
Proofs for the Optimum Bit Allocation Rules

In this document we state the calculations which lead to the optimum bit allocation rules

given by Eq. (2) for open-loop (OL) coding and Eq. (3) for closed-loop (CL) coding in

U. Horn, T. Wiegand, and B. Girod: \Bit Allocation Methods for Closed-Loop Coding

of Oversampled Pyramid Decompositions", to be published in Proceedings of the IEEE

International Conference on Image Processing, 26-29 October 1997, Santa Barbara, USA.

1 Optimum Bit Allocation for Open-Loop Coding

Allocating rates rl to layers 0 � l � L � 1 and assuming a Gaussian source, the Eq. for

the distortion in the open-loop case DOL is given as

DOL(rl) =
L�1X
l=0

�0

l � 2
�2rl (1)

with �0

l = �l � gl ��
2

l , where �l is a factor which represents the power transfer factor of the

cascade of l interpolation �lters, gl expresses the spectral 
atness, and �2l is the variance

of the interpolation error signal in layer l. The bit allocation problem can be stated as

min
rl

DOL(rl) = min
rl

 
L�1X
l=0

�0

l � 2
�2rl

!
subject to

L�1X
l=0

nl � rl � R; (2)

where we minimize the distortion DOL subject to a rate-constraint R. nl = Nl=N0 is

de�ned as the ratio between Nl the number of samples in layer l and N0 the number

of samples in the full resolution layer 0. By introducing a Lagrange multiplier �, the

constrained minimization problem (2) becomes an unconstrained one

min
rl

JOL(rl) = min
rl

 
L�1X
l=0

�0

l � 2
�2rl + �

L�1X
l=0

nl � rl

!
: (3)

By assuming our variables being continuous d(rl); rl 2 IR and always di�erentiable, we

obtain the necessary conditions for optimality by setting the partial derivates subject to

rl to zero

@JOL(rl)

@rl
= (�2) � ln 2 � �0

l � 2
�2rl + �nl

!
= 0; 8l : 0 < l < L� 1 (4)

From the necessary condition (4), the optimum bit allocation rl for layer l can be written

as

rl =
1

2
log2

 
�0

l

nl

2 � ln 2

�

!
=

1

2
log2

�0

l

nl
�

1

2
log2

�

2 � ln 2
(5)

Since our variables are continuous, we can change the inequality for the rate-constraint

into an equality

R =
L�1X
l=0

nl � rl: (6)
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and eliminate the dependency of rl on the Lagrange multiplier �. For that, we plug (5)

into (6) yielding

R =
L�1X
k=0

nk �

 
1

2
log

2

�0

k

nk
�

1

2
log

2

�

2 � ln 2

!
(7)

The term containing � is independent of the summing index k. Hence, (7) can be written

R =
L�1X
k=0

nk �
1

2
log2

�0

k

nk
�
M

2
log2

�

2 � ln 2
: (8)

with M =
PL�1

k=0 nk representing the redundancy of the oversampled decomposition. Eli-

minating the term that contains � and dividing both sides by M we get

�
1

2
log2

�

2 � ln 2
=

R

M
�

1

M

L�1X
k=0

nk �
1

2
log2

�0

k

nk
: (9)

Plugging the left hand side of (9) into (5) yields

rl =
1

2
log2

�0

l

nl
+

R

M
�

1

M

L�1X
k=0

nk �
1

2
log2

�0

k

nk

=
R

M
+

1

2
log2

�0

l

nl
�

L�1X
k=0

1

2
log2

 
�0

k

nk

!n
k

M

which we can recast as

rl =
R

M
+

1

2
log2

�l � gl � �
2

l =nlQL�1
k=0 (�k � gk � �

2

k=nk)
n
k

M

; (10)

remembering that �0

l = �l � gl � �
2

l .

2 Optimum Bit Allocation for Closed-Loop Coding

In contrast to open-loop coding, the distortion at each layer l is dependent on the dis-

tortion introduced in layers l + 1; � � � ; L � 1 due to the noise-feedback. Thus, the overall

distortion for closed-loop (CL) coding DCL(rl) is given as

DCL(rl) =
L�1X
l=0

�0

l

lY
k=0

2�2rk ; (11)

In contrast to open-loop coding, we set �0

l = �l � gl � �
2

l , where � is the power transfer

factor of the interpolation �lter. At this point, we assume that the spectral 
atness values

gl are independent of the rates rl+1; � � � ; rL�1. Similar to open-loop coding we formulate

the bit allocation problem as a unconstrained optimization problem

min
rl

JCL(rl) = min
rl

 
L�1X
l=0

�0

l

lY
k=0

2�2rk + �
L�1X
l=0

nl � rl

!
: (12)
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The necessary conditions for optimum bit allocation are

@JCL(rl)

@rl
=

L�1X
i=l

�0

i

iY
k=0

(�2) � ln 2 � 2�2rk + �nl
!
= 0 8l : 0 � l < L � 1: (13)

By letting the sum start at i = l + 1, Eq. (13) can also be written as

�0

l

lY
k=0

(�2) � ln 2 � 2�2rk +
L�1X
i=l+1

�0

i

iY
k=0

(�2) � ln 2 � 2�2rk + �nl = 0: (14)

Substituting l! l + 1 in Eq. (13), the necessary condition for layer l + 1 becomes

L�1X
i=l+1

�0

i

iY
k=0

(�2) � ln 2 � 2�2rk + �nl+1 = 0 8l : 0 � l < L � 2: (15)

Subtracting (14) - (15) yields

�0

l

lY
k=0

�2�2rk =
�

2 � ln 2
(nl � nl+1) 8l : 0 � l < L� 2: (16)

By substituting l! l � 1, Eq. (16) reads

�0

l�1

l�1Y
k=0

�2�2rk =
�

2 � ln 2
(nl�1 � nl) 8l : 1 < l < L� 1: (17)

Dividing Eq. (16) by Eq. (17) yields

�0

l

�0

l�1

2�2rl =
nl � nl+1

nl�1 � nl
8l : 1 < l < L� 2; (18)

where nl�1 � nl 6= 0 must hold. At this point, the Lagrange multiplier vanishes thus

making bit allocation for layers 1 : : : L � 2 (and for layer L � 1 as we will show later)

independent of the overall bit-rate R. Eliminating (18) for rl leads us to

rl =
1

2
log2

 
�0

l

�0

l�1

�
nl�1 � nl

nl � nl+1

!
8l : 1 < l < L� 2: (19)

Note, that the argument of the logarithm should be a positive value, i.e.,

nn � nl+1

nl�1 � nl
> 0 8l : 1 < l < L� 2: (20)

Final questions are raised with regards to bit allocation in layers 0 and L� 1. The latter,

is easily answered by de�ning nL = 0. With that, Eq. (19) is also valid for layer L � 1.

Having derived the bit allocation rules for layers 1 : : : L � 1, the bit allocation rule for

layer 0 is no more a free parameter, when having the rate-constraint given by Eq. (6).

Hence, the optimum bit allocation rules for closed-loop coding can be written as

rl =

8>><
>>:

1

2
log2(

��gl��
2
l

gl�1��
2
l�1

� wl); l > 0

R �
PL�1

l=1 nl � rl; l = 0

(21)

wl =

8><
>:

nl�1�nl
nl�nl+1

;
nl�1�nl
nl�nl+1

> 0

1; nl = nl�1 = nl+1

; nL = 0
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