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Abstract

Long-term memory motion-compensated prediction
extends the spatial displacement utilized in block-based
hybrid video coding by a frame reference parameter
permitting the use of many previously decoded pictu-
res. This extension of the motion search range signi-
ficantly increases the motion-compensated prediction
gain. However, the amount of motion search related
computation is significantly increased by the new ap-
proach as well. Based on the triangle inequality, we
investigate a modified motion search order especially
susted for the long-term memory approach. The con-
cept of half-pel refinement is incorporated into the new
search ordering method. A hierarchy of triangle ine-
qualities provides an additional speed-up at the cost of
memory. It is demonstrated that lossy methods based
on the hierarchy of triangle inequalities give additio-
nal speed-ups at small losses of prediction gain. At
very minor losses in prediction gain, for the sequences
Foreman, Mother-Daughter and Stefan a reduction in
computation time by factors of 11.2, 8.1, and 3.6, re-
spectively, is reported, when searching over 50 frames.

1 Introduction

The improved rate-distortion performance of long-
term memory motion-compensating prediction has
been shown by integrating long-term memory predic-
tion into an H.263 codec [1, 2]. The bit-rate savings
achieved by using 50 instead of 1 frame in our rate-
distortion optimized H.263-based video codec are 23 %
for the sequence Foreman and 17 % for the sequence
Mother-Daughter [1]. The codec utilizes a sliding win-
dow of past, decoded frames. Hence, if the long-term
memory buffer comprises M frames, a decoded frame
is searched M times in the block motion estimation of
M successive frames. Therefore, any pre-computation
associated with to a decoded frame in the long-term
memory can be re-used M times to speed up motion
estimation.
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Several methods are known to speed-up motion
estimation that are based on mathematical inequali-
ties [3, 4]. These inequalities, e.g., the triangle inequa-
lity, give a lower bound on the norm of the difference
between vectors. In block matching, the search criteria
very often used for the distortion are the sum of the ab-
solute differences (SAD) or the sum of the squared dif-
ferences (SSD) between the motion-compensated pre-
diction ¢[z, y] and the original signal s[z, y]. By incor-
porating the triangle inequality into the sums for SAD
and SSD, we obtain
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with p = 1 for SAD and p = 2 for SSD. Note that for
p = 2, the inequality used in [4] differs from (1). Em-
pirically, we have found little difference between those
inequalities. For some blocks, the inequality used in
[4] provides a more accurate bound whereas for other
blocks the triangle inequality performs better. The
set B comprises the sampling positions of the blocks

considered, e.g., a block of 16 x 16 samples.

Assume D,,in to be the smallest distortion va-
lue previously computed in the block motion search.
Then, the distortion D(s, c) of another block ¢ in our
search range is guaranteed to exceed Dp;n if the lower
bound of D(s, ¢) exceeds Dyin. More precisely, reject
block ¢ if

D(s,¢) > Dpin. (2)

The special structure of the motion estimation pro-
blem permits a fast method to compute the norm va-
lues of all blocks e[z, y] in the previously decoded fra-
mes [3].
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2 Search Order

A small value for Dy;, determined in the beginning of
the search leads to the rejection of many other blocks
later and thus reduces computation. Hence, the or-
der in which the blocks in the search range are tested
has a great impact on the computation time. For ex-
ample, given the Huffman code tables for the motion
vectors as prior information about our search space,
the search ordering should follow increasing bit-rate
for the motion vectors. This way, we maximize the
probability to find a good match in the search at the
beginning. A good approximation of these probabili-
ties is a search spiral, as the one used in the test model
for the H.263 standard [5]. Hence, for long-term me-
mory motion search, a spiral ordering for each frame
can be used when searching over the M frames in the
long-term memory buffer.

