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ABSTRACT

Considering inter-picture dependencies when selecting
transform coefficient levels in hybrid video coding can
be done via formulating the decoding process as a lin-
ear signal model and solving a quadratic program. The
basic method assumes motion estimation and quanti-
zation parameters as being given and then selects the
transform coefficient levels. However, when motion
vectors are determined in advance, motion estimation
must be conducted using uncoded reference pictures
which is known to deliver inferior results compared to
motion estimation on decoded reference pictures. In
this work, we expand the basic method to incorpo-
rate the case where the motion estimation is consid-
ering decoded reference pictures. We propose an ap-
proach that iterates between transform coefficient se-
lection and motion estimation. We find that a simple
two-pass iteration works reasonably well. Our sim-
ulation results using an H.264/AVC-conforming en-
coder show coding gains up to 1 dB in comparison to
the quantization method specified in the test model of
H.264/AVC.

1. INTRODUCTION

Hybrid codecs, such as H.264/AVC [1, 2] are the most
successful class of video compression designs. These
codecs produce a motion-compensated prediction as
well as a prediction residual. A hybrid video encoder
makes many decisions in its attempt to achieve the
best possible tradeoff between bit-rate and distortion
given constraints on delay and complexity. Because

∗Funded by a Fulbright Fellowship.

of the use of motion-compensated prediction, many
inter-picture dependencies exist among these decisions
that are typically relevant for many pictures of a coded
video sequence.

There has been a large amount of work on opti-
mization problems in hybrid video coding by other re-
searchers in the past. One particular focus has been on
Lagrangian optimization methods [3, 4, 5, 6] which we
also utilize in our work. Work on considering the de-
pendencies between the various encoding decisions has
focused on modelling these dependencies by trellises
which allows the use of dynamic programming meth-
ods. Bit-allocation to DCT coefficients was proposed
by Ortega and Ramchandran for MPEG-2 Video [7],
and a version that handles the more complex structure
of the entropy coding of H.263 has been developed
in [8]. The selection of other coding parameters such
as motion vectors and macroblock modes has been op-
timized in [9, 10, 11, 12, 13].

In [14], we have presented a method that optimizes
the selection of transform coefficient levels considering
their impact across multiple pictures given the motion
vector field and macroblock mode selection. For that,
the bit allocation problem to transform coefficients in
hybrid video coding was formulated as a quadratic
program allowing the consideration of the impact of
the selection of a particular transform coefficient when
being referenced in motion-compensating other sam-
ples. Since the motion vectors are an input to the op-
timization problem, this formulation requires constant
motion vectors. In this work, we have extended the
method in [14] towards motion estimation on decoded
reference pictures. We show that the motion vectors
need not be completely determined for the entire se-



quence to utilize the optimization problem approach.
Applying an iterative method allows us to use the lin-
ear signal model to select transform coefficients while
using motion vectors based on the reconstructed sam-
ple values.

This paper is organized as follows. In the next sec-
tion, we define our problem. For completeness, in sec-
tion 3 we include how to optimize transform coefficient
levels taking into account inter-picture dependencies
by using a linear signal model and reformulating the
problem as a quadratic program. Section 4 shows by
repeatedly applying the method for selecting transform
coefficient levels, better motion estimation is possible
than if it is only run once each picture. Section 5 gives
results.

2. PROBLEM STATEMENT AND
BACKGROUND

Consider the encoding process of a hybrid video en-
coder such as H.264/AVC [1, 2]. At this stage, let’s
assume that the motion vectors and quantization para-
meters are already determined for the entire sequence,
although this assumption will be relaxed in section 4.
The first picture is coded as an intra picture and all
other parts of the remaining pictures are coded using
motion-compensated prediction. The task that remains
for the encoder is to determine the transform coefficient
levels that represent the residual signal in order to opti-
mize some cost function of image fidelity and bit-rate.
A common technique is to use a Lagrangian formula-
tion and to minimize a linear combination of distortion
and bit-rate,D + λR [4, 5]. The most common distor-
tion measure is the mean squared error, which we also
use. The bit-rate is typically a rather complicated func-
tion R(c) of the quantized transform coefficient levels
c.

