
DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) i

Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG

4th Meeting: Klagenfurt, Austria, 22-26 July, 2002

Document JVT-D017 draft 0
File: JVT-D017d0.doc
Generated: 2002-07-10

Title: Editor’s Proposed Modifications to Joint Committee Draft (CD) of Joint Video Specification (ITU-T
Rec. H.264 | ISO/IEC 14496-10 AVC) relative to JVT-D015d5

Status: Input to JVT

Contact: Thomas Wiegand
Heinrich Hertz Institute (HHI), Einsteinufer 37, D-10587 Berlin, Germany
Tel: +49 - 30 - 31002 617, Fax: +49 - 030 - 392 72 00, wiegand@hhi.de

Purpose: Report of Ad-Hoc Group Activity

Summary

This report contains editorial changes regarding sub-clauses on entropy coding and CABAC. The
following changes have been made:

1. Both entropy coding methods have been merged into clause 10

2. 5 classes of entropy coding have been defined: unsigned Exp-Golomb entropy coding
[ue(v)], signed Exp-Golomb entropy coding [se(v)], mapped Exp-Golomb entropy coding
[me(v)], context-adaptive variable-length entropy coding [ce(v)], context-adaptive binary
arithmetic entropy coding [ae(v)].

3. Syntax tables have been up-dated accordingly

Title page to be provided by ITU-T | ISO/IEC

DRAFT INTERNATIONAL STANDARD
DRAFT ISO/IEC 14496-10 : 2002 (E)
DRAFT ITU-T Rec. H.264 (2002 E)
DRAFT ITU-T RECOMMENDATION

TABLE OF CONTENTS
Foreword ..vi

Introduction ...vi

1 Scope ..6

2 Normative references..6

3 Definitions..6

4 Abbreviations ..6

5 Conventions ...6
5.1 Arithmetic operators ...6
5.2 Logical operators..6
5.3 Relational operators ...6
5.4 Bitwise operators ..6
5.5 Assignment..6
5.6 Functions ..6

6 Source coder ..6

DRAFT ISO/IEC 14496-10 : 2002 (E)

ii DRAFT ITU-T Rec. H.264 (2002 E)

6.1 Picture formats ...6
6.2 Subdivision of a picture into slices and macroblocks ...6
6.3 Assignment of symbols within a macroblock ..6

7 Syntax ..6
7.1 Method of describing the syntax in tabular form..6
7.2 Definitions of functions and descriptors ...6
7.3 Syntax in tabular form ..6

7.3.1 NAL unit syntax..6
7.3.2 Raw and encapsulated byte sequence payloads ..6

7.3.2.1 RBSP from EBSP extraction syntax ...6
7.3.2.2 Parameter set RBSP syntax...6
7.3.2.3 Supplemental enhancement information RBSP syntax...6

7.3.2.3.1 Supplemental enhancement information message syntax ..6
7.3.2.4 Picture layer RBSP syntax ..6

7.3.2.4.1 Adaptive bi-prediction coefficient table syntax ...6
7.3.2.5 Slice layer RBSP syntax ...6
7.3.2.6 Data Partition A RBSP syntax ..6
7.3.2.7 Data Partition B RBSP syntax ..6
7.3.2.8 Data Partition C RBSP syntax ..6
7.3.2.9 RBSP trailing bits syntax ..6

7.3.3 Slice header syntax ...6
7.3.4 Reference picture selection layer syntax...6
7.3.5 Slice data syntax ...6
7.3.6 Macroblock layer syntax...6

7.3.6.1 Prediction data for 8x8 coding modes syntax ...6
7.3.6.2 Prediction data for 16x16 coding modes syntax ...6
7.3.6.3 Residual data syntax ...6
7.3.6.4 Residual 4x4 block CAVLC syntax..6

8 Semantics ...6
8.1 NAL unit semantics ...6
8.2 Raw and encapsulated byte sequence payloads..6

8.2.1 Raw byte sequence payload (RBSP) semantics ..6
8.2.2 Encapsulated byte sequence payload (EBSP) semantics ..6
8.2.3 Parameter set RBSP semantics ...6
8.2.4 Supplemental enhancement information RBSP semantics ...6
8.2.5 Picture layer RBSP semantics...6

8.2.5.1 Adaptive Bi-prediction Picture Coefficient semantics..6
8.2.6 Slice layer RBSP semantics ..6
8.2.7 Data partition RBSP semantics ...6

8.3 Slice header semantics..6
8.4 Reference picture selection layer (rps_layer) semantics ..6

8.4.1 Reference picture reordering indicator (reference_picture_reordering_indicator_fwd/bwd)6
8.4.2 Re-mapping of picture numbers indicator (remapping_of_pic_nums_indicator) ...6

8.4.2.1 Absolute difference of frame numbers (abs_diff_pic_numbers)...6
8.4.2.2 Long-term picture index for re-mapping (long_term_pict_index) ..6

8.4.3 Reference picture buffering mode (ref_pic_buffering_mode) ..6
8.4.3.1 Memory management control operation (memory_management_control_operation)..............................6
8.4.3.2 Difference of frame numbers (difference_of_pic_nums)..6
8.4.3.3 Long-term picture index (long_term_pic_index) ..6
8.4.3.4 Maximum long-term frame index plus 1 (max_long_term_pic_index_plus1) ...6

8.5 Slice data semantics..6
8.6 Macroblock layer semantics ...6

8.6.1 Macroblock mode (mb_mode)..6
8.6.2 Modes for 8x8 blocks..6
8.6.3 Reference picture (ref_idx_fwd/bwd) ...6
8.6.4 Motion vector data (mvd_fwd) ...6
8.6.5 Coded block pattern (coded_block_pattern) ...6
8.6.6 Change of quantiser value (delta_qp) ...6

9 Decoding process...6
9.1 Ordering of decoding steps...6
9.2 Slice decoding...6

9.2.1 Default index orders..6

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) iii

9.2.1.1 Default index order for P pictures...6
9.2.1.2 Default index order for B pictures ..6

9.2.1.2.1 Forward prediction in B pictures...6
9.2.1.2.2 Backward prediction in B pictures ..6

9.2.1.3 Reordering of forward and backward reference sets...6
9.2.2 Multi-picture decoder process...6

9.2.2.1 Decoder process for short/long-term picture management ...6
9.2.2.2 Decoder process for reference picture buffer mapping ...6
9.2.2.3 Decoder process for multi-picture motion compensation ...6
9.2.2.4 Decoder process for reference picture buffering...6

9.3 Motion compensation..6
9.3.1 Prediction of vector components...6

9.3.1.1 Median prediction ...6
9.3.1.2 Directional segmentation prediction ...6
9.3.1.3 Motion vector for a skip mode macroblock ...6
9.3.1.4 Chroma vectors ...6

9.3.2 Fractional sample accuracy...6
9.3.2.1 Quarter sample luma interpolation..6
9.3.2.2 One eighth sample luma interpolation ..6
9.3.2.3 Chroma interpolation ..6

9.4 Intra Prediction...6
9.4.1 Intra Prediction for 4x4 mode for luma...6

9.4.1.1 Mode 0: DC prediction ...6
9.4.1.2 Mode 1: vertical Prediction...6
9.4.1.3 Mode 2: horizontal prediction...6
9.4.1.4 Mode 3: diagonal down/right prediction...6
9.4.1.5 Mode 4: diagonal down/left prediction ...6
9.4.1.6 Mode 5: vertical-left prediction ..6
9.4.1.7 Mode 6: vertical-right prediction ..6
9.4.1.8 Mode 7: horizontal-up prediction..6
9.4.1.9 Mode 8: horizontal-down prediction...6

9.4.2 Intra prediction for 16x16 mode for luma...6
9.4.2.1 Mode 0: vertical prediction...6
9.4.2.2 Mode 1: horizontal prediction...6
9.4.2.3 Mode 2: DC prediction ...6
9.4.2.4 Mode 3: plane prediction ..6

9.4.3 Prediction in intra coding of chroma blocks ...6
9.5 Transform coefficient decoding and picture construction prior to deblocking...6

9.5.1 Zig-zag scan..6
9.5.2 Scaling and transformation ...6

9.5.2.1 Luma DC coefficients in Intra 16x16 macroblock..6
9.5.2.2 Chroma DC coefficients ...6
9.5.2.3 Residual 4x4 blocks ..6

9.5.3 Adding decoded samples to prediction with clipping ...6
9.6 Deblocking Filter..6

9.6.1 Content dependent boundary filtering strength...6
9.6.2 Thresholds for each block boundary...6
9.6.3 Filtering of edges with Bs < 4...6
9.6.4 Filtering of edges with Bs = 4...6

10 Entropy Coding...6
10.1 Variable Length Coding..6

10.1.1 Exp-Golomb entropy coding...6
10.1.2 Unsigned Exp-Golomb entropy coding ..6
10.1.3 Signed Exp-Golomb entropy coding...6
10.1.4 Mapped Exp-Golomb entropy coding...6
10.1.5 Entropy coding for Intra..6

10.1.5.1 Coding of Intra 4x4 prediction modes...6
10.1.6 Context-based adaptive variable length coding (CAVLC) of transform coefficients6

10.1.6.1 Num-trail...6
9.7.3.1.1 Table selection ...6

10.1.6.2 Decoding of level information ..6
9.7.3.2.1 Table selection ...6

10.1.6.3 Decoding of run information...6

DRAFT ISO/IEC 14496-10 : 2002 (E)

iv DRAFT ITU-T Rec. H.264 (2002 E)

9.7.3.3.1 TotalZeros ..6
10.1.6.4 Run before each coefficient...6

10.2 Context-based adaptive binary arithmetic coding (CABAC) ..6
10.2.1 Introduction...6
10.2.2 Initialisation of context models...6

