Proofs for the Optimum Bit Allocation Rules

In this document we state the calculations which lead to the optimum bit allocation rules

given by Eq. (2) for open-loop (OL) coding and Eq. (3) for closed-loop (CL) coding in

U. Horn, T. Wiegand, and B. Girod: “Bit Allocation Methods for Closed-Loop Coding
of Oversampled Pyramid Decompositions”, to be published in Proceedings of the IFFE
International Conference on Image Processing, 26-29 October 1997, Santa Barbara, USA.

1 Optimum Bit Allocation for Open-Loop Coding

Allocating rates r; to layers 0 <[ < L — 1 and assuming a Gaussian source, the Eq. for
the distortion in the open-loop case Dgy is given as
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with o] = a;- g/ - o}, where o is a factor which represents the power transfer factor of the
cascade of [ interpolation filters, g; expresses the spectral flatness, and o7 is the variance
of the interpolation error signal in layer [. The bit allocation problem can be stated as
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where we minimize the distortion Dgj, subject to a rate-constraint R. n; = N;/Ny is

defined as the ratio between N; the number of samples in layer [ and Ny the number
of samples in the full resolution layer 0. By introducing a Lagrange multiplier A, the
constrained minimization problem (2) becomes an unconstrained one
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By assuming our variables being continuous d(r;),r; € IR and always differentiable, we
obtain the necessary conditions for optimality by setting the partial derivates subject to

r; to zero
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From the necessary condition (4), the optimum bit allocation r; for layer [ can be written
as
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Since our variables are continuous, we can change the inequality for the rate-constraint
into an equality
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and eliminate the dependency of r; on the Lagrange multiplier A. For that, we plug (5)
into (6) yielding
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The term containing A is independent of the summing index k. Hence, (7) can be written
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with M = k=) ny representing the redundancy of the oversampled decomposition. Eli-
minating the term that contains A and dividing both sides by M we get

A R 1 L=t o,

1
5 10g2 m —_— = — Z ng - 10g2 e . (9)

Plugging the left hand side of (9) into (5) yields
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which we can recast as
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remembering that o] = o - g; - 0.

2 Optimum Bit Allocation for Closed-Loop Coding

In contrast to open-loop coding, the distortion at each layer [ is dependent on the dis-
tortion introduced in layers [ + 1,---, L — 1 due to the noise-feedback. Thus, the overall
distortion for closed-loop (CL) coding D¢y () is given as
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In contrast to open-loop coding, we set o/ = o' - g; - 0?, where a is the power transfer
factor of the interpolation filter. At this point, we assume that the spectral flatness values
g; are independent of the rates rj1q,---,rz_1. Similar to open-loop coding we formulate
the bit allocation problem as a unconstrained optimization problem
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The necessary conditions for optimum bit allocation are
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By letting the sum start at ¢ = [+ 1, Eq. (13) can also be written as
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Substituting { — [ 4+ 1 in Eq. (13), the necessary condition for layer [ + 1 becomes
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Subtracting (14) - (15) yields
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By substituting [ — [ — 1, Eq. (16) reads
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Dividing Eq. (16) by Eq. (17) yields
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where n;_; — n; # 0 must hold. At this point, the Lagrange multiplier vanishes thus
making bit allocation for layers 1...L — 2 (and for layer L — 1 as we will show later)
independent of the overall bit-rate R. Eliminating (18) for r; leads us to
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Note, that the argument of the logarithm should be a positive value, i.e.,
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Final questions are raised with regards to bit allocation in layers 0 and L — 1. The latter,
is easily answered by defining n; = 0. With that, Eq. (19) is also valid for layer L — 1.
Having derived the bit allocation rules for layers 1...L — 1, the bit allocation rule for
layer 0 is no more a free parameter, when having the rate-constraint given by Eq. (6).
Hence, the optimum bit allocation rules for closed-loop coding can be written as
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