Let’s assume the encoding of a video sequence
with K pictures of widthW and heightH samples
with a dynamic range ofA = {0..255} and letN =
K × W × H be the number of samples. The vec-
tor v ∈ AN represents the originalN sample values
with vi being thei’th sample value. Lets(c) ∈ AN

represent the reconstructed sample values after decod-
ing with si being thei’th decoded sample value corre-
sponding tovi. Hence the problem of selecting trans-
form coefficient levelsc can be written as:

minimize{(v − s(c))T (v − s(c)) + λR(s, c)} (1)

Let sB be the decoded samples for the current
block B and cB be the transform coefficient levels
for the blockB. Some previous publications on trans-
form coefficient optimization [7, 8] only considered the
choice ofcB to have an impact onsB with regards to
distortion or bit-rate. The impact on other blocks was
ignored.

Moreover, many encoding algorithms (cp. [15]) de-
termine the transform coefficient levelsci of a block
ignoring the dependency ofR on cB by simple quan-
tization of the associated transform coefficient levelsti
according to

ci = sgn(ti) ∗ b(|ti|+ f ∗ q)/qc (2)

with q being the quantization step size andf being the
dead-zone control parameter. But this way of obtaining
the levels is optimal only with respect to mean square
error distortion measured between the original and re-
constructed samples for the current block. The impact
of the introduced quantization error on samples refer-
ring to this block by motion compensation is not con-
sidered.

3. TRANSFORM COEFFICIENT LEVEL
SELECTION

In this section, we briefly explain a method of selecting
transform coefficient levels considering inter-picture
dependencies that are introduced by motion compen-
sation in hybrid video coding. As mentioned above, in
the next section, we will show how this method can be
extended towards motion estimation on decoded refer-
ence pictures.

This description is done in 3 parts. First, we ex-
press the relationship between the transform coeffi-
cient levels and the decoded samples via a linear sig-
nal model for the decoder. Then, we set up the opti-
mization problem in (1) as a quadratic program. Third,
we explain a heuristic that obtains integer-valued trans-
form coefficient levels.

3.1. Linear Signal Model for Hybrid Video Decod-
ing

We assume that a decoded samplesi can be represented
as a linear combination of previously decoded samples,
the corresponding residual sample, and a static predic-
tor. Hence, a linear model fors as a signal equation



can be written as follows

s = ŝ + u + p = Ms + Tc + p (3)

TheN × 1 vectors is a column vector containing all
decoded samples of the pictures that will be jointly op-
timized. TheN × N matrix M expresses the mo-
tion compensation, i.e., mapping the decoded sample
sj onto the decoded samplesi. Note that for the linear
signal modelM is a constant. The rows of theN ×N
matrix T provide inverse scaling and transform of the
transform coefficient levelsc in order to obtain the de-
coded residual signalu. The column vectorp is a static
predictor which represents motion-compensated pre-
diction samples referencing decoded samples that are
not part of the vectors.The construction ofM ,T , c,
andp is described in detail below.

The matrixM is constructed using the motion vec-
tors and reference picture indices that are assumed to
be fixed while optimizing transform coefficient lev-
els. The values in the rowmi of M express how
each decoded sample ins contributes to the motion-
compensated prediction sample forsi. For exam-
ple, let’s assume the prediction samplesi is motion-
compensated with integer-sample accuracy referencing
the samplesz. Thenmiz = 1 andmij = 0 ∀ j 6= z.
In a more complicated example, assume that the pre-
diction sample forsi is the result of 1/2 pixel motion
estimation, where the H.264/AVC 6-tap filter must be
applied. In this case, there are 6 non-zero entries inmi,
[1 -5 20 20 -5 1]/32. The indices of these non-zero en-
tries depend on the motion vector, the reference picture
index for motion compensation, and the position of the
current sample. Note thatmi could have 36 non-zero
entries if the 1/2 pixel filter must be applied twice to
construct the prediction sample. If B-pictures are used,
mi could have up to 72 non-zero entries. Note also
that we are ignoring any rounding in the description of
fractional-sample interpolation.