10.2.2.1 Models with QP-independent initial counts ..6
10.2.2.2 Models with QP-dependent initialisation ..6
10.2.2.3 Models with uniform initialisation..6

10.2.3 Context modelling and binarization for coding of motion and mode information..6
10.2.3.1 Macroblock mode (mb_mode) ..6

10.2.3.1.1 I slices ..6
10.2.3.1.2 P slices..6
10.2.3.1.3 B slices ...6
10.2.3.1.4 Additional information for mode Intra16x16 ...6

10.2.3.2 Motion vector data ..6
10.2.3.3 Reference frame parameter ...6

10.2.4 Context modelling and binarization for coding of texture information ..6
10.2.4.1 Coded block pattern ..6
10.2.4.2 Intra prediction mode ..6
10.2.4.3 Transform coefficients ..6

10.2.4.3.1 Overview..6
10.2.4.3.2 coded_block_pattern ..6
10.2.4.3.3 Significance map..6
10.2.4.3.4 Level information...6

10.2.5 Context modelling and binarization for coding of delta_qp..6
10.2.6 Table-based arithmetic coding ..6

10.2.6.1 Introduction...6
10.2.6.2 Probability estimation ...6
10.2.6.3 Description of the arithmetic decoding engine..6

10.2.6.3.1 Initialisation of the decoding engine ..6
10.2.6.3.2 Decoding a decision ...6
10.2.6.3.3 Renormalization in the decoding engine (RenormD)...6
10.2.6.3.4 Input of compressed bytes (GetByte) ..6
10.2.6.3.5 Decoder bypass for decisions with uniform pdf (Decode_eq_prob) ..6

11 B pictures...6
11.1 Introduction ..6
11.2 Macroblock modes and 8x8 sub-partition modes ...6
11.3 B-Picture Syntax ...6

11.3.1 Number of Skipped macroblocks (mb_skip_run) ...6
11.3.2 Macroblock mode (mb_mode) and 8x8 sub-partition mode ...6
11.3.3 Intra prediction mode (Intra_pred_mode) ...6
11.3.4 Reference picture parameters (ref_idx_fwd and ref_idx_bwd)...6
11.3.5 ABP coefficient index (abp_coeff_idx) ..6
11.3.6 Motion vector data (mvd_fwd, mvd_bwd) ...6

11.4 Decoder Process for motion vector ..6
11.4.1 Differential motion vectors ...6
11.4.2 Motion vector decoding with scaled MV..6
11.4.3 Motion vectors in direct mode ..6

11.5 Prediction signal generation procedure ...6
11.5.1 Implicit B Prediction Block Weighting ...6
11.5.2 Explicit B Prediction Block Weighting ...6

12 S pictures ...6
12.1 Syntax..6

12.1.1 NAL unit type (nal_unit_type) and RUN..6
12.1.2 Macroblock type (mb_mode)..6
12.1.3 Macroblock modes for SI pictures ..6
12.1.4 Macroblock modes for SP pictures ...6
12.1.5 Intra prediction mode (Intra_pred_mode) ...6

12.2 S picture decoding process ...6
12.2.1 Decoding of DC values of chroma..6
12.2.2 Deblocking filter ...6

13 Hypothetical reference decoder ...6

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) v

13.1 Leaky bucket model...6
13.2 Operation of the HRD...6
13.3 Decoding time of a picture..6
13.4 Schedule of a bitstream...6
13.5 Containment in a leaky bucket..6
13.6 Bitstream syntax..6
13.7 Minimum buffer size and minimum peak rate ...6
13.8 Encoder considerations (informative) ..6
13.9 Normative hypothetical decoder and buffering verifiers ..6

13.9.1 Operation of pre-decoder VBV...6
13.9.1.1 Timing of bitstream/packet arrival ..6
13.9.1.2 Timing of coded picture removal ..6
13.9.1.3 Compliance constraints on coded bitstreams or packet streams..6

13.9.2 Operation of the TBV ...6
13.9.2.1 TBV arrival timing..6
13.9.2.2 TBV removal timing ...6
13.9.2.3 TBV compliance constraints ...6

13.9.3 Operation of the post-decoder buffer verifier ...6
13.9.3.1 Arrival timing..6
13.9.3.2 Removal timing...6
13.9.3.3 Compliance constraints ...6

14. Adaptive block size transforms..6
14.1 Introduction ..6
14.2 ABT Syntax Elements ..6

14.2.1 Slice Header Syntax..6
14.2.2 Prediction data for 8x8 modes ..6
14.2.3 Prediction data for 16x16 modes ..6
14.2.4 Residual Data Syntax..6

14.3 ABT Decoding process..6
14.3.1 Luma intra coding...6

14.3.1.1 Prefiltered prediction...6
14.3.1.2 Prediction Modes ..6

14.3.1.2.1 Mode 0: DC-Prediction ..6
14.3.1.2.2 Mode 1: Vertical Prediction ...6
14.3.1.2.3 Mode 2: Horizontal Prediction...6
14.3.1.2.4 Mode 3: Down-Right Prediction ..6
14.3.1.2.5 Mode 4: Up-Right Prediction (Bidirectional)...6
14.3.1.2.6 Mode 5: Down-Right-Down Prediction ...6
14.3.1.2.7 Mode 6: Down-Left-Down Prediction ...6
14.3.1.2.8 Mode 7: Right-Up-Right Prediction...6
14.3.1.2.9 Mode 8: Right-Down-Right Prediction..6

14.3.1.3 Coding of ABT intra prediction modes...6
14.3.2 ABT Transform Coefficient Decoding ...6

14.3.2.1 Scanning method...6
14.3.2.1.1 Progressive Scan ..6
14.3.2.1.2 Interlaced Scan ...6

14.3.2.2 Scaling and transform ...6
14.3.3 Deblocking Filter ..6
14.3.4 Entropy Coding...6

14.3.4.1 VLC...6
14.3.4.1.1 Intra coding using Coeff_Count ...6
14.3.4.1.2 2D (Level,Run) Symbols..6
14.3.4.1.3 Code Tables..6

14.3.4.2 CABAC...6
14.3.4.2.1 Binarization for 4x8, 8x4, and 8x8 block Coeff_Count and Run Values ...6
14.3.4.2.2 Truncated Binarization...6
14.3.4.2.3 Context Models for ABT Coeff_Count..6
14.3.4.2.4 Context Models for ABT Run Values ..6

Annex A Profile and level definitions...6
A.1 General ...6
A.2 Requirements on video decoder capability ...6
A.3 Baseline profile ...6
A.4 Main profile ..6

DRAFT ISO/IEC 14496-10 : 2002 (E)

vi DRAFT ITU-T Rec. H.264 (2002 E)

A.5 Level definitions..6
A.5.1 General..6
A.5.2 Level limits ...6

A.6 Effect of level limits on frame rate (non-normative) ...6

Annex B Byte stream format ...6
B.1 Introduction ..6
B.2 Byte stream NAL unit syntax...6
B.3 Byte stream NAL unit semantics ...6
B.4 Example encoder procedure (non-normative) ..6
B.5 Decoder byte-alignment recovery (non-normative)..6

Annex C Supplemental enhancement information ..6
C.1 Introduction ..6
C.2 SEI payload syntax..6

C.2.1 Temporal reference syntax..6
C.2.2 Clock timestamp syntax..6
C.2.3 Pan-scan rectangle syntax ...6

C.3 SEI payload semantics ..6
C.3.1 Temporal reference semantics ..6
C.3.2 Clock timestamp semantics...6
C.3.3 Pan-scan rectangle semantics..6

LIST OF FIGURES

Figure 6-1 – Vertical and horizontal locations of 4:2:0 luma and chroma samples in progressive scan pictures.................6

Figure 6-2 – Vertical and temporal sampling positions of samples in 4:2:0 interlaced frames ..6

Figure 6-3 – Two examples for macroblock assignment to a slice and their numbering..6

Figure 6-4 – Numbering of the vectors for the different blocks depending on the inter mode. For each block the
horizontal component comes first followed by the vertical component (raster scan order)..6

Figure 6-5 – Ordering of blocks for coded_block_patternY and residual coding of 4x4 blocks ..6

Figure 9-1 – Default reference field number assignment when the current picture is the first field coded in a frame6

Figure 9-2 – Default reference field number assignment when the current picture is the second field coded in a frame.....6

Figure 9-3 – Median prediction of motion vectors ...6

Figure 9-4 – Directional segmentation prediction ..6

Figure 9-5 – Integer samples (‘A‘) and fractional sample positions for quarter sample luma interpolation.........................6

Figure 9-6 – Integer samples (‘A‘) and fractional sample locations for one eighth sample luma interpolation6

Figure 9-7 – Diagonal interpolation for one eighth sample luma interpolation..6

Figure 9-8 – Fractional sample position dependent variables in chroma interpolation and surrounding integer position
samples A, B, C, and D...6

Figure 9-9 – Identification of samples used for intra spatial prediction ...6

Figure 9-10 – Intra prediction directions ..6

Figure 9-11 – Prediction of chroma blocks...6

Figure 9-12 – Zig-zag scan ...6

Figure 9-13 – Boundaries in a macroblock to be filtered (luma boundaries shown with solid lines and chroma boundaries
shown with dotted lines) ...6

Figure 9-14 – Flow chart for determining the boundary strength (Bs), for the block boundary between two neighbouring
blocks p and q, where Ref(p) is the reference frame or field of block p and V(p) is the motion vector of block p6

Figure 9-15 – Convention for describing samples across 4x4 block horizontal or vertical boundary6

Figure 10-1 – a) Prediction mode of block C to be established, where A and B are adjacent blocks. b) order of intra
prediction information in the bitstream...6