If a partial observation of the current block is
available, the motion vector probability may differ si-
gnificantly from these long-term statistics that were
used to derive the Huffman codes. Much better gues-
ses for the probability of finding a good match in
the search space are given by the values of the block
norms. More precisely, a block ¢[z, y] that has a norm
similar to the block s[z, y] is very likely to be a good
match. Hence, we propose to conduct the motion
search in the order of the absolute differences between
the norm of s[z, y] and the norms of the blocks in the
search range c[z,y]. The norm-ordered search stops
if (2) is violated. Thus, the algorithm does not even
have to test those positions which cannot yield distor-
tion values lower than the minimum previously found.

3 Half-Pel Refinement

When searching in spiral order over the M frames in
the long-term memory buffer, the method we choose
for half-pel refinement in [1] is the following: for each
frame, find the best motion vector by full search on
integer-pel positions using the spiral ordering followed
by half-pel refinement, and determine the final motion
vector by choosing among the motion vectors found for
each frame.

Using the norm-ordered search, the half-pel refi-
nement procedure needs to be modified since we are
no longer searching in all the frames in the long-term
memory. Instead, we keep the best N integer-pel vec-
tors found throughout the norm-ordered search and
conduct the half-pel refinement procedure for these
candidates. The final motion vector is determined by
choosing among these half-pel refined candidates.

In Table 1, several approaches to motion search
using the triangle inequality are compared for three
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test sequences: Foreman, Mother-Daughter, and Ste-
fan. These sequences were chosen so as to represent
extreme cases among the publicly available test se-
quences.

The experiment conducted to produce the results
in Table 1 as well as all following results is to predict
blocks of size 16 x 16 in frames 200 to 299 of those se-
quences using M past original frames that are sampled
at 10 Hz. The motion search finds the corresponding
block in the M past frames in a spatial search range of
[—15..15] x [—15..15] that minimizes the SSD. When
computing the SSD of the 16 x 16 block, after each line
of 16 samples, the distortion computed so far is com-
pared against D,y;, and the current block is rejected if
Dppnin is exceeded. The experiments are conducted on
a 300 MHz Sun UltraSPARC, single processor, 1GB
RAM, Solaris 2.5. No VIS instructions are used. Note
that the results highly depend on the machine used.

M 1 10 50
PSNR| T [PSNR| T |PSNR| T
Foreman
F 27.84 |1 0.34 | 29.12 | 4.21 | 29.68 | 23.74
S 27.84 | 0.26 | 29.12 | 3.02 | 29.68 | 17.29
Npr | 2785 10.26 | 29.15 | 1.90 | 29.72 | 9.94
Ny | 27.85 [ 0.26 | 29.13 | 1.4 | 29.71 | 6.72
Mother-Daughter
F 40.46 | 0.20 | 41.07 | 2.27 | 41.27 | 15.66
S 40.46 | 0.13 | 41.07 | 1.49 | 41.27 | 11.28
Ny | 4046 | 0.14 | 41.09 | 1.51 | 41.27 | 9.57
Ny | 4046 | 0.14 | 41.07 | 1.19 | 41.27 | 5.86
Stefan
F 20.37 | 0.47 | 21.16 | 5.71 | 22.16 | 30.86
S 20.37 | 0.46 | 21.16 | 5.45 | 22.16 | 28.83
Npr | 20.39 | 0.57 | 21.19 | 5.34 | 22.20 | 25.96
Ny | 20.39 | 0.57 | 21.18 | 4.74 | 22.18 | 21.12
Table 1: Comparison of spiral-ordered full search,

spiral-ordered search using the triangle inequality, and
norm-ordered search while varying memory size over 1,
10, 50 and the number of positions for half-pel refine-
ment. The abbreviations are: M: memory, F': spiral-
ordered full search, S: spiral-ordered search using the
triangle inequality, Nas: norm-ordered search using
the triangle inequality when half-pel refining the M
best integer-pel vectors, Ny: norm-ordered search
using the triangle inequality when half-pel refining a
variable number of best integer-pel vectors, where the
numbers are N = 1 for M =1, N = 5 for M = 10,
and N = 10 for M = 50. The PSNR values in dB
represent the prediction error variance. Higher values
indicate smaller prediction errors. T stands for the
computation time in seconds per frame.



