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ABSTRACT 

A video content analysis tool for video coding is 
presented. The underlying assumption of our approach 
is that the textures in a video scene can be labeled 
subjectively relevant or irrelevant. Relevant textures are 
defined as containing subjectively meaningful details, 
while irrelevant textures contain less important 
subjective details. We apply this idea to video coding 
using a texture analyzer and a texture synthesizer. The 
texture analyzer (encoder side) identifies the texture 
regions with unimportant subjective details and 
generates side information for the texture synthesizer 
(decoder side), which inserts synthetic textures at the 
specified locations. The focus of this paper is the 
texture analyzer, which uses MPEG-7 descriptors for 
similarity estimation. The texture analyzer is based on a 
split and merge segmentation approach and also 
provides solutions concerning temporal mapping of 
identified detail-irrelevant textures. The current 
implementation of the texture analyzer yields an 
identification rate of up to 93%. 

1. INTRODUCTION 

Textures like water, grass, trees, sand, etc. present in 
many video sequences are difficult to code due to the 
large amount of visible detail. We claim that the exact 
regeneration of such textures is not mandatory if they 
are shown with limited spatial resolution and the 
original video is not known to the viewer . He should 
just be able to identify the semantic category of the 
reconstructed textures, which is often not the case when 
a pre-filter is used or these are blurred due to strong 
quantization. We exploit this idea for video coding 
using a texture analyzer at the encoder side and a 
texture synthesizer at the decoder side. 
The identification of detail-irrelevant texture regions 
(water, sand ...), the creation of coarse masks 
corresponding to these regions, as well as the signaling 
of these masks as side information to the decoder are 
the main tasks of the texture analyzer. The texture 
synthesizer replaces the marked textures via inserting 
synthetic textures. 
In Ndjiki-Nya et al. (1) it is shown that detail-irrelevant 
textures can be represented using MPEG-7 descriptors 
(2),(3), instead of the mean squared error, as the coding 
distortion. Since the considered MPEG-7 descriptors 
evaluate overall similarity, the reproduced textures 

typically show different details as the original ones. 
These deviations between original and synthetic 
textures are not subjectively noticeable as long as the 
displayed spatial accuracy of the textures remains 
unchanged and are also much less annoying as if they 
were coded at a bit-rate which is equivalent to the bit- 
rate of the side information of the texture synthesizer. 
In (l), we show that substantial bit-rate savings can be 
achieved using our coding approach. The gains thereby 
increase with increasing video quality. E.g., bit-rate 
savings of up to 19.4% compared to an H.264lAVC 
video codec were measured for the Flowergarden test 
sequence (CIF resolution, 30 Hz progressive video and 
quantization parameter 16). 
In this paper, we focus on the texture analyzer. The 
segmentation strategy as well as the MPEG-7 similarity 
criteria, including the selected descriptors and metrics, 
are elaborated. A technique for ensuring temporal 
consistency of the identified texture regions is also 
presented. 
A similar wavelet-based analysis-synthesis video 
coding approach was introduced by Yoon and Adelson 
(4) and by Dumitrag and Haskell (5). The algorithms 
presented in (4),(5) are optimized for textures with 
absent or very slow global motion, whereas no such 
constraint is required for our system (1). 
Analysis-synthesis-based codecs have also been 
introduced for object-based video coding applications 
(e.g. cp. Wollborn (6)). The purpose of the analyzer 
and synthesizer modules in this case is usually the 
identification and appropriate synthesis of moving 
objects (6). Such approaches can be seen as 
complementary to ours as the texture analyzer 
presented in this paper tends to identify background 
textures. 
The remainder of the paper is organized as follows. In 
Section 2 we present the segmentation strategy of the 
texture analyzer, while in Section 3 temporal 
consistency of the identified detail-irrelevant texture 
regions is addressed. Finally, in Section 4 the 
experimental results are shown. 

