
EQUALIZERS FOR TRANSMULTIPLEXERS IN

ORTHOGONAL MULTIPLE CARRIER DATA

TRANSMISSION

Thomas Wiegand1 and Norbert J. Fliege2

1Telecommunications Institute
University of Erlangen-Nuremberg

Cauerstr. 7/NT, 91058 Erlangen, Germany
wiegand@nt.e-technik.uni-erlangen.de

2Telecommunications Institute
Hamburg University of Technology

Eissendorfer Str. 40, 21071 Hamburg, Germany
fliege@tu-harburg.d400.de

ABSTRACT

Orthogonal multiple carrier data transmission systems
are e�ciently realized using modi�ed DFT transmulti-
plexer �lter banks. In data transmission applications, a
non-ideal transmission channel causes distortions such
as intersymbol interference and crosstalk between the
subrate bands of the transmultiplexer. Hence, in order
to equalize these distortions, subband equalizers, which
a�ect the intersymbol interference and crosstalk beha-
vior, are considered for implementation. The special
structure of modi�ed DFT transmultiplexers requires a
discussion concerning the various possibilities of placing
the subband equalizers at the receiver. Wiener solutions
and LMS adaptive algorithms for various new subband
equalizer structures are derived and compared by means
of simulation results.

1 INTRODUCTION
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In [1] a novel orthogonal multiple carrier (OMC) data
transmission system is presented, which is based on
a computationally e�cient implementation of a modi-
�ed DFT (MDFT) transmultiplexer �lter bank. The
MDFT transmultiplexer �lter bank provides almost per-
fect reconstruction, i.e. intersymbol interference within
the subbands and crosstalk between the subbands can
be kept arbitrarily small [2].
In order to accomplish almost perfect reconstruction,

the �lters employed in an M -band MDFT �lter bank
are computed using a linear phase prototype FIR �lter
h(n), which produces by convolution with itself a linear
phase impulse response, that satis�es the Nyquist crite-
rion each n = mM samples. Furthermore, the prototype
�lter is modulated, resulting in linear phase impulse re-
sponses

g�(n) = M � h(n)ej
�n; � = 0; 1; 2:::M � 1 (1)

for the synthesis �lters as well as for the analysis �lters

h�(n) = h(n)ej
�n; � = 0; 1; 2:::M � 1 (2)

with 
� = �2�=M and 
� = �2�=M . By restricting the
bandwidth of h(n) to the normalized cuto� frequency

2�=M , the subbands are only overlapping with their
adjacent subbands and, as assumed in the paper, the
crosstalk is restricted to that neighborhood. For detai-
led information on MDFT �lter bank design see [3].

Notations. Vectors are indicated by small, matrices
by capital bold faced letters. The superscripts �; t and
y denote complex conjugation, transposition and Her-
mitian transposition, respectively. The separation of a
complex signal into its real and imaginary part is deno-
ted by the subscripts r and i, respectively.

2 CONFIGURATION

Basically, an M -band MDFT transmultiplexer consists
of an interleaver, an up-sampler by M=2, a synthesis
�lter bank, an analysis �lter bank, a down-sampler by
M=2, and a deinterleaver. In what follows, a system
description of the MDFT transmultiplexer, suitable for
understanding the various subband equalizer approaches
below, is given. For sake of simplicity, we use the direct
implementation of the MDFT transmultiplexer as de-
picted in Fig. 1, since the direct implementation can be
modi�ed to the computationally e�cient implementa-
tion of [1] by simply shifting the system components.
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Figure 1: Detail of an M -band MDFT transmultiplexer
�lter bank in direct implementation realizing an OMC
data transmission system.