The matrix T is constructed using the 4x4 in-
verse transform and the inverse scaling equations of
H.264/AVC. LetsB be a 4x4 block of decoded sam-
ples. Ignoring rounding, the residual samples foruB

that are used to obtainsB are given by a linear com-
bination of 16 transform coefficient levels incB. The
weights in this linear combination are determined by
the inverse transform used, the position of the residual
sample withinB, the position of the transform coef-
ficient level withinB, and quantization parameter for
B. Note that the non-zero entries ofT are located ac-

cording to the ordering of theci relative to the positions
in the pictures.

The vectorp contains the motion-compensated pre-
diction signal for samples whose prediction depends on
samples outside of theK pictures currently being op-
timized. For example, the intra picture is currently not
optimized by our algorithm and its samples are there-
fore outside the vectors. The contribution of these
intra samples to the values of all samples ins is ex-
pressed after motion-compensating them towards each
s.

3.2. Quadratic Program Formulation

Given the signal model for hybrid video decoding in
(3), the minimization problem in (1) for transform co-
efficient level selection can be written as

minimize {(v − s)T (v − s) + λR(v, c)} (4)

subject to s = Ms + Tc + p (5)

Except for the functional relationship betweenR andc,
this is very close to a quadratic program. A quadratic
program is a problem of the form

minimize {xT Hx + fT x}
subject to Ax = b (6)

Ex ≤ g

where x is a column vector of real variables and
xT Hx is a convex function inx. The advantage of
having our problem in the form of a quadratic program
is that efficient algorithms exist to find the optimalx.

Note that the actual bit-rate is a very complex func-
tion of c. However, transform coefficient levels with a
smaller absolute value almost always result in a smaller
rate. Therefore, in order to obtain a piece-wise lin-
ear approximation ofR(c), the following rate model
is used

R(c) ≈
∑

i

max(0, |ci| − ŵ) (7)

The reason for the introduction of the integer scaler
ŵ ∈ A will be explained in the next section and̂w
can be assumed for now to be equal to 0. We make our
problem a quadratic program by allowings , c ∈ Rn

and introducing another variabler ∈ Rn such that



ri > |ci| ∀ i. Our problem is now:

minimize sT s− 2sT v + λ1T r

subject to s = Ms + Tc + p

r ≥ c− ŵ1 (8)

r ≥ −c− ŵ1

r ≥ 0

where1 is a vector with every entry equal to one,0, is
a vector with every entry equal to zero, and our vari-
ables ares, c, andr. It can be shown that the above
formulation can be mapped into the quadratic program
in (6). A mapping is given in the appendix.

3.3. Determination of Integer-Valued Transform
Coefficient Levels

A quadratic program solver solver, such as
MOSEK[16], can solve (8) and return the opti-
mal real-valued values for the unknown variables.
However, the transform coefficient levels must be inte-
ger valued. The simplest heuristic would be to round
each non-integerci to the nearest integer. Although
this yields a reasonable result forc, the reconstructed
samples based on integer valuedc are different than
those from the real valuedc. Thus the resulting PSNR
is very likely to be lower than the above algorithm
calculated it would be. This is somewhat ameliorated
by rounding only a subset ofc, adding the effect of
the determined elements ofc into the static predictor
p, removing the unneeded columns ofT , and then
re-solving (8) with the now smaller problem. This
gives the quadratic program solver a chance to take the
rounding into account for the remaining unknowns of
c, which is especially helpful for the unknowns ofc
in the same 4x4 blocks as the determined and rounded
elements ofc. We repeat this process until all ofc has
been rounded.

The iterative algorithm is given as follows. Note
thatti is theith column ofT .

0 Initialize w = δ

1 Setŵ = bwc
2 Solve (8) obtaining non-integer valued elements

in c

3 For all c ≤ w, ĉi = bci + 0.5c, remove the row
ti from T , and updatep = p + ĉiti

4 For all c > w, assign them toc
5 Setw = w + ∆

6 Setλ = λi in optimization (8)

7 If c is not empty, go to step 1, otherwise stop

When the algorithm is finishedc is empty, and the so-
lution to the problem in (8) is in̂c with elementŝci

Conceptually, we are solving for the transform co-
efficient levels whose value are equal toŵ = bwc each
time. Our rate function acts as a penalty function on∑ |ci|. The ŵ in the rate function adds a ”free” zone
for cis less than̂w. This type of penalty function in a
quadratic program tends to have solutions with a rela-
tively large number ofcis atŵ as desired [17].