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) vii

Figure 10-2 – Illustration of generic conditioning scheme using neighbouring symbols A and B for conditional coding of
a current symbol C..6

Figure 10-2 –Illustration of CABAC coding scheme for transform coefficients..6

Figure 10-3 – Two examples for encoding the significance map (the symbols in parenthesis are not transmitted).............6

Figure 10-4 – Examples of context determination for encoding the absolute value of significant coefficients. The level
information is transmitted in reverse scanning order. ...6

Figure 10-5 - Overview of the Decoding Process...6

Figure 10-6 – Flowchart of initialisation of the decoding engine ...6

Figure 10-7 – Flowchart for decoding a decision ...6

Figure 10-8 – Flowchart of renormalization ...6

Figure 10-9 – Flowchart for Input of Compressed Bytes ...6

Figure 10-10 – Flowchart of decoding bypass..6

Figure 11-1 – Illustration of B picture concept...6

Figure 11-2 – Motion vector scaling and differential MV coding ..6

Figure 11-3 – Motion vectors in direct mode ...6

Figure 12-1 – A generic block diagram of S-picture decoder...6

Figure 13-1 – Illustration of the leaky bucket concept ...6

Figure 13-2 – Illustration of the leaky bucket concept ...6

Figure 13-3 – HRD Buffer Verifiers...6

Figure 14-1 – Macroblock in 8x8 Mode with 4 ABT intra subblocks ..6

Figure 14-2 – Progressive scan for 4x4, 4x8, 8x4, and 8x8 blocks ..6

Figure 14-3 – 4x4 interlaced scan...6

Figure 14-4 – 4x8 interlaced scan...6

Figure 14-5 – 8x4 interlaced scan...6

Figure 14-6 – 8x8 interlaced scan...6

LIST OF TABLES

Table 8-1 – NAL Unit Type (NUT) Codes 6

Table 8-2 – Meaning of video_format 6

Table 8-3 – Colour Primaries 6

Table 8-4 – Transfer Characteristics 6

Table 8-5 – Matrix Coefficients 6

Table 8-6 – Meaning of sample aspect ratio 6

Table 8-7 – remapping_of_pic_nums_indicator operations for re-mapping of reference pictures 6

Table 8-8 – Memory management control operation (memory_management_control_operation) values 6

Table 8-9 – Macroblock modes 6

Table 8-10 – Modes for 8x8 blocks 6

Table 9-1 – QPav dependent threshold parameters α and β 6

Table 9-1 (concluded) 6

Table 9-2 – Value of filter clipping parameter C as a function of QPav and Bs 6

Table 9-2 (concluded) 6

DRAFT ISO/IEC 14496-10 : 2002 (E)

viii DRAFT ITU-T Rec. H.264 (2002 E)

Table 9-3 – Rounding Value for Strong Filter 6

Table 10-1 – Code number and Exp-Golomb codewords in explicit form 6

Table 10-2 – Assignment of symbol values and code_numbers for signed Exp-Golomb entropy coding 6

Table 10-3 – Assignment of codeword number and parameter values for all mapped Exp-Golomb-coded symbols 6

Table 10-4 – Prediction mode as a function of ordering indicated in the bitstream 6

Table 10-4 (concluded) 6

Table 10-5 – Connection between codeword number and Intra Prediction Mode Probability 6

Table 10-6 – Number of coefficients / Trailing Ones: Num-VLC0 6

Table 10-7 – Number of coefficients / Trailing Ones: Num-VLC1 6

Table 10-8 – Number of coefficients / Trailing Ones: Num-VLC2 6

Table 10-9 – Number of coefficients / Trailing Ones: Num-VLC_Chroma_DC 6

Table 10-10 – Calculation of N for Num-VLCN 6

Table 10-11 – Level tables 6

Table 10-12 – TotalZeros tables for all 4x4 blocks 6

Table 10-13 – TotalZeros table for chroma DC 2x2 blocks 6

Table 10-14 – Tables for Run before each coefficient 6

Table 10-15 – StateTab for translating between given counts and LPS related probability states 6

Table 10-16 – Initial counts for context variable ctx_mb_mode_I 6

Table 10-17 – Binarization for macroblock modes in P-slices 6

Table 10-18 – Binarization for 8x8 sub-partition modes in P-slices 6

Table 10-19 – Initial counts for context variable ctx_mb_mode_P 6

Table 10-20 – Initial counts for context variable ctx_b8_mode_P 6

Table 10-21 – Binarization for macroblock modes in B-slices 6

Table 10-22 – Binarization for 8x8 sub-partition modes in B-slices 6

Table 10-23 – Initial counts for context variable ctx_mb_mode_B 6

Table 10-24 – Initial counts for context variable ctx_b8_mode_B 6

Table 10-25 – Initial counts for context variable ctx_mb_intra16x16 6

Table 10-26 – Binarization of the MVD modulus 6

Table 10-27 – Initial counts for context variable ctx_mvd 6

Table 10-28 – Binarization by means of the unary code tree 6

Table 10-29 – Initial counts for context variable ctx_ref_idx 6

Table 10-30 – Initial counts for context variables of coded_block_pattern coding (I-slices only) 6

Table 10-31 – Initial counts for context variables of coded_block_pattern coding (P,B-slices only) 6

Table 10-32 – Initial counts for context variable ctx_ipred 6

Table 10-33 – Context categories for the different block types 6

Table 10-34 – Initial counts for context variable ctx_cbp4 6

Table 10-35 – Initial counts for context variable ctx_sig 6

Table 10-36 – Initial counts for context variable ctx_last 6

Table 10-37 – Initial counts for context variable ctx_abs_1bit 6

Table 10-38 – Initial counts for context variable ctx_abs_rbits 6

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) ix

Table 10-39 – Coefficient level binarization 6

Table 10-40 – Probability transition and MPS/LPS Switch 6

Table 10-41 – RTAB[State][Q] table for interval subdivision 6

Table 11-1 – Macroblock modes for B pictures 6

Table 11-2 – Modes for 8x8 blocks in B pictures/slices 6

Table 11-3 – Prediction signals for implicit bi-prediction weighting 6

Table 12-1 – MB Type for SI-Pictures 6

Table 14-1 – ABT dequantization mantissa values 6

Table 14-3 – Golomb Codes used for encoding ABT symbols 6

Table 14-4 – Golomb Codes used for encoding ABT Coeff_Count symbols 6

Table 14-5 – Connection of ABT modes and Golomb code degrees and the number of layers 6

Table 14-6 – Codeword numbers for Level symbols after escape code 6

Table 14-7 – Inter and Intra (Level,Run) code word table. Cells marked ‘*’ are not valid. 6

Table 14-8 – Binarization for ABT Coeff_Count and Run values 6

Table A-1 – Level Limits 6

Table A-1 – Definition of counting_type values 6

DRAFT ISO/IEC 14496-10 : 2002 (E)

x DRAFT ITU-T Rec. H.264 (2002 E)

Foreword

The ITU-T (the ITU Telecommunication Standardisation Sector) is a permanent organ of the International
Telecommunications Union (ITU). The ITU-T is responsible for studying technical, operating and tariff questions and
issuing Recommendations on them with a view to developing telecommunication standards on a world-wide basis. The
World Telecommunication Standardisation Conference, which meets every four years, establishes the program of work
arising from the review of existing questions and new questions among other things. The approval of new or revised
Recommendations by members of the ITU-T is covered by the procedure laid down in the ITU-T Resolution No. 1
(Helsinki 1993). The proposal for Recommendation is accepted if 70% or more of the replies from members indicate
approval.

ISO (the International Organisation for Standardisation) and IEC (the International Electrotechnical Commission) form
the specialised system for world-wide standardisation. National Bodies that are members of ISO and IEC participate in
the development of International Standards through technical committees established by the respective organisation to
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

This Recommendation | International Standard is being submitted for approval to the ITU-T, ISO/IEC JTC1/SC29. It was
prepared jointly by ITU-T SG16 Q.6 also known as VCEG (Video Coding Experts Group) and by SC29/WG11, also
known as MPEG (Moving Pictures Expert Group). VCEG was formed in 1997 to develop video coding standard(s)
appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish
standards for coding of moving pictures and associated audio for various applications such as digital storage media,
distribution and communication.

In this Recommendation | International Standard Annex A, Annex B, and Annex C contain normative requirements and
are an integral part of this Recommendation | International Standard.

Introduction

Introduction.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 1

1 Scope

This document specifies ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 video
coding.

2 Normative references

Normative References.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 AC coefficient: Any transform coefficient for which the frequency index in one or both dimensions is non-
zero.

3.2 B-field picture: A field structure B picture.

3.3 B-frame picture: A frame structure B picture.

3.4 B picture: A predictive-coded picture; A picture that is coded in a manner in which some macroblocks may
use a weighted average of two motion-compensated prediction values for the prediction of the macroblock sample
values.

3.5 backward motion vector: A motion vector associated with a reference picture index pointing into the
backward reference set.

3.6 backward prediction: Inter-frame prediction of the content of a B picture using a reference picture index into
the backward reference set.

3.7 backward reference set: The ordered set of reference frames or fields defined for use in inter-frame backward
prediction for a B picture. The backward reference set is one of two ordered sets of reference pictures used by a B
picture, with the other being the forward reference set.

3.8 bitstream (stream): An ordered series of bits that forms the coded representation of the encoded data.

3.9 block: An N-column by M-row array of samples, or NxM transform coefficients (source, quantised, or scaled).

3.10 bottom field: One of two fields that comprise a frame. Each line of a bottom field is spatially located
immediately below a corresponding line of the top field.

3.11 byte: Sequence of 8 bits, ordered from the first and most significant bit on the left to the last and least
significant bit on the right.

