Physics of Light

- X Radiometry vs. photometry
- X Lambertian surfaces
- 🕅 Luminance
- X Spectral sensitivity of the human eye
- Black body radiation

Radiometry:

considers electromagnetic radiation at all wavelengths

Photometry:

radiometric quantities weighted by the "luminous efficiency curve" of the human eye

Typical Illumination Levels

direct sunlight	100 000 lux
open shade	10 000 lux
overcast/dark day	10 - 100 lux
twilight	1 - 10 lux
full moon	0.1 lux
starlight	0.001 lux
well illuminated office	500 lux
television studio	5000 - 10000 lux

Nonuniform Light Distribution

Sphere around light source of radius r = 1

Area of patch on surface of the sphere: "solid angle" Ω

RadiometryPhotometryradiant intensityIuminous intensity $J_r = \frac{dP_r}{d\Omega}$ $J_{ph} = \frac{dP_{ph}}{d\Omega}$ unit: $\frac{W}{sr}$ unit: $\frac{\ell m}{sr} = cd$

<u>Definition</u>: Ratio of the area of a patch on the surface of a sphere to the sphere's squared radius

unit: steradian (sr)

solid angle of complete sphere: 4π sr

1 sr corresponds to a cone with angular diameter of 65.6°

illumination of image plane:

$$\frac{dP'}{dA'} = \frac{dJ(\beta)}{dA \cdot \cos \beta} \cdot \frac{B}{f^2} = L \cdot \frac{B}{f^2}$$

luminance:

$$L = \frac{dJ}{dA \cdot \cos\beta} = \frac{d^2P}{d\Omega dA \cos\beta}$$

unit:
$$\frac{\ell m}{sr \cdot m^2} = \frac{cd}{m^2}$$

$$\mathsf{L} = \frac{\mathsf{d}\mathsf{J}(\beta)}{\mathsf{d}\mathsf{A}\cos\beta} = \frac{\mathsf{d}\mathsf{J}(0)\cdot\cos\beta}{\mathsf{d}\mathsf{A}\cdot\cos\beta} = \frac{\mathsf{d}\mathsf{J}(0)}{\mathsf{d}\mathsf{A}}$$

independent of angle !

Power / Luminous Flux Radiated by Lambertian Surface Element

$$\frac{dP}{dA} = \int \frac{dJ(0)}{dA} \cdot \cos\beta d\Omega = \pi L$$
half sphere

Ideally reflecting Lambertian surface,

illuminated with 1 lux,

has luminance of $L = \frac{1}{\pi} \cdot \frac{cd}{m^2}$

Spectral Sensitivity of the Human Eye

Ideal black body: absorbs all incident radiation

If heated to temperature T

$\frac{dp(\lambda)}{dA} = \frac{2\pi hc^2}{\lambda^5 (e^{ch/\lambda kT} - 1)}$	"Planck radiation law"
--	------------------------

c = 2,99 × 10 ⁸ m/s	speed of light
k = 1,3807 × 10 ⁻²³ J/K	Boltzmann constant
h = 6,6261 × 10 ⁻³⁴ J⋅s	Planck's constant

Overall radiated power:

$$\frac{d\mathbf{P}_{\mathbf{r}}}{d\mathbf{A}} = \int_{\lambda=0}^{\infty} \frac{dp(\lambda)}{dA} d\lambda = \sigma \cdot T^{4}$$

with
$$\sigma = \frac{2\pi^5 k^4}{15c^2 h^3} = 5,6705 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$$

"Stefan-Boltzmann constant"

Maximum radiation:

$$\lambda_{max} = \frac{2,90 \times 10^{-3} \text{m} \cdot \text{K}}{\text{T}}$$
 "Wien displacement law"

- Photometry = radiometry x brightness sensitivity
- Diffuse surfaces equally bright from all angles
- X Retinal illumination proportional to luminance
- Spectral sensitivity of the human eye from 380 nm to 780 nm
- Black body radiation