By changingλ with each value of̂w we are able to
effectively represent rate models other than the linear
one shown in (7). For example, by decreasingλ in a
logarithmic manner, we can better approximate a loga-
rithmic rate function. Empirically, we have found that
lettingλ0 = 4λ1 andλ1 = λ2 = λ3 works reasonably
well. We have chosen these values in our experiments
in section 5.

The choice ofδ and∆ is a trade-off between com-
putation time and coding efficiency. Empirically, we
have found that the values ofδ = 0.5 and∆ = 1 offer
a reasonable trade-off. We have used these values in
our experiments in section 5.

4. MOTION VECTOR UPDATE

4.1. Problem

The above approach enables us to select transform co-
efficient levels given the quantization parameters and
motion vector field. However, it is known that select-
ing motion vectors based on decoded reference pictures
gives superior performance compared to selecting mo-
tion vectors on uncoded reference pictures. Thus we
would like to be able to change motion vectors as we
encode a picture. A challenge is that the motion vec-
tors must be held fixed for thefuturepictures while the
transform coefficient levels are selected for the current
picture using the above algorithm. Thus, we have a
chicken-and-egg problem. We would like to use mo-
tion vectors for future pictures that are derived from
the decoded picture for the current picture, but this de-
coded picture depends on transform coefficients that
we would like to calculate using inter-picture optimiza-
tion which needs motion vectors for future pictures.



4.2. Solution

Our proposed solution to the chicken-and-egg prob-
lem is to use an iterative approach. The basic idea
is to use a guess for the transform coefficient levels
and use this guess to compute motion vectors for fu-
ture pictures. We then refine our choice of transform
coefficients for the current picture using inter-picture
optimization. Next, we recalculate the motion vectors
based on the new transform coefficients.

In our following description we letK be the num-
ber of pictures we wish to jointly optimize over, andk
be a parameter that can be passed to the algorithm of
section 3. As we will seek is not always equal toK.

We notice that for the first picture of the group ofK
pictures the motion-compensated prediction samples
can be computed exactly, since all the previous pic-
tures are already encoded and decoded reference pic-
tures are available. The transform coefficient levels are
then selected for this picture without looking at future
pictures. That is, the algorithm in section 3 is run with
k = 1. These levels are used to calculate the motion
vectors for the 2nd picture. Then the transform coef-
ficients are jointly selected for both of these pictures,
again by running the algorithm in section 3 withk = 2.
The motion vectors for picture 2 are recalculated based
on the new transform coefficients of picture 1 and the
coefficients from the 2nd picture are then used to se-
lect the motion vectors for the 3rd picture. At which
point, we can call the transform selection algorithm
with k = 3. This process is repeated untilk = K
pictures.

Then the transform coefficient levels and motion
vectors for the first picture are saved, while all other
transform coefficient levels and motion vectors are dis-
carded. We then, in a ”sliding window” fashion, op-
timize the next group ofK pictures (pictures 2 though
K+1 in the old ordering) using the technique described
in the previous paragraph.

To summarize, we propose using the following
steps to encode a video sequence:

0 Encode the intra-picture use a conventional tech-
nique. Please note that our method does not op-
timize the Intra picture.

1 Consider the first group ofK inter-pictures.

2 Setk = 1

3 Compute the motion vectors for the 1st picture
in the group ofK pictures

4 Run the inter-picture transform coefficient levels
optimization with parameterk.

5 Recompute the motion vectors for the firstk + 1
pictures in the group.

6 Setk = k + 1

7 If k ≤ K, go to step (4)

8 If k > K, save transform coefficient levels and
motion vectors for first picture. If more pictures
exist, go to step (2) for next group ofK pictures
(picture 2 thoughK + 1 in the old ordering).

5. RESULTS

We have conducted experiments to verify our al-
gorithm using a video codec that conforms to
H.264/AVC [1]. As mentioned earlier, we fix the quan-
tization parameter. Motion estimation is performed as
described in section 4 and is conducted using the La-
grangian approach as described in [18]. The Lagrange
parameter is also chosen according to [18].