2. SEGMENTATION STRATEGY 

The texture analyzer performs a split and merge 
segmentation of each frame of a given video sequence. 
This corresponds to a region-based segmentation for 
coarse detection of true regions 
(cp. Freixenet et al. (7)). 
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2.1. Splitting step 

The splitting step consists in analyzing a frame using i’ 

multi-resolution quadtree (cp. Malki et al. (8)). The 
latter encompasses several levels, with level 0 being the 
original frame itself. At level 1, the original frame is 
split into 4 non-overlapping blocks, while it is split into 
16 non-overlapping blocks at level 2, etc. The amount 
of blocks at level L is given by 4L. Eaclh block at level 
L-1 is splitted into 4 blocks at level L, siince the amount 
of blocks per column is always identical to the amount 
of blocks per row (e.g. four blocks per row/column at 
level 2). 
A block at level L-1 is considlered to have 
homogeneous content if its four sub-blocks at level L 
have “similar” statistical properties. An optional 
auxiliary requirement for homogeneity is that the 
(2n + 1) x (2n + 1) non-overlapping sub-blocks 
( n  E N )  of the considered block (level L-1) are 
painvise similar, i.e. an odd number of sub-blocks of 
the current block (level L-1) is considered in x and y 
directions (e.g. 3x3, 5x5 . . .). This additional condition 
allows better detection of details at block boundaries as 
well as in the middle of blocks. The similarity between 
two blocks is measured in terms of corresponding 
MPEG-7 descriptors as explained below. 
Inhomogeneous blocks are split further, while 
homogeneous blocks remain unchanged. The splitting 
step features two break conditions: 

1. The smallest admissible block size is user- 
specifiable and can be set according to a priori 
knowledge of the size of the structures in the given 
video sequence or run-time constraints. 
2. The block status: The texture analyzer stops 
splitting a given frame if all corresponding blocks are 
labeled “homogeneous”. 

Samples that are still unlabeled after the first break 
condition is fulfilled are labeled ,,unclassifiable“. 
The segmentation mask obtained after the splitting step 
typically shows a clearly over-segmented frame. Thus 
post-processing of the former is required, which leads 
to the second step implemented by the texture analyzer 
- the merging step. 

2.2. Merging step 

In the merging step, homogeneous blocks identified in 
the splitting step are compared pairwise and similar 
blocks are merged into a single cluster forming a 
homogeneous area itself. The merging stops if the 
obtained clusters are stable, i.e. if they are painvise 
dissimilar. The final number of clusters is typically, 
considerably reduced by the merging step. 

In addition to merging homogeneous texture regions, 
the corresponding MPEG-7 feature vectors can also be 
updated, which is an optional feature of the texture 
analyzer. Thus the merging of similar homogeneous 
texture regions can be taken into account in the feature 
space. If this feature is switched off, no feature vector 
update is done in case of the merging of two 
homogeneous texture regions. I.e. the feature vector of 
one of the homogeneous texture regions composing a 
cluster, resulting from the merging of similar 
homogeneous texture regions, is used as representative 
of the cluster. 

Figure 1 : Segmented image after the splitting step (top) 
and after the merging step (bottom) 

Figure 1 illustrates the splitlmerge steps by showing the 
segmentation masks of a frame after the splitting (top) 
and after the merging (bottom) steps. Regions labeled 
,,unclassifiable“ are marked by a black border, while 
classified regions are marked by a non-black border. It 
can be seen that the number of homogeneous clusters 
can be substantially reduced after the merging step. 

2.3. Similarity estimation 

The similarity assessment between two blocks is done 
based on MPEG-7 descriptors (2),(3). We use the 
“Edge Histogram” (EH) texture and the “Scalable 
Color” (SCC) descriptors. The Edge Histogram 
descriptor is preferred to the Homogeneous Texture 
descriptor because the reference implementation of the 
latter works only for images sized at least 128x128 
samples. Taking the Texture Browsing descriptor into 
account is not feasible due to its incompatibility with 
our task (2&@&€he SCC descriptor is used because of 
its scalabnity and as a starting point for first evaluations 
of the texture analyzer. Note that the MPEG-7 features 
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have initially been developed for visual content 
representation with the main target being image 
retrieval. 