Given a complex signal d�(m) that is fed at samp-



ling rate m into the �'th subband of the interleaver, the
corresponding output signal can be written as

~d�(2m+ 1� �) =
1

2

�
d�(m) + (�1)�+�d��(m)

�
; (3)

where � 2 f0; 1g1. By substituting k = 2m + 1 � �,
we obtain the output signal of the synthesis �lter bank
having a sampling rate of n = kM=2 as follows

s(n) =

M�1X
�=0

1X
k=�1

~d�(k)g�(n� kM=2): (4)

The signal s(n) is fed into the transmission channel that
is modeled as a cascade of a linear �lter c(n) and a
discrete additive noise process �(n) producing the signal
r(n) = s(n) � c(n) + �(n) at the receiver side, where
\�" denotes convolution. For simplicity reasons, we set
�(n) = 0 for the rest of this chapter.
By de�ning a subband transfer function

f�;� (n)
4
= g�(n) � c(n) � h�(n); (5)

and taking into account the down-sampling by M=2 at
the receiver, we obtain

~x�(k) =

M�1X
�=0

1X
l=�1

~d�(l)f�;� ((k � l)M=2): (6)

Using the deinterleaver we �nally get2

x�(m) =
1

2

1X
�=0

~x�(2m� �) + (�1)�+�~x��(2m � �): (7)

The conditions of almost perfect reconstruction for
the MDFT transmultiplexer �lter bank can be illustra-
ted using the subband transfer function, de�ned by (5).
Interestingly, the signal ~x�(k) at the receiver and the

corresponding signal ~d�(k) at the transmitter are not
equal valued even if the conditions for almost perfect re-
construction are satis�ed, i.e. c(n) = �(n), � = 0 and the
usage of the �lter bank design delineated above. More
precisely, assuming these conditions, if ~d�(k) is for ex-
ample real valued, the same real value is preserved in
~x�(k), whereas the imaginary value of ~x�(k) is modi�ed.
This is due to the fact that the subband transfer functi-
ons satisfy the generalized Nyquist criterion at sampling
positions n = mM and that they are strictly real valued
at sampling positions n = mM+M=2. The signal x�(m)
is reconstructed by using the deinterleaver, which remo-
ves the in
uences, that are caused by the real values
of the subband transfer functions at sampling positions
n = mM +M=2.

1According to Fig. 1, � corresponds to an even numbered sub-

band and � = 0 represents the upper path in the interleaver.
2Referring to Fig. 1, � relates to an even numbered subband

and � = 0 represents the upper path in the deinterleaver.

3 EQUALIZATION

In data transmission applications, conditions for al-
most perfect reconstruction, such as c(n) = �(n) and
�(n) = 0, are violated. Since we assume that the dis-
tortion in a subband is only caused by the signals wi-
thin the subband and in adjacent subbands, due to the
bandwidth restriction of the prototype �lter, we consi-
der three subband FIR �lters to be employed for equa-
lization of each subband signal. One subband �lter is
used for canceling intersymbol interferences, the others
for reducing crosstalk from the adjacent subbands.

As shown in the previous chapter, the deinterleaver
plays the key role in signal reconstruction at the MDFT
transmultiplexer. Hence, there is a need to discuss
the various possibilities for handling the deinterleaver
when equalizing the transmission channel. Moreover,
our system description of the MDFT transmultiplexer
has shown that there is no signaling of the real and
imaginary part of a complex symbol, fed into the trans-
mitter, over the channel at the same time. Obviously,
an MDFT �lter bank consisting ofM complex subbands
can be described as a �lter bank of 2�M real subbands.
Therefore, we run the subband equalizer structures at
sampling rate k = 2m. For equalization purpose, the
receiver, as shown in Fig. 1, is modi�ed by replacing the
deinterleaver part by three various structures which we
name as A;B, and C.