3.12 byte aligned: A bit in a coded bitstream is byte-aligned if its position is a multiple of 8 bits from the first bit in
the stream.

3.13 channel: A digital medium that stores or transports a bitstream constructed according to this Recommendation
| International Standard.

3.14 chroma component: An array or single sample representing one of the two colour difference signals related to
the primary colours in the manner defined in the bitstream. The symbols used for the chroma signals are Cr and Cb.

3.15 chroma format: Defines the number of chroma blocks in a macroblock.

3.16 coded B frame: A B-frame picture or a pair of B-field pictures.

3.17 coded frame: A coded frame is a coded I frame, coded P frame coded B frame, coded SI frame, or coded SP
frame.

3.18 coded I frame: An I-frame picture or a pair of field pictures, where the first field picture is an I picture and the
second field picture is an I picture or a P picture.

3.19 coded order: The order in which the pictures are transmitted and decoded. This order is not necessarily the
same as the display order.

3.20 coded P frame: A P-frame picture or a pair of P-field pictures.

DRAFT ISO/IEC 14496-10 : 2002 (E)

2 DRAFT ITU-T Rec. H.264 (2002 E)

3.21 coded picture: A coded picture is made of a picture header, the optional extensions immediately following it,
and the following picture data. A coded picture may be a coded frame or a coded field.

3.22 coded representation: A data element as represented in its encoded form.

3.23 coded SI frame: A SI-frame picture or a pair of SI-field pictures.

3.24 coded SP frame: A SP-frame picture or a pair of SP-field pictures.

3.25 coded video bitstream: A coded representation of a series of one or more pictures as defined in this
Recommendation | International Standard.

3.26 component: An array or single sample from one of the three arrays (luma and two chroma) that make up a
picture.

3.27 compression: Reduction in the number of bits used to represent data.

3.28 context modelling: The choice and definition of prior transmitted symbols that are to be used in the
conditional coding of a symbol.

3.29 context variable: Defined for each symbol by an equation containing the recently transmitted symbols defined
by context modelling.

3.30 context: The numerical value of the context variable when coding a particular symbol at a particular point,
block, macroblock, etc. in the picture.

3.31 data partitioning: A method of dividing syntax elements into groups based on a categorization of the syntax
elements for error/loss resilience purposes.

3.32 DC coefficient: The transform coefficient for which the frequency index is zero in both dimensions. [Ed.Note:
define frequency index]

3.33 decoder input buffer: The first-in first-out (FIFO) buffer specified in the video buffering verifier.

3.34 decoder: An embodiment of a decoding process.

3.35 decoding (process): The process defined in this Recommendation | International Standard that reads an input
coded bitstream and produces decoded pictures.

3.36 display order: The order in which the decoded pictures are intended to be displayed. [Ed.Note: revise
according to TR discussion]

3.37 display process: The (non-normative) process by which reconstructed frames are displayed.

3.38 editing: The process by which one or more coded bitstreams are manipulated to produce a new coded
bitstream. Conforming edited bitstreams must meet the requirements defined in this Recommendation | International
Standard.

3.39 encoder: An embodiment of an encoding process.

3.40 encoding (process): A process, not specified in this Recommendation | International Standard, that reads a
stream of input pictures and produces a valid coded bitstream as defined in this Recommendation | International
Standard.

3.41 field (structure) picture: A field structure picture is a coded picture with picture_structure is equal to “Top
field” or “Bottom field”.

3.42 field: A “field” is the assembly of alternate lines of a frame. Therefore an interlaced frame is composed of two
fields, a top field and a bottom field.

3.43 field-based prediction: A prediction mode using fields as the reference pictures.

3.44 flag: A variable which can take one of only two possible values.

3.45 forward motion vector: A motion vector associated with a picture reference parameter pointing into the
forward reference set..

3.46 forward prediction: Inter-frame prediction of the content of a P, B, or SP picture using a reference picture
index into the forward reference set. All inter-frame prediction used for P and SP pictures is considered forward
prediction. The forward reference set is one of two ordered sets of reference pictures used by a B picture, with the other
being the backward reference set.

3.47 forward reference set: The ordered set of reference frames or fields defined for use in inter-frame forward
prediction for a P, B, or SP picture.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 3

3.48 frame: A frame contains the lines of spatial information of a video signal. For progressive video, these lines
contain samples starting from one time instant and continuing through successive lines to the bottom of the frame. For
interlaced video a frame consists of two fields, a top field and a bottom field. One of these fields is sampled temporally
later than the other.

3.49 frame (structure) picture: A frame structure picture is a coded picture with picture_structure is equal to
“frame”.

3.50 frame reordering: The process of reordering the reconstructed frames when the coded order is different from
the display order.

3.51 frame-based prediction: A prediction mode using frames as the reference pictures.

3.52 future reference frame (field): A future reference frame (field) is a reference frame (field) that occurs at a
later time than the current picture in display order.

3.53 group of pictures: a group of pictures starting at an instantaneous decoder refresh point.

3.54 header: A block of data in the coded bitstream containing the coded representation of a number of data
elements pertaining to the coded data that follow the header in the bitstream.

3.55 I-field picture: A field structure I picture.

3.56 I-frame picture: A frame structure I picture.

3.57 independent group of pictures (independent GOP): A group of pictures that can be decoded independently
from previous or later pictures. The start of an independent GOP is explicitly signalled.

3.58 instantaneous decoder refresh: Decoding of a frame that results into a completely refreshed picture. Later
coded frames can be decoded without referencing to data prior to the frame.

3.59 interlace: The property of conventional television frames where alternating lines of the frame represent
different instances in time. In an interlaced frame, one of the fields is meant to be displayed first. This field is called the
first field. The first field can be the top field or the bottom field of the frame.

3.60 intra coding: Coding of a macroblock or picture that uses information only from that macroblock or picture.

3.61 I picture, intra-coded picture: A picture coded using information only from itself.

3.62 scaling: The process of rescaling the transform coefficient levels after their representation in the bitstream has
been decoded.

3.63 transform: A part of the decoding process by which a block of scaled transform coefficient values is converted
into a block of spatial-domain samples.

3.64 layer: One of a set of conceptual entities in a non-branching hierarchical relationship. Higher layers contain
lower layers. There is a set of system layers and a set of coding layers. The system layers are the system layer, video
coding layer (VCL), network abstraction layer (NAL), and transport layers. The coding layers are the sequence, GOP,
picture, picture layer reference picture selection (picture layer RPSL), slice, slice layer reference picture selection (slice
layer RPSL), macroblock, 8x8 block and 4x4 block layers.

3.65 level: A defined set of constraints on the values which may be taken by the parameters of this
Recommendation | International Standard. The same set of Level definitions are used with all Profiles, but individual
implementations may support a different Level for each supported Profile. In a different context, level is the absolute
value of a non-zero coefficient (see “run”). In a third context, a level is the lowest coding layer in which a syntax
element appears.

3.66 long SCP: A start code prefix which uniquely indicates the start of a picture or higher coding layer start code.
It is one byte longer than a short SCP.

3.67 luma component: An array or single sample representing a monochrome representation of the signal and
related to the primary colours in the manner defined in the bitstream. The symbol used for luma is Y.

3.68 macroblock: The 16x16 samples of luma data and the two corresponding 8x8 samples of chroma.

3.69 Mbit: 1 000 000 bits.

3.70 motion compensation: The use of motion vectors to improve the efficiency of the prediction of sample values.
The prediction uses motion vectors to provide offsets into the past and/or future reference frames or reference fields
containing previously decoded sample values that are used to form the prediction error.

3.71 motion estimation: The process of estimating motion vectors during the encoding process.

DRAFT ISO/IEC 14496-10 : 2002 (E)

4 DRAFT ITU-T Rec. H.264 (2002 E)

3.72 motion vector: A two-dimensional vector used for motion compensation that provides an offset from the
coordinate position in the current picture or field to the coordinates in a reference frame or reference field.

3.73 non-intra coding: Coding of a macroblock or picture that uses information from both, itself and from
macroblocks and pictures occurring at other times.

3.74 opposite parity: The opposite parity of the top field is the bottom field, and vice versa.

3.75 parameter: A variable within the syntax of this Recommendation | International Standard which may take one
of a range of values. A variable which can take one of only two values is called a flag.

3.76 parity (of field): The parity of a field can be top or bottom.

3.77 past reference frame (field): A past reference frame(field) is a reference frame(field) that occurs at an earlier
time than the current picture in display order.

3.78 P-field picture: A field structure P picture.

3.79 P-frame picture: A frame structure P picture.

3.80 P picture, predictive-coded picture: A picture that is coded using motion compensated prediction from
previously-decoded reference fields or frames, using at most one motion vector and reference picture to predict the value
of each individual block.

3.81 picture: Source, coded or reconstructed image data. A source or reconstructed picture consists of three
rectangular arrays of 8-bit numbers representing the luma and two chroma components. A “coded picture” is defined in
subclause 3.23. For progressive video, a picture is identical to a frame, while for interlaced video, a picture can refer to a
frame, or the top field or the bottom field of the frame depending on the context.

3.82 prediction error: The difference between the actual value of a sample or data element and its predictor.

3.83 prediction: The use of a predictor to provide an estimate of the sample value or data element currently being
decoded.

3.84 predictor: A combination of previously decoded sample values or data elements used in the decoding process
of subsequent sample values or data elements.

3.85 probability model: The set of probability distributions to be used by the arithmetic coding engine when coding
a symbol. The context determines which probability distribution is to be used when coding a particular symbol at a
particular point, block, macroblock, etc. in the picture. For each symbol, the number of probability distributions in the
set is equal to the number of possible values for the context variable, i.e., the number of contexts. For binary data, each
probability distribution contains only two numbers, e.g. p and 1-p.

