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Abstract 
Long-term memory motion-compensated prediction 
extends the spatial displacement utilized in block-based 
hybrid video coding by a frame reference parameter 
permitting the use of many previously decoded pictu- 
res. This extension of the motion search range signi- 
ficantly increases the motion-compensated prediction 
gain. However, the amount of motion search related 
computation is significantly increased by the new ap- 
proach as well. Based on the triangle inequality, we 
investigate a modified motion search order especially 
suited for the long-term memory approach. The con- 
cept of half-pel refinement is incorporated into the new 
search ordering method. A hierarchy of triangle ine- 
qualities provides an additional speed-up at the cost of 
memory. It is demonstrated that lossy methods based 
on the hierarchy of triangle inequalities give additio- 
nal speed-ups a t  small losses of prediction gain. A t  
very minor losses in prediction gain, for the sequences 
Foreman, Mother-Daughter and Stefan a reduction in 
computation time by factors of 11.2, 8.1, and 3.6, re- 
spectively, is reported, when searching over 50 frames. 

1 Introduction 
The improved rate-distortion performance of long- 
term memory motion-compensating prediction has 
been shown by integrating long-term memory predic- 
tion into an H.263 codec [l, 21. The bit-rate savings 
achieved by using 50 instead of 1 frame in our rate- 
distortion optimized H.263-based video codec are 23 % 
for the sequence Foreman and 17 ?6 for the sequence 
Mother-Daughter [l]. The codec utilizes a sliding win- 
dow of past, decoded frames. Hence, if the long-term 
memory buffer comprises M frames, a decoded frame 
is searched M times in the block motion estimation of 
M successive frames. Therefore, any pre-computation 
associated with to a decoded frame in the long-term 
memory can be re-used A4 times to speed up motion 
estimation. 

Several methods are known to speed-up motion 
estimation that are based on mathematical inequali- 
ties [3,4]. These inequalities, e.g., the triangle inequa- 
lity, give a lower bound on the norm of the difference 
between vectors. In block matching, the search criteria 
very often used for the distortion are the sum of the ab- 
solute differences (SAD) or the sum of the squared dif- 
ferences (SSD) between the motion-compensated pre- 
diction C[Z, y] and the original signal s [ ~ ,  y] .  By incor- 
porating the triangle inequality into the sums for SAD 
and SSD, we obtain 

with p = 1 for SAD and p = 2 for SSD. Note that for 
p = 2, the inequality used in [4] differs from (1). Em- 
pirically, we have found little difference between those 
inequalities. For some blocks, the inequality used in 
[4] provides a more accurate bound whereas for other 
blocks the triangle inequality performs better. The 
set Z? comprises the sampling positions of the blocks 
considered, e.g., a block of 16 x 16 samples. 

Assume Dmin to be the smallest distortion va- 
lue previously computed in the block motion search. 
Then, the distortion D(s ,  c) of another block c in our 
search range is guaranteed to exceed Dmin if the lower 
bound of D(s ,  c) exceeds Dmin. More precisely, reject 
block c if 

B(s,c) 1 Dmin. (2) 

The special structure of the motion estimation pro- 
blem permits a fast method to compute the norm va- 
lues of all blocks c[~, 91 in the previously decoded fra- 
mes [3]. 
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2 Search Order 

M 1 
PSNR 1 T 

A small value for Dmin determined in the beginning of 
the search leads to the rejection of many other blocks 
later and thus reduces computation. Hence, the or- 
der in which the blocks in the search range are tested 
has a great impact on the computation time. For ex- 
ample, given the Huffman code tables for the motion 
vectors as prior information about our search space, 
the search ordering should follow increasing bit-rate 
for the motion vectors. This way, we maximize the 
probability to find a good match in the search at the 
beginning. A good approximation of these probabili- 
ties is a search spiral, as the one used in the test model 
for the H.263 standard [5]. Hence, for long-term me- 
mory motion search, a spiral ordering for each frame 
can be used when searching over the M frames in the 
long-term memory buffer. 

