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we assume vector quantizers (VQ) to be used for quan- 
tization. From the received layers the decoder can re- 
construct the different spatial resolutions as shown. 

In contrast to OL-coding, CL-coding uses the al- 
ready reconstructed signals for interpolation. There- 
fore, the layer bandpass signals contain additional 
quantization noise introduced by the quantizer of the 
lower resolution layer. Although the overall quanti- 
zation noise can be controlled by the last quantizer, 
its R - D performance strongly depends on the num- 
ber of bits allocated to the previous quantizers. This 
is the reason why finding optimal bit allocations for 
CL-coders is quite a complex task [4]. 

In this paper, we first present simple Gaussian 
R - D models for OL- and CL-coding where we as- 
sume high bit-rate, fine quantization coding. F’rom 
these models, we derive general solutions to the bit al- 
location problem for OL- and CL-coding.’ This allows 
us to compare the performance of both coding approa- 
ches. In the optimal case, CL- outperforms OL-coding 
although distortion in lower resolution layers of the 
CL-codec may become rather high which is undesira- 
ble in scalable coding applications. In this case a good 
solution is to use an optimal OL-coder bit allocation 
for CL-coding. 

2 Open-loop coding 
Fig. 2 shows a model where we have replaced the 

quantizers of an OL-coder by additive white noise. We 
neglect the quantization of the lowpass layer which is 
generally very fine and has little influence on the R-D 
functions of the higher resolution layers. The overall 
mean squared error distortion in the full resolution 
layer 0 is computed as sum of the noise variances con- 
tributed by the quantizers within the different layers. 

lThe calculations which lead to the solutions given in Eqs. 
(2) and (4) can be found at: http://www-nt.e-technik.uni- 
erlangen.de/-wiegand/icip97-proof.ps.g~ 

http://www-nt.e-technik.uni
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Figure 1: N-layer pyramid codec 
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The noise contributions are modeled by weighting the 
quantization noise d l ( r l )  in layer I by an appropriate 
factor a1 which depends on 1 and the chosen interpo- 
lation filter. Note that 01 corresponds to the power 
transfer factor (PTF, [5] )  of the interpolation filter 
and that a. = 1. If we assume a Gaussian source, 
we obtain for an L-layer decomposition the following 
overall distortion and rate equations: 

L-1 

DOL(R) = al . gz . .I" . 2-2rl (1) 
k 0  
L-1 

R = E n 1  - r l .  
1=0 

Here g1 takes into account the spectral flatness [5] 
and the 01" are the variances of the various interpola- 
tion error signals. nz = Nl/No is defined as the ratio 
between NZ the number of samples in layer 1 and NO 
the number of samples in the full resolution layer 0. 
The redundancy of the oversampled decomposition is 
therefore expressed by M = CL-' n1. 
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Figure 2: Open-loop model 

We can solve the bit allocation problem like for cri- 
tically sampled subband coding schemes [6] and obtain 
as solution 

which is quite similar to the well-known solution for 
critically sampled subband coding schemes. Our so- 
lution is more general because it can also deal with 
oversampled decompositions. 

3 Closed-loop coding 
Fig. 3 shows the corresponding model for CL- 

coding. Due to noise-feedback, filtered noise intro- 
duced by the previous quantizer is added to the band- 
pass signal before quantization. If we neglect that g1 
depends on ~ 1 + 1 ,  . . . , r L - 1 ,  the overall distortion in the 
closed-loop case is: 

I=O 

R is computed as in Eq. 1. We can find an analytical 
solution to the corresponding bit allocation problem 
as: 

18 



II 

ers can become quite high 
ion distortion which is un- 

ications. As shown in 
to this problem is to the next section, a 

use an optimal ope 

bit allocation and 
decomposition acc 

g methods for a three layer 
to the models given above. 

26 

24 

22 

20 

3 
Zl8 
z 

18 

14 

12 

0 02 04 06 08 1 12 14 16 1.8 2 
10 

R PPPl 

Figure 4: Different bit allocation and coding methods 

optimal bit allocation according to  Eq. 4 and opti- 
mal OL-coder bit allocation used for CL-coding. Note 
that the first and the third case lead to identical re- 
sults for layer 1. The following parameters are used: 
ai = 0.054, a: = 0.061,go = g1 = 1, a = 0.39. The 
variances are obtained from a decomposition of the 
first frame of the CIF video test sequence 'Students', 
normalized to the energy contained in the full reso- 
lution input signal. The value of ct corresponds to 
the PTF of an interpolation filter which is used in an 
existing pyramid codec implementation [3] and given 
later in this section. 