3.86 profile: A defined subset of the syntax of this Recommendation | International Standard.

3.87 progressive: The property of video frames that indicates that all of the samples of the frame represent the same
instant in time.

3.88 quantiser scale: A scale factor coded in the bitstream and used by the decoding process for scaling.

3.89 random access: The process of beginning to read and decode the coded bitstream at an arbitrary point.

3.90 raster scan order: A mapping of a regular rectangular two-dimensional pattern to a one-dimensional scanning
order such that the first entries in the scan order are from the first row of the pattern scanned from left to right, followed
similarly by the second, third, etc. rows of the pattern each scanned from left to right.

3.91 reconstructed frame: A reconstructed frame consists of three rectangular arrays of 8-bit numbers representing
the luma and two chroma components. A reconstructed frame is obtained by decoding a coded frame.

3.92 reconstructed picture: A reconstructed picture is obtained by decoding a coded picture. A reconstructed
picture is either a reconstructed frame (when decoding a frame picture), or one field of a reconstructed frame (when
decoding a field picture). If the coded picture is a field picture, then the reconstructed picture is the top field or the
bottom field of the reconstructed frame.

3.93 reference field: A reference field is one field of a reconstructed frame. Reference fields are used for forward
and backward prediction when P pictures and B pictures are decoded. Note that when field P pictures are decoded,
prediction of the second field P picture of a coded frame uses the first reconstructed field of the same coded frame as a
reference field.

3.94 reference frame: A reference frame is a stored reconstructed frame.

3.95 reordering delay: A delay in the decoding process that is caused by frame reordering in order to display
pictures in a different order than the order specified for the decoding process.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 5

3.96 reserved: The term “reserved” when used in the clauses defining the coded bitstream indicates that some
values of a particular syntax element may be used in extensions of this Recommendation | International Standard by ITU-
T | ISO/IEC, and that these values shall not be used unless so specified.

3.97 run: The number of zero coefficients preceding a non-zero coefficient, in the scan order. The absolute value of
the non-zero coefficient is called “level”.

3.98 sample aspect ratio (SAR): Specifies the distance between samples. It is defined (for the purposes of this
Recommendation | International Standard) as the vertical displacement of the lines of luma samples in a frame divided by
the horizontal displacement of the luma samples. Thus its units are (metres per line) ÷ (metres per sample).

3.99 saturation: Limiting a value that exceeds a defined range by setting its value to the maximum or minimum of
the range as appropriate.

3.100 short SCP: A start code prefix which uniquely indicates the start of a slice layer start code. It is one byte
shorter than a long SCP.

3.101 skipped macroblock: A macroblock for which no data is encoded other than an indication that the macroblock
is to be decoded as "skipped".

3.102 slice: An integer number of macroblocks belonging to the same slice group. Within the slice group, the
macroblocks are ordered in raster scan order.

3.103 slice group: one or more uncoded macroblock, not necessarily in raster scan order, that share the same slice
group_id in the mb_allocation_map.

3.104 source (input): Term used to describe the video material or some of its attributes before encoding.

3.105 spatial prediction: A prediction derived from the content of the current decoded frame.

3.106 start code prefix (SCP): One of a set of unique codes embedded in the coded bitstream that are used for
identifying the beginning of a start code. Emulation of start code prefixes is prevented with a defined procedure.

3.107 symbol: Syntax element, or part thereof, to be coded. If a symbol is non-binary, it is converted into a sequence
of binary decisions called bins.

3.108 temporal prediction: prediction derived from pictures other than the current decoded picture.

3.109 top field: One of two fields that comprise a frame. Each line of a top field is spatially located immediately
above the corresponding line of the bottom field.

3.110 transform coefficient: A scalar quantity considered to be in a frequency domain that is associated with a
particular two-dimensional frequency index in the transform part of the decoding process.

3.111 variable length coding (VLC): A reversible procedure for coding that assigns shorter code-words to frequent
events and longer code-words to less frequent events.

3.112 video buffering verifier (VBV): A hypothetical decoder that is conceptually connected to the output of the
encoder. Its purpose is to provide a constraint on the variability of the data rate that an encoder or editing process may
produce.

3.113 XYZ profile decoder: decoder able to decode bitstreams conforming to the specifications of the XYZ profile
(with XYZ being any of the defined Profile names).

3.114 zig-zag scanning order: A specific sequential ordering of transform coefficients from (approximately) the
lowest spatial frequency to the highest.

4 Abbreviations

4.1 CIF: Common Intermediate Format

4.2 EBSP: Encapsulated Byte Sequence Payload

4.3 IDR: Instantaneous Decoder Refresh

4.4 LSB: Least Significant Bit

4.5 MB: Macroblock

4.6 MSB: Most Significant Bit

4.7 NAL: Network Abstraction Layer

DRAFT ISO/IEC 14496-10 : 2002 (E)

6 DRAFT ITU-T Rec. H.264 (2002 E)

4.8 QCIF: Quarter Common Intermediate Format

4.9 RBSP: Raw Byte Sequence Payload

4.10 SCP: Start Code Prefix

4.11 SODB: String Of Data Bits

4.12 VCL: Video Coding Layer

4.13 VBV: Video Buffering Verifier

4.14 VLC: Variable Length Coding

5 Conventions

The mathematical operators used to describe this Specification are similar to those used in the C programming language.
However, integer divisions with truncation and rounding are specifically defined. Numbering and counting loops
generally begin from zero.

5.1 Arithmetic operators

The following mathematical and logical operators are defined as follows

+ Addition

– Subtraction (as a binary operator) or negation (as a unary operator)

++ Increment, i.e. x++ is equivalent to x = x + 1

–– Decrement, i.e. x–– is equivalent to x = x – 1

×

*
Multiplication

^ Power

/ Integer division with truncation of the result toward zero. For example, 7/4 and –7/–4 are truncated to
1 and –7/4 and 7/–4 are truncated to –1.

DIV Integer division with truncation of the result toward minus infinity. For example 3 DIV 2 is rounded
to 1, and –3 DIV 2 is rounded to –2.

÷ Used to denote division in mathematical equations where no truncation or rounding is intended.

% Modulus operator. Defined only for positive numbers.

∑
=

b

ai

if)(The summation of the f (i) with i taking all integer values from a up to and including b.

a % b Remainder of a divided by b, defined only for a and b both positive integers

5.2 Logical operators
a && b Boolean logical "and" of a and b

a | | b Boolean logical "or" of a and b

! Logical NOT

5.3 Relational operators

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 7

5.4 Bitwise operators
& AND

| OR

a >> b Arithmetic right shift of a two’s complement integer representation of a by b binary digits. This
function is defined only for positive values of b.

a << b Arithmetic left shift of a two’s complement integer representation of a by b binary digits. This
function is defined only for positive values of b.

5.5 Assignment

= Assignment operator

5.6 Functions

Sign(x) =

<−
≥

0;1

0;1

x

x
(5-1)

Abs(x) =

<−
≥

0;

0;

xx

xx
(5-2)

clip3(a, b, c) =

>
<

otherwise;

;

;

c

bcb

aca

(5-3)

clip1(x) = clip3(0, 255, x) (5-4)

6 Source coder

6.1 Picture formats

The image width and height of the decoded luma memory arrays are multiples of 16 samples. Decoder output picture
sizes that are not a multiple of 16 in width or height can be specified using a cropping rectangle. This Recommendation |
International Standard only supports the coding of colour sequences using 4:2:0 chroma sub-sampling.

This Recommendation | International Standard describes coding of video that contains either progressive or interlaced
frames, which may be mixed together in the same sequence. The vertical and horizontal locations of luma and chroma
samples in progressive frames are shown in Figure 6-1.

DRAFT ISO/IEC 14496-10 : 2002 (E)

8 DRAFT ITU-T Rec. H.264 (2002 E)

... ...

Figure 6-1 – Vertical and horizontal locations of 4:2:0 luma and chroma samples in progressive scan pictures

A frame of video contains two fields, the top field and the bottom field, which are interleaved. The first (i.e., top), third,
fifth, etc. lines of a frame are the top field lines. The second, fourth, sixth, etc. lines of a frame are the bottom field lines.
A top field picture consists of only the top field lines of a frame. A bottom field picture consists of only the bottom field
lines of a frame.

The two fields of an interlaced frame are separated in time. They may be coded separately as two field pictures or
together as a frame picture. A progressive frame should always be coded as a single frame picture. However, a
progressive frame is still considered to consist of two fields (at the same instant in time) so that other field pictures may
reference the sub-fields of the frame.

The vertical and temporal sampling positions of samples in interlaced frames are shown in Figure 6-2. The vertical
sampling positions of the chroma samples in a top field of an interlaced frame are specified as shifted up by 1/4 luma
sample height relative to the field-sampling grid in order for these samples to align vertically to the usual position
relative to the full-frame sampling grid. The vertical sampling positions of the chroma samples in a bottom field of an
interlaced frame are specified as shifted down by 1/4 luma sample height relative to the field-sampling grid in order for
these samples to align vertically to the usual position relative to the full-frame sampling grid. The horizontal sampling
positions of the chroma samples are specified as unaffected by the application of interlaced field coding.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 9

Time

Top
Field

Bottom
Field

Top
Field

= Luminance Sample

= Chrominance Sample

Figure 6-2 – Vertical and temporal sampling positions of samples in 4:2:0 interlaced frames

6.2 Subdivision of a picture into slices and macroblocks

Pictures are divided into macroblocks of 16x16 luma samples each, with two associated 8x8 chroma samples. For
instance, a QCIF picture is divided into 99 macroblocks as indicated in Figure 6-3.

Each macroblock in a picture belongs to exactly one slice. The minimum number of slices for a picture is 1, and the
maximum number of slices of a picture is the number of macroblocks in the picture (for example 99 in a QCIF picture).