2.3.1. Edge Histogram descriptor. The EH 
descriptor represents the spatial distribution of four 
directional edges (one horizontal, one vertical, and two 
diagonal edges) and one non-directional edge (cp. 
Figure 2) for 16 local, non-overlapping regions of a 
given image. The frequency of occurrence of each edge 
class is determined for each local region, which yields 
an 80 (1 6x5) dimensional feature vector. 

nuluog 
Figure 2: Edge classes identifiable by the ,,Edge 
Histogram" descriptor 

We also use a global EH descriptor that can easily be 
derived from the MPEG-7 standard conforming EH 
descriptor delineated above. The global EH is of 
dimension five an represents an edge-class-wise 
addition of the 16 local histograms. 

2.3.2. Scalable Color descriptor. The SCC descriptor 
is basically a color histogram in the HSV color space. 
HSV is a three-dimensional color space with the 
components Hue, Saturation and Value (luminance). 
The resolution (number of colors or bins) of the SCC 
descriptor can be varied from 16 to 256 colors. The 
number of possible colors is thereby doubled from 
resolution step to resolution step. We use the highest 
resolution step in order to assess the best possible 
segmentation results given the SCC descriptor. 
The MPEG-7 standard conforming SCC histogram 
described above consists of 16 hue values. Each hue 
value has four corresponding saturation levels per given 
luminance value, which yields 64 bins per luminance 
value. Four luminance values are used in the reference 
SCC histogram, which leads to a total of 256 bins. If 

H,, represents a color with quantized hue h 

( h  = 0...15) at quantized saturation s ( s  = 0...3) and 
quantized value v ( v  = 0...3), then the colors in the 
reference SCC histogram are sorted in the following 
order: 

h 

@o...@3H~o...@ Hh ...Hh Hh ...& 
13 20 23 30 33' 

The reference SCC descriptor was modified to achieve 
better segmentation results for images with varying 
saturations or luminances of the same hue. The 
modifications consist in re-ordering the bins of the 
standard conform SCC histogram, i.e. the dimension of 
the SCC histogram is not altered. The colors in the re- 
ordered SCC histogram are sorted in the following 
manner: 

As can be seen above, the re-ordering yields storing all 
variations of a given hue h in neighboring bins. 

c. 
Figure 3: Bins 241 to 256 of the ,,Scalable Color" (top) 
and modified ,,Scalable Color" (bottom) histograms 

Figure 3 depicts the colors represented by the bins 241 
to 256 of the SCC and re-ordered SCC histograms. 
There are obvious differences between the two 
histograms. While the SCC sub-histogram (top) shows 
16 hues with constant saturation and luminance, the 
modified SCC sub-histogram (bottom) depicts all 
variations of a given hue. I.e. hue is constant, whereas 
saturation and luminance vary. 
The re-ordering has a positive impact on the 
segmentation results for textures with varying 
saturations or/and luminances of the same hue and 
given an adequate metric, as said above. The same 
applies to the reference SCC histogram for textures 
with varying hues and constant luminance and 
saturation. 

2.3.3. Thresholds and metrics. Two blocks are 
considered to be similar if the distance between the 
corresponding feature vectors lies below a given 
threshold: 

-- 
where SCCi/EHi (i=1,2) represent the feature vectors 
of the considered blocks, while Tsc- and TEH are the 
similarity thresholds. The thresholds are determined as 
a proportion of the maximum possible distance between 
two feature vectors. The maximum distance depends 
both on the selected metric and the chosen descriptor. 
A threshold of zero means that two feature vectors are 
seen as similar if and only if they are identical, while a 
threshold of one indicates that any two feature vectors 
will be seen as similar, as no distance can be greater 
than the maximum one. The thresholds are manually 
optimized for some key frames of a given sequence. 
The optimal threshold is then used for all frames of the 
video. The texture analyzer presented here can 
therefore be seen as a semi-automatic segmentation 
algorithm. 
Two metrics are used to determine the distance between 
feature vectors: the e, norm (EH, SCC) and the Earth 
Mover's Distance (EMD) (SCC only, cp. Rubner et al. 
(9)). If we define the bin population of the first of two 
histograms as hills and the corresponding population of 
the second histogram as valleys, then EMD represents 
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1 Config. # I  