In structure A, the three subband �lters are placed be-
hind a modi�ed deinterleaver, as shown in Fig. 2. This
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Figure 2: Equalizer structure A. The switch turns at
sampling rate k = 2m.

approach is already known in literature [4, 5, 6]. As re-
ference signal, ~d�(k) is used, which we get as a training
sequence or hard decided equalizer output (decision di-
rected mode). The input signals of the �'th subband
equalizer w(�) are given by the real or imaginary part of
the signals ~x��1(k), ~x�(k), and ~x�+1(k). More precisely,
by representing the signals as vectors, we get

�yt(k)
4
= (�x��1(k); �x�(k); �x�+1(k)) ; (8)

�xt(k)
4
=
�
�yt(k); �yt(k � 1); : : : ; �yt (k � (L� 1))

�
; (9)

�wt(k)
4
=
�
�w
(�)
��1;0(k); �w

(�)
�;0(k); �w

(�)
�+1;0(k); : : : ;

�w
(�)
��1;L�1(k); �w

(�)
�;L�1(k); �w

(�)
�+1;L�1(k)

�
; (10)



where L denotes the length of each equalizer subband

�lter w
(�)
� . Using Eqs. (9) and (10), the equalization

error can be written as

��(k) = ~d�(k)� �wt(k)�x(k) = ~d�(k)� �xt(k) �w(k): (11)

Eq. (11) is very similar to the standard problem formula-
tion for equalization in the well known single-band case.
Therefore, the Wiener solution and the LMS adaptive
algorithm do not need to be derived here.
We propose a new strategy, where we place the �lters

in front of the deinterleaver. There are two possibilities
to provide such a structure with a reference signal. As
one possibility, which we name as equalizer structure B,
we consider ~d�(k) as reference signal, so that we have
to modify the output signal of the equalizer �lters as
shown in Fig. 3.
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Figure 3: Equalizer structure B. Again, the switch turns
at double the symbol rate k = 2m.

For deriving the Wiener solution and LMS adaptive
algorithm for structure B, we de�ne vectors similarly as
for structure A. For that, in Eqs. (8), (9) and (10) we
just have to replace the bar by a tilde to be compliant
with our notation. By de�ning k = 2m � �, where
� 2 f0; 1g3, the equalization error for structure B is
given by

��(k)= ~d�(k)�
1

2

�
~wt(k)~x(k) + (�1)�+� ~wy(k)~x�(k)

�
(12)

De�ning abbreviations as follows

�2d
4
= E

n
j ~d�(k)j

2
o
; (13)

~p
4
= E

n
~x�(k) ~d�(k)

o
=E

n
(�1)�+�~x�(k) ~d��(k)

o
; (14)

~R
4
= E

�
~x�(k)~xt(k)

	
; (15)

~S
4
= E

�
(�1)�+�~x(k)~xt(k)

	
; (16)

the mean squared equalization error can be written as

�2MSE = Ef���(k)��(k)g

= �2d�
1

2

�
~wy~p+ ~wt~p� + ~py~w + ~pt ~w�

�
+ � � �

+
1

4

�
~wy~R ~w+ ~wy~S

�
~w�+ ~wt~S ~w+ ~wt~R

�
~w�
�
: (17)

Taking into account that transposing a scalar does not
change its value we get

�2MSE = �2d �
�
~wy~p+ ~wt~p�

�
+ � � �

3According to our handling of the notation in the previous

chapter, � relates again to an even numbered subband and � = 0

to the upper path in the modi�ed deinterleaver, shown in Fig. 3.

+
1

4

�
~wy~R ~w + ~wy~S

�
~w� + ~wt ~R

�
~w� + ~wt ~S ~w

�

= �2d� 2<
n
~wy~p

o
+

1

2
<
n
~wy~R ~w+ ~wy~S

�
~w�
o
: (18)

By de�ning the complex gradient as

@�2MSE

@ ~w

4
=

@�2MSE

@ ~wr

+ j
@�2MSE

@ ~wi

; (19)

Eq. (18) reads

@�2MSE

@ ~w
= �2~p+ ~R ~w + ~S

�
~w�: (20)

In order to obtain the Wiener solution by setting the
gradient to zero, we have to separate the complex ma-
trices into their real and imaginary part and we can
write a system of two matrix equations which is solved
by
2
4
~wr

~wi

3
5 =

2
4
( ~Rr + ~Sr) �( ~Ri + ~Si)

( ~Ri � ~Si) ( ~Rr � ~Sr)

3
5
�1 2
4
2~pr

2~pi

3
5 : (21)