If a partial observation of the current block is 
available, the motion vector probability may differ si- 
gnificantly from these long-term statistics that were 
used to derive the Huffman codes. Much better gues- 
ses for the probability of finding a good match in 
the search space are given by the values of the block 
norms. More precisely, a block c[z, y] that has a norm 
similar to the block s[z, y] is very likely to be a good 
match. Hence, we propose to conduct the motion 
search in the order of the absolute differences between 
the norm of s[z, y] and the norms of the blocks in the 
search range c[z, y]. The norm-ordered search stops 
if (2) is violated. Thus, the algorithm does not even 
have to test those positions which cannot yield distor- 
tion values lower than the minimum previously found. 
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3 Half-Pel Refinement 

S 
NM 
N v  

When searching in spiral order over the M frames in 
the long-term memory buffer, the method we choose 
for half-pel refinement in [l] is the following: for each 
frame, find the best motion vector by full search on 
integer-pel positions using the spiral ordering followed 
by half-pel refinement, and determine the final motion 
vector by choosing among the motion vectors found for 
each frame. 

Using the norm-ordered search, the half-pel refi- 
nement procedure needs to be modified since we are 
no longer searching in all the frames in the long-term 
memory. Instead, we keep the best N integer-pel vec- 
tors found throughout the norm-ordered search and 
conduct the half-pel refinement procedure for these 
candidates. The final motion vector is determined by 
choosing among these half-pel refined candidates. 

In Table 1, several approaches to motion search 
using the triangle inequality are compared for three 

I I 

27.84 0.26 29.12 3.02 29.68 17.29 
27.85 0.26 29.15 1.90 29.72 9.94 
27.85 0.26 29.13 1.54 29.71 6.72 

F 40.46 0.20 
S 40.46 0.13 
NM 40.46 0.14 
N v  40.46 0.14 

41.07 2.27 41.27 15.66 
41.07 1.49 41.27 11.28 
41.09 1.51 41.27 9.57 
41.07 1.19 41.27 5.86 

S 
NM 

I 

20.37 I 0.46 21.16 5.45 22.16 28.83 
20.39 I 0.57 21.19 5.34 22.20 25.96 I NV I 20.39 I 0.57 I 21.18 I 4.74 I 22.18 I 21.12 

Table 1: Comparison of spiral-ordered full search, 
spiral-ordered search using the triangle inequality, and 
norm-ordered search while varying memory size over 1, 
10, 50 and the number of positions for half-pel refine- 
ment. The abbreviations are: M :  memory, F :  spiral- 
ordered full search, S: spiral-ordered search using the 
triangle inequality, NM : norm-ordered search using 
the triangle inequality when half-pel refining the M 
best integer-pel vectors, Nv : norm-ordered search 
using the triangle inequality when half-pel refining a 
variable number of best integer-pel vectors, where the 
numbers are N = 1 for M = 1, N = 5 for M = 10, 
and N = 10 for M = 50. The PSNR values in dB 
represent the prediction error variance. Higher values 
indicate smaller prediction errors. T stands for the 
computation time in seconds per frame. 
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In Table 1, full search ( F ) ,  is compared against 
three search methods using the triangle inequality. 
These methods are spiral-ordered search ( S ) ,  and two 
norm-ordered search methods ( N M  and N v ) .  Note, 
without loss in prediction efficiency (PSNR), the over- 
all computation time (T)  is reduced by a factor of up 
to 3.5 for the Foreman sequence for M = 50 when 
comparing the results for search methods F and N v .  
However, there is no benefit in using our method for 
M = 1 frame, indicating, that in our current im- 
plementation, the norm-ordering produces too much 
overhead. 

4 Multiple Triangle Inequalities 
Assume a partitioning of L3 into subsets B n ,  such that 

Nv 20.39 
H4 20.39 

"=U&, and n B n  = O .  (3) 
n n 

0.57 21.18 4.74 22.18 I 21.12 
0.57 21.18 4.59 22.18 I 20.91 

The triangle inequality (1) holds for all possible sub- 
sets &. Rewriting the formula for D(s,  c )  we obtain 

and applying the triangle inequality for each B, yields 

Note that (5) is a tighter lower bound than ( l ) ,  ho- 
wever, requires more computation. Hence, at this 
point we can trade-off the tightness of the lower bound 
against computational complexity. 

An important issue within this context is the best 
choice of the partitions Bn. In [4], it is proposed to 
partition a square 16 x 16 block in two different ways. 
The first partitioning produces 16 subsets Bn each 
being one of 16 lines containing 16 samples. The se- 
cond partitioning consists of 16 subsets &, each being 
one of 16 columns containing 16 samples. 