The first picture is coded as an intra picture and
all remaining pictures are coded as inter pictures ei-
ther using P or B slices. The deblocking filter is used,
and inter-picture prediction utilizes 5 reference pic-
tures. Note that we disallow the use of intra mac-
roblock modes within inter pictures.

Results reported in Fig. 1 and Fig. 2 are obtained
from the QCIF sequences Flowergarden and Tempete.
For all sequences, 50 pictures are encoded at 30 Hz.

Fig. 1 shows the results when coding the first pic-
ture as an intra picture and all other pictures with P
slices. We consider 1, 2 and 3 pictures (K) jointly.
The caseK = 1 was obtained using the test model for
H.264/AVC. When moving from consideringK = 1
to K = 2 pictures jointly, a PSNR gain 0.4 dB can be
measured at low-bit rates and 0.9 dB at high-bit rates
for Flowergarden (top) and 0.4 dB for Tempete (bot-
tom). Moving fromK = 2 to K = 3 provides another
0.4 dB at low-bit rates and another 0.1 dB at high rates
giving a total gain of 0.8 dB and 1.0 dB respectively
for Flowergarden. For Tempete this provides another
0.3 dB, giving a total gain of 0.7 dB.

Fig. 2 shows the results when coding the first pic-
ture as an intra picture, every second pictures with P
slices and the immediate pictures with B slices. For
Flowergarden (top), when moving from considering
K = 1 to K = 3 pictures jointly, a PSNR gain of
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Fig. 1. PSNR vs. bit-rate for the sequences Flower-
garden (top) and Tempete (bottom) when using IPPP...
coding with five reference pictures.

about 0.7 dB is observed. For Tempete (bottom), a gain
of 0.3 dB is seen.

6. CONCLUSIONS AND FUTURE WORK

We have expanded a strategy of selecting transform co-
efficient levels considering the inter-picture dependen-
cies produced by motion compensation in hybrid video
coding to work with motion vectors on reconstructed
pictures. The algorithm consists of iterating between
estimating transform coefficients and motion vectors.
The simulation results using the video coding standard
H.264/AVC show coding gains of up to 1.0 dB in com-
parison to the quantization strategy specified in the test
model of H.264/AVC.

Opportunities exist to further expand this method.
One direction is to include the motion vectors varia-
tions within one pass of the optimization. Another is to
include quantization parameter changes.
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Fig. 2. PSNR vs. bit-rate for the sequences Flow-
ergarden (top) and Tempete (bottom) when using
IBPBPBP... coding with five reference pictures.

Although the current work does not include intra-
pictures and intra-blocks, there may be a fairly straight-
forward extension to these cases.

After a group ofK pictures are considered and en-
coded using the ideas in the paper, instead of retaining
the transform coefficient levels and motion vectors for
the entire 1st picture of this group, one could only re-
tain the transform coefficient levels from samples that
did do not depend on other samples in the group of
K pictures for their motion compensated prediction.
However, this would increase encoding time.

Reducing coding time is also future work. The cur-
rent algorithm is not ideal for real-time encoding or
low-delay encoding. Future work will investigate both
ways to reduce encoding time while maintaining the
majority of the gains, as well as the tradeoffs in gen-
eral between the computational complexity and coding
efficiency gains for various features of the algorithm.
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Appendix: Quadratic Program Mapping

For completeness, we include how the the optimzation
problem in (8) can be mapped into the standard form
of a quadratic program (6). This mapping is done by
the following equations.

x =




s
c
r


 (9)

H =




I 0 0
0 0 0
0 0 0


 (10)

f =



−2v
0N

λ1N


 (11)

A =
[

I −M −T 0
]

(12)

b = p (13)

g =



−ŵ1N

−ŵ1N

0N


 (14)

E =




0 I −I
0 −I −I
0 0 −I


 (15)

where0 is theN ×N all zero matrix,I is theN ×N
identity matrix,0N is a N × 1 column vector of all
zeros, and1N is aN × 1 column vector of all ones.