A gradient algorithm for minimizing �2MSE can be
formulated as

~w(k + 1) = ~w(k) �
�

2

@�2MSE

@ ~w(k)
: (22)

Using Eqs. (12) and (20), the gradient can be written

@�2MSE

@ ~w(k)
= E

�
� 2~x�(k) ~d�(k) + ~x�(k)~xt(k) ~w(k) + � � �

+(�1)�+�~x�(k)~xy(k) ~w�(k)
	

= �2Ef~x�(k)��(k)g : (23)

For the LMS adaptive algorithm the expected va-
lue is approximated by Ef~x�(k)��(k)g ~=��(k)~x

�(k) and
~w(k + 1) = ~w(k) + ���(k)~x

�(k) follows.
Finally, another possibility, which we call equalizer

structure C, is given by the usage of the signal ~x�(k) as
reference signal, that the transmultiplexer would pro-
duce having satis�ed the conditions of almost perfect
reconstruction, as shown in Fig. 4. In this case, no dein-
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Figure 4: Equalizer structure C. The signal ~̂x�(k) re-
presents the output signal of the MDFT transmultiple-
xer with conditions for almost perfect reconstruction.

terleaver is used. The reference signal has to be gene-
rated running the entire MDFT transmultiplexer �lter
bank using a training sequence or hard decided equalizer
output.
The problem formulation for equalizer structure C is

very similar to the single-band case. Therefore, we skip
again the derivation of the Wiener solution and the LMS
adaptive algorithm.



4 EXPERIMENTAL RESULTS

In order to obtain the following results, various simula-
tions are conducted, employing an 8-band MDFT trans-
multiplexer �lter bank. The FIR �lter prototype used
in the �lter bank design shows a stop band attenuation
of 40 dB and a roll-o� factor of 0.5. In all simulation re-
sults shown, for structures A;B and C, each equalizer's
subband �lter has a equalization window of k = 5. The
results are averaged over all 8 subbands.
In Fig. 5 we present the minimum mean squared er-

ror (MMSE) when simulating the channel by a com-
plex rotation operator c(n) = exp(j') and using ad-
ditive white Gaussian noise (AWGN) with a signal-to-
noise ratio (S/N) of 20 dB. Not surprisingly, the MMSE
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Figure 5: MMSE vs. rotation angle '.

of structure B and C is of equal value, since these
structures use the same input signal. The MMSE of
equalizer structure A is signi�cantly degraded, which
lays bare that, if applying the deinterleaver prior to
the equalization, the direction information to rotate
back c(n) = exp(j') is lost. This e�ect is rele-
vant in terms of synchronization issues. Assume that

c(n) = �(n��), the subband transfer function becomes
f�;�(n)=

�
Mh(n)ej
�n�h(n��)ej
�n

�
e�j
��:

In Fig. 6, we demonstrate the e�ect of a delay, ran-
ging from � = 0 to � = Mn. The received signal is
corrupted again by AWGN with S/N of 20 dB.
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Figure 6: MMSE vs. delay.

Finally, in Fig. 7 we show the convergence behavior
of the LMS adaptive algorithm when simulating the
channel by an FIR �lter having an impulse response
c(n) = 1 + (0:1� j0:9)z�1 and by AWGN with S/N of
20 dB. The LMS adaptive step size is set to be the in-
verse of the energy of the equalizer's input vector. As
expected, equalizer structure C provides faster conver-
gency then structure B, since the equalization error of
B is modi�ed by the deinterleaver.
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Figure 7: Convergence behavior of the LMS algorithm.

5 CONCLUSIONS

In this paper we have introduced two new FIR subband
equalizer structures for channel equalization in OMC
data transmission systems. The new structures have
been shown to be superior to a previously known struc-
ture in terms of MMSE when computing the Wiener so-
lution and convergence behavior of the LMS algorithm.
In comparison between the two new structures, they
provide equal MMSE results, since they are using the
same input signal. However, the convergence behavior
of the LMS algorithms in these structures is di�erent,
because of the modi�ed adaptation rules employed.
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