In Table 1, full search (F), is compared against
three search methods using the triangle inequality.
These methods are spiral-ordered search (.S), and two
norm-ordered search methods (Ny and Ny). Note,
without loss in prediction efficiency (PSNR), the over-
all computation time (T') is reduced by a factor of up
to 3.5 for the Foreman sequence for M = 50 when
comparing the results for search methods F and Ny .
However, there is no benefit in using our method for
M = 1 frame, indicating, that in our current im-
plementation, the norm-ordering produces too much
overhead.

4 Multiple Triangle Inequalities

Assume a partitioning of B into subsets B,, such that
B=|JB., (3)
n

The triangle inequality (1) holds for all possible sub-
sets B,,. Rewriting the formula for D(s, ¢) we obtain
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and applying the triangle inequality for each B, yields
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Note that (5) is a tighter lower bound than (1), ho-
wever, requires more computation. Hence, at this
point we can trade-off the tightness of the lower bound
against computational complexity.

An important issue within this context is the best
choice of the partitions B,. In [4], it is proposed to
partition a square 16 x 16 block in two different ways.
The first partitioning produces 16 subsets B, each
being one of 16 lines containing 16 samples. The se-
cond partitioning consists of 16 subsets By, each being
one of 16 columns containing 16 samples.

Note that the H.263 video coding standard permits
blocks of size 16 x 16 and blocks of size 8 x 8 in the
advanced prediction mode. Hence, we follow the ap-
proach proposed in [6] where a 16 x 16 block is decom-
posed into 4 different partitions. The 16 x 16 block is
partitioned into 1 set of 16 x 16 samples, into 4 sub-
sets of 8 x 8 samples, into 16 subsets of 4 x 4 samples
and, into 64 subsets of size 2 x 2 samples. The various
(subset) triangle inequalities are successively applied
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in the order of the computation time to evaluate them,
L.e., first the 16 x 16 triangle inequality is checked, then
the inequalities relating to blocks of size 8 x 8, 4 x 4,
and 2 x 2 samples are computed using (5).

Table 2 presents the comparison of the norm-
ordered search (Ny in Tab. 1) to the approach of addi-
tional comparisons on the 8 x 8, 4 x 4 and 2 x 2 block
level (Hs). Again, for M = 1 frames, the methods
proposed are not beneficial. However, as we search
over more frames such as M = 50, a speed-up factor
of 1.4 against the norm-ordered search (Ny) and 5.0
against full search (method F' in Tab. 1) is achieved
for the sequence Foreman.

M 1 10 50
PSNR| T [PSNR| T [PSNR]| T

Foreman

Ny | 27.85 | 0.26 | 29.13 | 1.54 | 29.71 | 6.72

H, | 2785 | 0.22 | 29.13 | 1.11 | 29.71 | 4.73

Mother-Daughter

Ny | 40.46 | 0.14 | 41.07 | 1.19 | 41.27 | 5.86

H, | 40.46 | 0.15 | 41.07 | 1.05 | 41.27 | 5.00

Stefan

Ny | 20.39 | 0.57 | 21.18 | 4.74 | 22.18 | 21.12

Hy | 2039 | 0.57 | 21.18 | 4.59 | 22.18 | 20.91

Table 2: Comparison of the norm-ordered search (Ny
in Tab. 1) to the approach of additional comparisons
on the 8 x 8, 4 x 4 and 2 x 2 block level (H4). The
experimental settings and abbreviations are the same
as for Tab. 1.

5 Lossy Search Methods Using the Tri-

angle Inequality

In many applications the computation time available
is very often not sufficient to conduct a full block mo-
tion search. Hence, the computation time needs to be
reduced, which, in general, results in a reduced pre-
diction gain. Two ideas have mainly been emphasized
in the context of lossy search methods:

1. sub-sampling of the block for which distortion is
measured and

2. reduction of the search range.