As can been seen from Fig. 4, CL-coding with opti- 
mal bit allocation gives the best performance in layer 
0 but the worst in layer 1. The gain obtained from 
CL-coding compared to OL-coding increases with in- 
creasing overall rate. 

The disadvantage of optimal CL-coder bit alloca- 
tions is, that lower resolution layers are coded with 
rather high distortion. As can be seen, using optimal 
OL-coder bit allocation for CL-coding is a good com- 
promise. Distortion in layer 1 decreases dramatically, 
while the overall distortion in layer 0 increases by only 
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Figure 5: Comparison by a coding experiment 

a small amount. 

Fig. 5 shows results obtained by a coding experi- 
ment where compression is achieved by an E8-lattice 
vector quantizer followed by entropy-coding. We use 
[f 31 as downsampling and [fi$$] as interpolation 
filter both applied separately in horizontal and verti- 
cal direction [3]. The optimal solutions are found by 
tracing the convex hull of D ( R )  for layer 0 for more 
than 1000 considered bit allocations. The R - D  beha- 
vior of the different bit allocation and coding methods 
is quite similar to that predicted from our theoreti- 
cal models. Since we have assumed gz = 1 for the 
plots of Fig. 4 and since a lattice vector quantizer is 
used for the coding experiments, absolute distortion 
values for a given rate differ from the model predic- 
tions. Again it can be seen that at higher bitrates 
CL-coding outperforms OL-coding. By using optimal 
OL-coder allocations for CL-coding the overall perfor- 
mance becomes no more than 0.2 dB worse compared 
to optimal CL-coding. 

5 Conclusion 
By using simplified models for pyramid coders ba- 

sed on a Gaussian R - D model, analytical solutions 
for the optimal bit allocation problem in open-loop as 
well as in closed-loop pyramid coders can be obtai- 
ned. A comparison between optimal closed-loop and 
open-loop coding shows that closed-loop outperforms 
open-loop coding in the full resolution layer. The dis- 
advantage of closed-loop optimal bit allocations is that 
lower resolution layers are encoded with only a few 
bits independent of the overall bitrate. This is un- 
desirable for scalable coding. A good heuristic is to 
use optimal open-loop bit allocations for closed-loop 
coding. The overall performance decreases only by a 
small amount. Real coding experiments show the use- 
fulness of the presented models and the derived bit 
allocation heuristic for closed-loop coding. 

References 
M.K. Uz, M. Vetterli, and D.J. LeGall. Interpola- 
tive multiresolution coding of advanced television 
with compatible subchannels. IEEE Trans. on Cir- 
cuits and Systems for Video Technology, 1(1):86- 
99, Mar. 1991. 

B. Girod, U. Horn, and Ben Belzer. Scalable vi- 
deo coding with multiscale motion compensation 
and unequal error protection. In Y. Wang, S. Pan- 
war, s.-P. Kim, and H. L. Bertoni, editors, Multi- 
media Communications and Video Coding, pages 
475-482. Plenum Press, New York, Oct. 1996. 

U. Horn and B. Girod. Performance analysis of 
multiscale motion compensation techniques in py- 
ramid coders. In Proc. ICIP’96, volume 111, pages 
255-258, 1996. 

K. Ramchandran, A. Ortega, and M. Vetterli. Bit 
allocation for dependent quantization with appli- 
cations to multiresolution and MPEG video co- 
ders. IEEE Trans. on Signal Processing, 3(5):533- 
545, Sep. 1994. 

N.S. Jayant and P. Noll. Digital Coding of Wawe- 
forms. Prentice-Hall, Englewood Cliffs, New Jer- 
sey, 1984. 

J.W. Woods (ed.). Subband Image Coding. Kluwer 
Academic Publishers, Boston, 1991. 

L. Alparone. Quantization noise feedback in La- 
placian pyramid-based image coding: A rate- 
distortion approach. In Proc. IEEE DSP 97, pages 
849-852, Santorini, Jul. 1997. 

20 