When Data Partitioning is not used, coded slices start with a slice header and are followed by the entropy coded symbols
of the macroblock data for all the macroblocks of the slice in raster scan order. When Data Partitioning is used, the
macroblock data of a Slice is partitioned in up to three partitions, containing header information, intra
coded_block_pattern and coefficients, and inter coded_block_pattern and coefficients, respectively.

The order of the macroblocks in the bitstream depends on the Macroblock Allocation Map and is not necessarily raster
scan order. The mb_allocation_map contains the slice_group_id of every macroblock in a picture. It is part of the
Parameter Set that is referenced by the parameter_set_id in the slice header. All uncoded macroblocks that share the
same slice_group_id are called a slice group. Hence, a mb_allocation_map allocates every macroblock to exactly one
slice group. Each slice group is represented by one or more slices in the bitstream. Within each slice group,
macroblocks are ordered in raster scan order. Figure 6-3 exemplifies macroblock assignments to a slice.

[Ed.Note: Improve Figure 6-3]

0 1 2 3 4 5 6

7 8 9

0 1 2 3 4

5 6 7 8 9

DRAFT ISO/IEC 14496-10 : 2002 (E)

10 DRAFT ITU-T Rec. H.264 (2002 E)

Figure 6-3 – Two examples for macroblock assignment to a slice and their numbering

6.3 Assignment of symbols within a macroblock

Figures 6-4 indicates how a macroblock or 8x8 sub-block is partitioned with each block being motion-compensated
using a separate motion vector and (for blocks larger or equal to 8x8 samples) using a separate picture reference
parameter. If the ABT feature is used, the transform for residual coding is adapted to the partitioning pattern as well (see
clause 14).

0 0 1
0 1

2 3

16x16 16x8 8x16 8x8

8x8 8x4 4x8

0 0 1

1

0

0 1

2 3

4x4

1

0

MB-Modes

8x8-Modes

Figure 6-4 – Numbering of the vectors for the different blocks depending on the inter mode. For each block the
horizontal component comes first followed by the vertical component (raster scan order)

Figure 6-5 shows the order of the assignments of syntax elements resulting from coding a macroblock to sub-blocks of
the MB if the CABAC (see clause 10) and ABT (see clause 14) features are not is used.

[Ed.Note: Redraw the following figure using Visio, exchange CBPY by coded_block_patternY, add a drawing for
CABAC and for ABT.]

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 11

CBPY 8x8 block order

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Luma residual coding 4x4 block order

18 19

20 21

22 23

24 25

16 17

VU
2x2 DC

AC

Chroma residual coding 4x4 block order

0 1

32

Figure 6-5 – Ordering of blocks for coded_block_patternY and residual coding of 4x4 blocks

7 Syntax

7.1 Method of describing the syntax in tabular form

The syntax is described in a similar manner as the syntax in ITU-T Recommendation H.262 | ISO/IEC 13818-2. It
closely follows the C-language syntactic constructs. Data items in the bitstream are represented in bold type. Each data
item is described by its name, its syntax category and descriptor for its method of representation. A decoder behaves
according to the value of the decoded data element in the bitstream and on the values of previously decoded data
elements.

The syntax tables describe a superset of the syntax of all correct and error-free input bitstreams. An actual decoder must
implement correct means for identifying the beginning of the bitstream for proper decoding and to identify and handle
errors in the bitstream. The methods for identifying and handling errors and other such situations are not described here.

Following C-language conventions, a value of ‘0‘ represents a FALSE condition in a test statement. The value TRUE is
usually represented by ‘1‘, but any other value different than zero is understood as TRUE.

The following table lists examples of pseudo code used to describe the syntax. When data_element appears, it indicates
that a data element is read (extracted) from the bitstream and the bitstream pointer advances to the bit following the last
bit of the data element extracted.

DRAFT ISO/IEC 14496-10 : 2002 (E)

12 DRAFT ITU-T Rec. H.264 (2002 E)

Category Descriptor

/* A statement can be a data element with an associated syntax category
and descriptor or can be an expression used to specify conditions for the
type and quantity of data elements, as in the following two examples */
data_element 3 e(v)

conditioning statement

/* A group of statements enclosed in curly brackets is a compound
statement and is treated functionally as a single statement. */
{

statement

statement

…

}

/* A “while” structure indicates a test of whether a condition is true, and
if true, indicates evaluation of a statement (or compound statement)
repeatedly until the condition is no longer true */
while (condition)

statement

/* A “do … while” structure indicates evaluation of a statement once,
followed by a test of whether a condition is true, and if true, indicates
repeated evaluation of the statement until the condition is no longer true
*/
do

statement

while (condition)

/* An “if … else” structure indicates a test of whether a condition is
true, and if the condition is true, indicates evaluation of a primary
statement, otherwise indicates evaluation of an alternative statement.
The “else” part of the structure and the associated alternative statement
is omitted if no alternative statement evaluation is needed */
if(condition)

primary statement

else

alternative statement

/* A “for” structure indicates evaluation of an initial statement, followed
by a test of a condition, and if the condition is true, indicates repeated
evaluation of a primary statement followed by a subsequent statement
until the condition is no longer true. */
for(initial statement; condition; subsequent statement)

primary statement

7.2 Definitions of functions and descriptors

The functions presented here are used to better understand the behaviour of a compliant decoder. These functions assume
the existence of a bitstream pointer with an indication of the position of the next bit to be read by the decoder from the
bitstream.

byte_aligned()

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 13

• Returns TRUE if the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is
the first bit in a byte. Otherwise it returns FALSE

next_bits()

• Provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next token in the bitstream.

more_rbsp_data()

• Returns TRUE if there is more data in an RBSP before rbsp_trailing_bits(). Otherwise it returns FALSE. The
method for enabling determination of whether there is more data in the slices is specified by the system (or in
Annex B for systems that use the byte stream format).

coding_type()

• Returns the coding type of slice or picture.

The following descriptors are used to describe the type of each syntax element.

• b(8): byte having any value (8 bits).

• ue(v): unsigned Exp-Golomb-coded syntax element with the left bit first.

• se(v): signed Exp-Golomb-coded syntax element with the left bit first.

• me(v): mapped Exp-Golomb-coded syntax element with the left bit first.

• ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first.

• ae(v): context-adaptive arithmetic entropy-coded syntax element.

• f(n): fixed-value bit string using n bits written (from left to right) with the left bit first.

• i(n): signed integer using n bits for a two’s complement representation with most significant bit written first.
If n is "v", the number of bits varies in a manner dependent on the value of other decoded data.

• u(n): unsigned integer using n bits with most significant bit written first. If n is "v", the number of bits varies
in a manner dependent on the value of other decoded data.

When CABAC entropy coding is applied, these descriptors do not apply to some categories of syntax elements.

7.3 Syntax in tabular form

7.3.1 NAL unit syntax

nal_unit(NumBytesInEBSP) { Category Descriptor

error_flag u(1)

nal_unit_type u(5)

picture_header_flag u(1)

non_stored_content_flag u(1)

for(i=0; i<NumBytesInEBSP; i++)

ebsp[i] b(8)

}

DRAFT ISO/IEC 14496-10 : 2002 (E)

14 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2 Raw and encapsulated byte sequence payloads

7.3.2.1 RBSP from EBSP extraction syntax

rbsp_extraction(NumBytesInEBSP) { /* external framing */ Category Descriptor

NumBytesInRBSP = 0

for(i=0; i<NumBytesInEBSP; i++) {

if(next_bits() = = 0x0003) {

rbsp[NumBytesInRBSP++] b(8)

i++

emulation_prevention_byte /* = = 0x03 */ f(8)

} else

rbsp[NumBytesInRBSP++] b(8)

}

}

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 15

7.3.2.2 Parameter set RBSP syntax

[Ed.Note: Should aspect_ratio_info follow video_signal_type ? Should sar_width, sar_height be e(v) ? Why is
entropy_coding_mode e(v) and not u(1) ? Why is motion_resolution e(v) and not u(1) ?]

parameter_set_rbsp() { Category Descriptor

parameter_set_id 0 ue(v)

log2_max_frame_num_minus4 0 ue(v)

num_of_reference_pictures 0 ue(v)

required_pic_num_update_behaviour 0 u(1)

frame_width_in_MBs_minus1 0 ue(v)

frame_height_in_MBs_minus1 0 ue(v)

frame_cropping_rect_left_offset 0 ue(v)

frame_cropping_rect_right_offset 0 ue(v)

frame_cropping_rect_top_offset 0 ue(v)

frame_cropping_rect_bottom_offset 0 ue(v)

aspect_ratio_info 0 b(8)

if(aspect_ratio_info = = “Extended SAR”) {

sar_width 0 u(8)

sar_height 0 u(8)

}

video_signal_type 0 u(1)

if(video_signal_type) {

video_format 0 u(3)

video_range 0 u(1)

colour_description 0 u(1)

if(colour_description) {

colour_primaries 0 b(8)

transfer_characteristics 0 b(8)

matrix_coefficients 0 b(8)

}

}

entropy_coding_mode 0 ue(v)

motion_resolution 0 ue(v)

constrained_intra_prediction_flag 0 u(1)

num_units_in_tick 0 u(32)

time_scale 0 u(32)

num_slice_groups_minus1 0 u(3)

if(num_slice_groups_minus1 > 0) { /* use of Flexible MB Order */

mb_allocation_map_type 0 ue(v)

if(mb_allocation_map_type = = 0)

for(i=0; i<=max_slice_group_id; i++)

run_length 0 ue(v)

else if(mb_allocation_map_type = = 2)

for(i=0; i<num_mbs_in_picture; i++)

slice_group_id 0 u(3)