Item 1 reduces the computation time to check a par-
ticular block by evaluating the distortion criterion on
a smaller amount of samples. When using a hierarchy
of triangle inequalities, the sub-sampling can be incor-
porated by stopping at a certain level in the hierarchy.
We adapt the level in the hierarchy by measuring the
amount of activity in the block for which the motion
search is conducted. The activity is measured as the
sum of the absolute differences of neighboring samp-
les. Then, if the mean activity measure is below a



certain threshold, we measure distortion only on the
2 x 2 block level of the triangle inequality hierarchy
and never evaluate the distortion on the sample level.
We found that if the samples on average change in
the range of 1 — 2 intensity values, the search can be
conducted on the 2 x 2 block level of the triangle in-
equality hierarchy with very minor losses. Note that
this lossy method only affects the integer-pel search
and that we left the half-pel search unchanged for all
experiments.

Item 2, the reduction of the search space, is realized
by early termination of the norm-ordered search. For
that (2) is modified to

D(s,¢) - K > Dpin, (6)

where K is adapted to a value K > 1. A heuristic
to adapt to the variance of the norm histogram in the
search range is to set K = 150 -1/L, where [ is the
number of searched positions checked so far, and L is
the total number of positions in the search range. The
number 150 has been obtained empirically.

M 1 10 50
PSNR|[ T |[PSNR| T [PSNR| T
Foreman
Hy | 2785 [ 0.22 | 29.13 | 1.11 | 29.71 | 4.73
Ny | 2785 0.22 | 29.13 | 1.09 | 29.70 | 4.54
Ny 1 27.61 | 0.15 | 28.99 | 0.63 | 29.62 | 2.19
Nis | 2761 | 0.15 | 28.99 | 0.61 | 29.62 | 2.11
Mother-Daughter
H, | 4046 | 0.15 | 41.07 | 1.05 | 41.27 | 5.00
Ny | 4045 | 0.14 | 41.03 | 0.86 | 41.26 | 4.10
N, | 40.43 | 0.13 | 41.04 | 0.60 | 41.27 | 2.31
Niz | 4042 | 0.12 | 41.02 | 0.52 | 41.26 1.92
Stefan
Hy | 2039 | 0.57 | 21.18 | 459 | 22.18 | 20.91
Ny | 2039 | 0.57 | 21.18 | 4.56 | 22.18 | 20.39
Ny | 20.28 | 0.28 | 21.11 | 2.02 | 22.14 | 8.1
Nip | 20.28 | 0.28 | 21.11 | 2.00 | 22.14 | 8.38

Table 3: Comparison of the two lossy methods related
to item 1 (Np), item 2 (N3), and their combination
(N12). These three lossy search methods are compared
to the values relating to method Hy in Tab. 2, i.e., the
fastest non-lossy method. Otherwise the settings are
the same as for Tables 1 and 2.

Table 3 shows a comparison of the two lossy methods
and the fastest non-lossy method. When applying the
lossy method related to Ny, we only obtain significant
gains for Mother-Daughter. The results for method
N3 show significant gains for all sequences, while the
combination of the lossy methods Ny, additionally im-
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proves for all sequences at very moderate PSNR los-
ses. For the sequence Foreman, when searching over
50 frames, at a PSNR loss of 0.09 dB (for method
Ni2) a speed-up of 2.2 is achieved against the fastest
non-lossy method (H,) and against full search (F') our
method is 11.2 times faster.

6 Final Remarks

We also apply our fast search method when incorpora-
ting a rate constraint into the minimization criterion
for the motion estimation [1, 7]. As in [7], the compu-
tation time decreases with increasingly weighted rate
constraint. Also, when using distorted instead of origi-
nal frames as reference frames we observe only a small
increase in computation time which we also observe
for the spiral search. At the cost of increased memory
requirements, the methods described in this paper re-
duce computation time for long-term memory motion
search. At minor losses in PSNR, for the sequences
Foreman, Mother-Daughter and Stefan, a reduction in
computation time by factors of 11.2, 8.1, and 3.6, re-
spectively, is reported, when searching over 50 frames.
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