the minimum “earth” transportation coist from the hills 
to the valleys. The greater the distance between 
provider (histogram #1) and receiver bin (histogram 
#2), the higher the transportation costs. Histograms 
with different locations of most of the “earth” 
concentration will be labeled as very different, while 
histograms with similar shapes and noisy deviations 
will be seen as similar. EMD is robust against noise, 
scaling and shift because it mainly compares the shapes 
of the histograms. This makes EMD eligible for 
compensating lighting variations, when used in 
combination with the SCC descriptor. 
The splitting and merging steps segment each frame of 
a given sequence independently of the other frames of 
the same sequence. This yields inconsistent temporal 
texture identification. Thus a mapping of textures 
identified in a frame to textures identified in previous 
frames of the same sequence is required. 

Descriptor Metric Update Detail 
after ’ Identi- 

merging fication 
scc EMD No Yes 

3. TEMPORAL CONSISTENCY 

Temporal consistency of detected synthesizable 
textures is ensured by setting up a texiture catalog that 
contains information about the textures present ‘in the 
given sequence. The texture catalog is initialized with 
the feature vectors of the textures identified in the first 
frame of the sequence. In case no texture is identified in 
the starting frame, the catalog is .initialized with the 
textures of the first frame where at least one texture is 
found. The textures identified in the following frames 
are first compared to the indexed texture(s) and mapped 
to one of them if similar. The former are added to the 
texture catalog otherwise. 
Note that the segmentation masks avaiLable at this stage 
must be adapted to the macroblock grid (e.g. 16x16 
samples) for simple integration into the H.264lAVC 
codec (1 0). 

4. EXPERIMENTAL RESULTS 

In our experiment, we evaluate the quality of the 
segmentation results obtained using the texture analyzer 
in combination with SCC and EH. A test set of 150 
images is used. 15 of the images are gray-level images 
and are used only for evaluation of EH. For each 
image, a reference mask is manually generated by first 
splitting the former into 16x1 6 non-overlapping 
macroblocks. The macroblock grid is thereby imposed 
by the coding scenario (10). Macroblocks containing a 
homogeneous texture are marked “classifiable”, while 
the others are labeled “unclassifiable”. The 
“classifiable” blocks are then manually clustered and 
those containing the same homogeneous texture 
assigned to the same class. The reference masks are 
then compared to the best masks generated by the 
texture analyzer. The best mask, i.e. the mask with the 

least segmentation errors, for a given texture analyzer 
configuration is obtained by varying the similarity 
thresholds Tscc and TEH (cp. Section 2.3.3.) and using a 
fixed step width, thereby minimizing segmentation 
errors. 

4.1. Scalable Color descriptor 

The evaluation of the Scalable Color descriptor is done 
using a total of 135 images selected in consideration of 
the lighting conditions, the presencelabsence of details 
in the images (useful for evaluation of detail 
identification potentialities of the texture analyzer) and 
a “good” coverage of the HSV color space. The most 
important configurations of the texture analyzer in 
combination with SCC are shown in Table 1. SCC-RO 
represents the re-ordered version of the reference SCC 
histogram (cp. Section 2.3.2.). 

Figure 4 depicts the correctly identified image area for 
the evaluated configurations of the texture analyzer. 
The strongly overlapping notches of the box plots 
indicate that none of the evaluated configurations is 
statistically significantly better than the others. 
Configuration #2 yields the best average texture 
identification rate of 70% (median value, horizontal 
line within the corresponding boxes) given the test data. 

I 7------ _ _ - - -  7 7  

I ,  I , 1 I , I  

Config. # 
1 2 3 4 5 6 7  

Figure 4: Correctly identified image area for seven 
configurations of the texture analyzer with the 
,,Scalable Color“ descriptor as similarity criterion 
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The configurations with EMD (configs. #1 to #5) as the 
metric lead to the best results in most of the cases as 
expected (cp. Sections 2.3.2. and 2.3.3.). Less than 
25% of the test images lead to a correctly identified 
image area smaller than 55% (lower quartile 
corresponds to lower bound of the box), whereas more 
than 78% of the image area is correctly segmented for 
more than 25% of the test images (upper quartile 
corresponds to upper bound of the box) for 
configuration #2. The whiskers drawn from the lower 
(upper) quartile to the smallest (biggest) correctly 
identified area cover the range of the data. Note that 
statistical outliers are represented by crosses below or 
above the whiskers. 