}

rbsp_trailing_bits() 0

}

DRAFT ISO/IEC 14496-10 : 2002 (E)

16 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2.3 Supplemental enhancement information RBSP syntax

sei_rbsp() { Category Descriptor

do

sei_message() 7

while(more_rbsp_data())

rbsp_trailing_bits() 7

}

7.3.2.3.1 Supplemental enhancement information message syntax

sei_message() { Category Descriptor

payloadType = 0

while(next_bits() = = 0xFF) {

byte_ff /* equal to 0xFF */ 7 u(8)

PayloadType += 255

}

last_payload_type_byte 7 u(8)

PayloadType += last_payload_type_byte

PayloadSize = 0

while(next_bits() = = 0xFF) {

byte_ff 7 u(8)

PayloadSize += 255

}

last_payload_size_byte 7 u(8)

PayloadSize += last_payload_size_byte

sei_payload(PayloadType, PayloadSize)

}

7.3.2.4 Picture layer RBSP syntax

picture_layer_rbsp() { Category Descriptor

picture_structure 3 ue(v)

frame_num 3 u(v)

rps_layer()

if(coding_type() = = Bipred) {

direct_mv_scale_fwd 3 ue(v)

direct_mv_scale_bwd 3 ue(v)

direct_mv_scale_divisor 3 ue(v)

explicit_bipred_weight_indicator 3 u(1)

if(explicit_bipred_weight_indicator > 1)

adaptive_bipred_coeff_table() 3

}

rbsp_trailing_bits() 3

}

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 17

7.3.2.4.1 Adaptive bi-prediction coefficient table syntax

[Ed.Note: Old table replaced by this one]
adaptive_bipred_coeff_table() { Category Descriptor

number_of_abp_coeff_minus1 3 ue(v)

for(i=0; i<=number_of_luma_abp_coeff_minus1; i++) {

luma_weight_factor_fwd[i] 3 se(v)

luma_weight_factor_bwd[i] 3 se(v)

luma_constant_factor[i] 3 se(v)

luma_logarithmic_weight_denominator[i] 3 ue(v)

for(iCbCr=0; iCbCr<2; iCbCr++) {

chroma_weight_factor_fwd[iCbCr][i] 3 se(v)

chroma_weight_factor_bwd[iCbCr][i] 3 se(v)

chroma_constant_factor[iCbCr][i] 3 se(v)

chroma_logarithmic_weight_denominator[iCbCr][i] 3 ue(v)

}

}

}

7.3.2.5 Slice layer RBSP syntax

slice_layer_no_partitioning_rbsp() { Category Descriptor

slice_header() 4

slice_data() /* all categories of slice_data() syntax */ 4, 5, 6

rbsp_trailing_bits() 4

}

7.3.2.6 Data Partition A RBSP syntax

dpa_layer_rbsp () { Category Descriptor

slice_header() 4

slice_id 4 ue(v)

slice_data() /* only the category 4 parts of slice_data() syntax */ 4

rbsp_trailing_bits() 4

}

7.3.2.7 Data Partition B RBSP syntax

dpb_layer_rbsp() { Category Descriptor

slice_id 5 ue(v)

slice_data() /* only the category 5 parts of slice_data() syntax */ 5

rbsp_trailing_bits() 5

}

DRAFT ISO/IEC 14496-10 : 2002 (E)

18 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2.8 Data Partition C RBSP syntax

dpc_layer_rbsp() { Category Descriptor

slice_id 6 ue(v)

slice_data() /* only the category 6 parts of slice_data() syntax */ 6

rbsp_trailing_bits() 6

}

7.3.2.9 RBSP trailing bits syntax

rsbp_trailing_bits() { Category Descriptor

rbsp_stop_bit /* equal to 1 */ All f(1)

while(!byte_aligned())

rbsp_alignment_bit /* equal to 0 */ All f(1)

}

7.3.3 Slice header syntax

slice_header() { Category Descriptor

parameter_set_id 4 me(v)

first_mb_in_slice 4 ue(v)

if(coding_type() = = Inter | | coding_type() = = Bipred) {

num_ref_pic_active_fwd_minus1 4 ue(v)

if(coding_type() = = Bipred)

num_ref_pic_active_bwd_minus1 4 ue(v)

}

rps_layer()

slice_qp_minus26 /* relative to 26 */ 4 se(v)

if(coding_type() = = SP | | coding_type() = = SI) {

if(coding_type() = = SP)

sp_for_switch_flag 4 u(1)

slice_qp_s_minus26 /* relative to 26 */ 4 se(v)

}

if(entropy_coding_mode = = 1)

num_mbs_in_slice 4 ue(v)

}

7.3.4 Reference picture selection layer syntax

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 19

rps_layer() { Category Descriptor

if(coding_type() != Intra) {

reference_reordering_indicator_fwd 3 | 4 u(1)

if(reference_reordering_indicator_fwd) {

do {

remapping_of_pic_nums_indicator 3 | 4 me(v)

if(remapping_of_pic_nums_indicator = = 0 | |
remapping_of_pic_nums_indicator = = 1)
abs_diff_pic_numbers 3 | 4 ue(v)

else if(remapping_of_pic_nums_indicator = = 2)

long_term_pic_index 3 | 4 ue(v)

} while(remapping_of_pic_nums_indicator != 3)

}

}

if(coding_type() = = Bipred) {

reference_reordering_indicator_bwd 3 | 4 u(1)

if(reference_reordering_indicator_bwd) {

do {

remapping_of_pic_nums_indicator 3 | 4 me(v)

if(remapping_of_pic_nums_indicator = = 0 | |
remapping_of_pic_nums_indicator = = 1)
abs_diff_pic_numbers 3 | 4 ue(v)

else if(remapping_of_pic_nums_indicator = = 2)

long_term_pic_index 3 | 4 ue(v)

} while(remapping_of_pic_nums_indicator != 3)

}

}

ref_pic_buffering_mode 3 | 4 u(1)

if(ref_pic_buffering_mode = = 1) {

do {

memory_management_control_operation 3 | 4 me(v)

if(memory_management_control_operation = = 1 | |
memory_management_control_operation = = 3)
difference_of_pic_nums 3 | 4 e(v)

else if(memory_management_control_operation = = 2 | |
memory_management_control_operation = = 3)

long_term_pic_index 3 | 4 ue(v)

else if(memory_management_control_operation = = 4)

max_long_term_pic_index_plus1 3 | 4 ue(v)

} while(memory_management_control_operation != 0 | |
memory_management_control_operation != 5)

}

}

DRAFT ISO/IEC 14496-10 : 2002 (E)

20 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.5 Slice data syntax

slice_data() { Category Descriptor

do {

if(entropy_coding_mode = = 0 && coding_type() != Intra)

mb_skip_run 4 ue(v)

if(more_rbsp_data())

coded_macroblock_layer()

} while (more_rbsp_data ())

}

7.3.6 Macroblock layer syntax

coded_macroblock_layer() { Category Descriptor

mb_mode 4 me(v) | ae(v)

if(num_subblock_mb[mb_mode] = = 4)

prediction8x8(mb_mode)

else

prediction16x16(mb_mode)

if(mb_mode != Intra16x16)

coded_block_pattern 4 me(v) | ae(v)

if(coded_block_pattern | | mb_mode = = Intra16x16) {

delta_qp 4 se(v) | ae(v)

residual()

}

}

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 21

7.3.6.1 Prediction data for 8x8 coding modes syntax

prediction8x8(mb_mode) { Categor
y

Descriptor

for(i=0; i<4; i++) /* for each 8x8 block */
block8x8_mode[i] 4 me(v) | ae(v)

for(i=0; i<4; i++) /* for each 8x8 block */
if(block8x8_mode[i] = = Intra8x8)

for(j=0; j<4; j++)
intra_pred_mode 4 me(v) | ae(v)

for(i=0; i<4; i++) /* for each 8x8 block */
if(num_ref_pic_active_fwd_minus1 > 0 &&

mb_mode != Inter8x8ref0 &&
block8x8_mode[i] != Intra8x8 &&
block8x8_mode[i] != Direct8x8 &&
block_prediction_mode(block8x8_mode[i]) != Bwd)
ref_idx_fwd 4 ue(v) | ae(v)

for(i=0; i<4; i++) /* for each 8x8 block */
if(num_ref_pic_active_bwd_minus1 > 0 &&

(block8x8_mode[i] != Intra8x8 &&
block8x8_mode[i] != Direct8x8 &&
block_prediction_mode(block8x8_mode[i]) != Fwd)

ref_idx_bwd 4 ue(v) | ae(v)
for(i=0; i<4; i++) /* for each 8x8 block */

if(block_prediction_mode(block8x8_mode[i]) = = Bipred &&
explicit_bipred_weight_indicator > 1 &&
number_of_abp_coeff_minus1 > 0)
abp_coeff_idx ue(v)

for(i=0; i<4; i++) /* for each 8x8 block */
if(block8x8_mode[i] != Intra8x8 &&

block8x8_mode[i] != Direct8x8 &&
block_prediction_mode(block8x8_mode[i]) != Bwd)
for(j=0; j<num_subblock_block8x8(block8x8_mode[i]); j++)

for(k=0; k<2; k++)
mvd_fwd[i][j][k] 4 se(v) | ae(v)

for(i=0; i<4; i++) /* for each 8x8 block */
if(block8x8_mode[i] != Intra8x8 &&

block8x8_mode[i] != Direct8x8 &&
block_prediction_mode(block8x8_mode[i]) != Fwd)
for(j=0; j<num_subblock_block8x8(block8x8_mode[i]); j++)

for(k=0; k<2; k++)
mvd_bwd[i][j][k] 4 se(v) | ae(v)