Note that the H.263 video coding standard permits 
blocks of size 16 x 16 and blocks of size 8 x 8 in the 
advanced prediction mode. Hence, we follow the ap- 
proach proposed in [6] where a 16 x 16 block is decom- 
posed into 4 different partitions. The 16 x 16 block is 
partitioned into 1 set of 16 x 16 samples, into 4 sub- 
sets of 8 x 8 samples, into 16 subsets of 4 x 4 samples 
and, into 64 subsets of size 2 x 2 samples. The various 
(subset) triangle inequalities are successively applied 

I I I 1 PSNR I T 1 PSNR I T 1 PSNR I T 
Foreman 
Nv I 27.85 1 0.26 I 29.13 I 1.54 I 29.71 1 6.72 
H4 I 27.85 I 0.22 I 29.13 I 1.11 I 29.71 I 4.73 
Mother-Dauahter 

0 

Nv 1 40.46 I 0.14 I 41.07 I 1.19 I 41.27 1 5.86 
N4 5.00 I 40.46 I 0.15 I 41.07 I 1.05 I 41.27 I 
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certain threshold, we measure distortion only on the 
2 x 2 block level of the triangle inequality hierarchy 
and never evaluate the distortion on the sample level. 
We found that if the samples on average change in 
the range of 1 - 2 intensity values, the search can be 
conducted on the 2 x 2 block level of the triangle in- 
equality hierarchy with very minor losses. Note that 
this lossy method only affects the integer-pel search 
and that we left the half-pel search unchanged for all 
experiments. 

Item 2, the reduction of the search space, is realized 
by early termination of the norm-ordered search. For 
that (2) is modified to 

I M  1 1 

where K is adapted to a value K 2 1. A heuristic 
to adapt to the variance of the norm histogram in the 
search range is to set Ii‘ = 150 . 1/L, where I is the 
number of searched positions checked so far, and L is 
the total number of positions in the search range. The 
number 150 has been obtained empirically. 
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H4 
N I  
N? 

I I ~~ 

I -  i PSNR I T I PSNR I T I PSNR 1 T 

27.85 0.22 29.13 1.11 29.71 4.73 
27.85 0.22 29.13 1.09 29.70 4.54 
27.61 0.15 28.99 0.63 29.62 2.19 

N2 
Nl2 

I I I I I I 

Ni2 I 27.61 I 0.15 I 28.99 I 0.61 I 29.62 I 2.11 

40.43 0.13 41.04 0.60 41.27 2.31 
40.42 0.12 41.02 0.52 41.26 1.92 

Mother-Dauahter 

N I  
N2 

N12 

I H4 1 40.46-1 0.15 I 41.07 I 1.05 I 41.27 I 5.00 I 
N I  I 40.45 I 0.14 I 41.03 I 0.86 I 41.26 I 4.10 

20.39 0.57 21.18 4.56 22.18 20.39 
20.28 0.28 21.11 2.02 22.14 8.51 
20.28 0.28 21.11 2.00 22.14 8.38 

Stefan 
I HA I 20.39 I 0.57 I 21.18 I 4.59 I 22.18 I 20.91 I 

Table 3: Comparison of the two lossy methods related 
to item 1 ( N I ) ,  item 2 (N2) ,  and their combination 
(N12). These three lossy search methods are compared 
to the values relating to method H4 in Tab. 2, i.e., the 
fastest non-lossy method. Otherwise the settings are 
the same as for Tables 1 and 2. 
Table 3 shows a comparison of the two lossy methods 
and the fastest non-lossy method. When applying the 
lossy method related to N I ,  we only obtain significant 
gains for Mother-Daughter. The results for method 
N2 show significant gains for all sequences, while the 
combination of the lossy methods N12 additionally im- 

proves for all sequences at very moderate PSNR los- 
ses. For the sequence Foreman, when searching over 
50 frames, at a PSNR loss of 0.09 dB (for method 
Nl2) a speed-up of 2.2 is achieved against the fastest 
non-lossy method (H4) and against full search ( F )  our 
method is 11.2 times faster. 

6 Final Remarks 
We also apply our fast search method when incorpora- 
ting a rate constraint into the minimization criterion 
for the motion estimation [l, 71. As in [7‘J, the compu- 
tation time decreases with increasingly weighted rate 
constraint. Also, when using distorted instead of origi- 
nal frames as reference frames we observe only a small 
increase in computation time which we also observe 
for the spiral search. At the cost of increased memory 
requirements, the methods described in this paper re- 
duce computation time for long-term memory motion 
search. At minor losses in PSNR, for the sequences 
Foreman, Mother-Daughter and Stefan, a reduction in 
computation time by factors of 11.2, 8.1, and 3.6, re- 
spectively, is reported, when searching over 50 frames. 
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