the fly:

e.g., use   p(“s“ I “s“), p(“s“ I “w“), p(“w“ I “s“), p(“w“ I “w“)

0.010000011

0.01000011
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Arithmetic Encoding and DecodingArithmetic Encoding and Decoding

IN=2

IN=1

IN=3

Code intervals

Probabilty intervals

b="0"

b="1"

q=“s"

q=“w"

I M=2

I M=1

I M=3

I M=5

I M=4

I M=6

N=4I

• Encoding: “w”, “s”, “s”, “s”è 010000
• Decoding: 010è “w”, “s”

from: Ohm
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Adaptive Entropy CodingAdaptive Entropy Coding
• For non-adaptive coding methods: pdf of source must be known a 

priori (inherent assumption: stationary source)
• Image and video signals are not stationary: sub-optimal 

performance
• Solution: adaptive entropy coding
• Two basic approaches to adaptation:

1.Forward Adaptation
- Gather statistics for a large enough block of source symbols
- Transmit adaptation signal to decoder as side information
- Drawback: increased bit-rate

2.Backward Adaptation
- Gather statistics simultaneously at coder and decoder
- Drawback: error resilience

• Combine the two approaches and circumvent drawbacks
(Packet based transmission systems)



Thomas Wiegand: Digital Image Communication Information and Entropy  21

Encoding

C
hannel

Decoding Reconstructed
symbols

Source
symbols

C
hannel

Compuation
of adaptation

signal

Delay

Compuation
of adaptation

signal
Delay

Encoding

Compuation
of adaptation

signal
Delay

Decoding Reconstructed
symbols

Forward Adaptation

Backward Adaptation

Forward vs. Backward Adaptive SystemsForward vs. Backward Adaptive Systems

Source
symbols

from: Ohm
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• Shannon’s information theory vs. practical systems
• Source coding principles: redundancy & irrelevancy reduction
• Lossless vs. lossy coding
• Redundancy reduction exploits the properties of the signal source.
• Entropy is the lower bound for the average code word length.
• Huffman code is optimum entropy code.
• Huffman coding: needs code table.
• Arithmetic coding is a universal method for encoding strings of 

symbols.
• Arithmetic coding does not need a code table.
• Adaptive entropy coding: gains for sources that are not stationary

SummarySummary