Within the false segmentation class, we distinguish 
between false negatives and false positives. False 
negatives are image areas that are marked “classifiable” 
in the reference mask and labeled “unclassifiable” in 
the best texture analyzer mask, while false positives 
correspond to the other possible mismatches. 
Considering only the false positive macroblocks as 
erroneous leads to an average non-erroneous identified 
area of 92%. Some segmentation results are shown in 
Figure 5. 

Figure 5: Some segmentation results obtained with configuration #2 of the texture analyzer (cp. Table 1) 

4.2. Edge Histogram descriptor texture resolution, orientation and coarseness. The most 
important configurations of the texture analyzer in 
combination with EH are shown in Table 2. EH-GL 
represents the global version of the reference EH The evaluation of the Edge Histogram descriptor is 

done using 120 images selected in consideration of the 
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descriptor (cp. Section 2.3.1 .). Note that the e norm is 
used for all configurations as recommended in the 
MPEG-7 standard (2), (3). _ .  

TABLE 2: Evaluated configurations of the texture 
analyzer with the ,,Edge Histogram" descriptor as 
similarity criterion 

Descriptor I Metric I U p d a t F l  
after Identi- 

fication 

Yes 

Figure 6 depicts the correctly identified image area for 
the evaluated configurations of the texture analyzer. 
Configuration #6 leads to better results than the others. 

An average identification rate of 61% can be measured 
here. Considering only the false positive macroblocks 
as erroneous leads to an average non-erroneous 
identified area of 93%. Some segmentation results are 
shown in Figure 7. 

Figure 7: Some segmentation results obtained with configuration #6 of the texture analyzer (cp. Table 2) 

4.3. Temporal consistency We segment 151 frames for each of the three 
considered test sequences (Flowergarden, Concrete and 
Canoe). Configuration #2 of the texture analyzer (Table 

In the temporal consistency experiment, we evaluate 1) is used for segmentation. The temporal texture 
the performance of the texture catalog (cp. Section 3) mapping implemented by the texture catalog is 
responsible for the correct temporal identification of a consistent for all frames of the test sequences. The area 
given texture. covered by the biggest detail-irrelevant texture region 
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found is plotted for each of the sequences (cp. Figure 
8). 

1 1 1 1  
1 1 1 1  

Frame # 

Figure 8: Biggest identified detail-irrelevant frame area 
w.r.t. time of the test sequences Canoe, Flowergarden 
and Concrete 

The area covered by the flowerbed in the Flowergarden 
sequence continuously rises with time, which is 
reflected by the increase of the corresponding curve 
(cp. Figure 8). The increase of the identified stone wall 
area in the Concrete video is even more substantial (cp. 
Figure 8) and relates to the fact that a zoom out occurs 
in this sequence. The resolution with which the stones 
are shown thus continuously decreases and the wall 
becomes more and more detail-irrelevant. The texture 
identification at the beginning of the sequence is quite 
poor, since the stones in the background are shown with 
a very high resolution. It can be seen in Figure 8 that 
the background (rocks, trees, tree trunks) of the Canoe 
sequence covers almost 50% of the frame area in some 
frames. 
Note that ensuring temporal stability of the borders 
between synthesized and natural textures is beyond the 
scope of this paper. However, a solution concerning 
this issue was already proposed in (I). 

5. CONCLUSIONS 

A segmentation algorithm for content-based video 
coding was presented. The underlying assumption of 
our approach is that the textures in a video scene can be 
labeled subjectively relevant or irrelevant. Two MPEG- 
7 descriptors, a texture (Edge Histogram, EH) and a 
color descriptor (Scalable Color, SCC), are used for 
similarity estimation. Our experiments show that the 
average area of the correctly identified detail-irrelevant 
textures represents 61% (EH) and 70% (SCC) of the 
total area of the considered test images. Considering 
false negatives as non-erroneous segmentation even 
yields an identification rate of 93% (EH) and-92% 
(SCC). I.e. the proportion of false positives is very low 
for both descriptors. 
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