}

DRAFT ISO/IEC 14496-10 : 2002 (E)

22 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.6.2 Prediction data for 16x16 coding modes syntax

prediction16x16(mb_mode) { Category Descriptor

if(mb_mode = = Intra4x4)

for(i=0; i<16; i++) /* for each 4x4 block */

intra_pred_mode 4 me(v) | ae(v)

else if(mb_mode != Intra16x16 && mb_mode != Direct16x16) {

for(i=0; i<num_subblock_mb(mb_mode, i); i++)

if(num_ref_pic_active_fwd_minus1 > 0 &&
subblock_prediction_mode(mb_mode, i) != Bwd)
ref_idx_fwd 4 ue(v) | ae(v)

for(i=0; i<num_subblock_mb(mb_mode, i); i++) {

if(num_ref_pic_active_bwd_minus1 > 0 &&
subblock _prediction_mode(mb_mode, i) != Fwd)
ref_idx_bwd 4 ue(v) | ae(v)

for(i=0; i<num_subblock_mb(mb_mode); i++) {

if(subblock_prediction_mode(mb_mode, i) = = Bipred &&
explicit_bipred_weight_indicator > 1 &&
number_of_abp_coeff_minus1 > 0)
abp_coeff_idx 4 ue(v)

for(i=0; i<num_subblock_mb(mb_mode); i++) {

if(subblock_prediction_mode(mb_mode, i) != Bwd)

for(j=0; j<2; j++)

mvd_fwd[i][j] 4 se(v) | ae(v)

for(i=0; i<num_subblock_mb(mb_mode); i++) {

if(subblock_prediction_mode(mb_mode, i) != Fwd)

for(j=0; j<2; j++)

mvd_bwd[i][j] 4 se(v) | ae(v)

}

}

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 23

7.3.6.3 Residual data syntax

[Ed.Note: This syntax tables look different for CABAC than CAVLC]

residual(mb_mode) { Category Descriptor

if(mb_mode = = MBintra16x16)

residual_4x4block_cavlc(intra16x16DC, 16)

for(i8x8=0; i8x8<4; i8x8++) /* each luma 8x8 block */

for(i4x4=0; i4x4<4; i4x4++) /* each 4x4 sub-block of block */

if(coded_block_pattern & (1 << i8x8))

if(mb_mode = = MBintra16x16)

residual_4x4block_cavlc(intra16x16AC, 16)

else

residual_4x4block_cavlc(luma, 16)

if(coded_block_pattern & 0x30) /* chroma DC residual coded */

for(iCbCr=0; iCbCr<2; iCbCr++)

residual_4x4block_cavlc(luma, 4)

if(coded_block_pattern & 0x20) /* chroma AC residual coded */

for(iCbCr=0; iCbCr<2; iCbCr++)

for(i4x4=0; i4x4<4; i4x4++)

residual_4x4block_cavlc(luma, 16)

}

DRAFT ISO/IEC 14496-10 : 2002 (E)

24 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.6.4 Residual 4x4 block CAVLC syntax

residual_4x4block_cavlc(block_mode, max_numcoeff) {

numcoeff_trailingones 5 | 6 ce(v)

if(trailingones)

for(i=trailingones-1; i>=0; i--)

trailingones_sign[i] 5 | 6 u(1)

if(numcoeff) {

for(i=numcoeff-1; i>=0; i--) {

luma_level[i] 5 | 6 ce(v)

}

if(numcoeff_trailingones < max_numcoeff) {

totalzeros 5 | 6 ce(v)

i = numcoeff_trailingones - 1

zerosleft = totalzeros

if(zerosleft > 0) {

do {

run_before[i] 5 | 6 ce(v)

zerosleft -= runbefore[i]

i--

} while (zerosleft != 0 && i != 0)

runbefore[0] = zerosleft

}

}

}

}

8 Semantics

8.1 NAL unit semantics

The Video Coding Layer (VCL) is defined to efficiently represent the content of the video data, and the Network
Abstraction Layer (NAL) is defined to format that data and provide header information in a manner appropriate for
conveyance by the transport layers or storage media. The data is organized into NAL units, each of which contains an
integer number of bytes. A NAL unit defines a generic format for use in both packet-oriented and bitstream systems. The
format of NAL units for both packet-oriented transport and bitstream is identical except for the fact that each NAL unit
can be preceded by a start code in a bitstream-oriented transport layer.

NumBytesInEBSP defines the size of the EBSP in bytes. This element of the NAL interface does not necessarily appear
as a syntax element [Ed.Note: syntax element or not ?], but rather denotes the quantity of EBSP data to be carried by the
system for the NAL unit.

error_flag signals whether an error exists in the NAL unit (including the nal_unit_type, the error_flag itself, the
non_stored_content_flag, the picture_header flag, and the EBSP). The handling of an error-marked unit is non-normative
and is not defined by this Recommendation | International Standard.

nal_unit_type indicates the type of element contained in the NAL unit according to the types specified in Table 8-1.

picture_header_flag indicates that the EBSP contains a picture header that precedes any other data in the EBSP. If the
picture_header_flag is 1, the nal_unit_type shall not indicate a picture header.

non_stored_content_flag signals whether the content of the EBSP belongs to a picture that is not stored in the multi-
frame buffer. non_stored_content_flag shall not be signalled for supplemental enhancement information and parameter
set information. The value of non_stored_content_flag shall be the same for all the picture header, slice, and data
partition EBSPs of a particular picture.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 25

ebsp[i] an Encapsulated Byte Sequence Payload contains the NAL unit data in the encapsulated byte sequence payload
(EBSP) format. Any sequence of bits can be formatted into a sequence of bytes in a manner defined as a Raw Byte
Sequence Payload (RBSP), and any RBSP can be encapsulated in a manner that prevents emulation of byte stream start
code prefixes in a manner defined as an encapsulated byte sequence payload (EBSP).

Within the ebsp data, an ebsp[i] byte having the value zero (0x00) shall not be immediately followed by a byte
ebsp[i+1] having any of the following three values:

– zero (0x00)

– one (0x01)

– two (0x02)

If an ebsp[i] byte having the value zero (0x00) is immediately followed by an ebsp[i+1] byte having the value 0x03,
these bytes shall not be immediately followed within the EBSP by a byte ebsp[i+2] having any value other than the
following four values:

– zero (0x00)

– one (0x01)

– two (0x02)

– three (0x03)

When an ebsp[i] byte having the value zero (0x00) is immediately followed within the EBSP by the special ebsp[i+1]
byte value of three (0x03), the ebsp[i+1] value 0x03 shall be removed from the bitstream by the decoder and discarded.
This special value is used to allow an RBSP payload to contain any sequence of byte values without allowing the EBSP
to contain the three special two-byte patterns described above.

DRAFT ISO/IEC 14496-10 : 2002 (E)

26 DRAFT ITU-T Rec. H.264 (2002 E)

Table 8-1 – NAL Unit Type (NUT) Codes

Code NAL Unit Type (nal_unit_type) Category

(parenthesis
indicates
dependence on
picture_header_flag)

Priority of
nal_unit_type
(PNUT)

coding_type

0x01 Intra Picture Header 3 2 Intra

0x02 Intra IDR Picture Header 3 1 Intra

0x03 Intra Slice of Intra Picture (3), 4, 5 3 Intra

0x04 Intra Slice of Intra IDR Picture (3), 4, 5 3 Intra

0x05 Intra Slice of Mixed Picture (3), 4, 5 3 Intra

0x06 Inter Picture Header – All Inter 3 2 Inter

0x07 Inter Picture Header – Mixed 3 2 Inter

0x08 Inter Slice of Inter Picture (3), 4, 5, 6 3 Inter

0x09 Inter Slice DPA of All-Inter Picture (3), 4 3 Inter

0x0A Inter Slice DPA of Mixed Picture (3), 4 3 Inter

0x0B B Picture Header – All B 3 2 Bipred

0x0C B Picture Header – Mixed 3 2 Bipred

0x0D B Slice of All-B Picture (3), 4, 5, 6 3 Bipred

0x0E B Slice of Mixed Picture (3), 4, 5, 6 3 Bipred

0x0F B DPA Slice of All-B Picture (3), 4 3 Bipred

0x10 B DPA Slice of Mixed Picture (3), 4 3 Bipred

0x11 SI Picture Header 3 2 SI

0x12 SI IDR Picture Header 3 1 SI

0x13 SI Slice of All-SI Picture (3), 4, 5 3 SI

0x14 SI Slice of All-SI IDR Picture (3), 4, 5 3 SI

0x15 SI Slice of Mixed Picture (3), 4, 5 3 SI

0x16 SP Picture Header – All SP 3 2 SP

0x17 SP Picture Header – Mixed 3 2 SP

0x18 SP Slice of All-SP Picture (3), 4, 5, 6 3 SP

0x19 SP Slice of Mixed Picture (3), 4, 5, 6 3 SP

0x1A SP Slice DPA of All-SP Picture (3), 4 3 SP

0x1B SP Slice DPA of Mixed Picture (3), 4 3 SP

0x1C DPB 5 4 na

0x1D DPC 6 4 na

0x1E Supplemental Enhancement
Information

7 5 na

0x1F Parameter Set Information 0 0 na

An instantaneous decoder refresh picture (IDR picture) implies that all pictures in the multi-picture buffer are marked as
“unused” except the current picture. Moreover, the maximum long-term index is reset to zero. An IDR picture contains

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 27

only Intra or SI slices, and IDR slice type shall be used for all slices of an IDR picture. The picture starts an independent
group of pictures (independent GOP) that lasts until the next IDR picture.

8.2 Raw and encapsulated byte sequence payloads

8.2.1 Raw byte sequence payload (RBSP) semantics

rbsp[i] a raw byte sequence payload is defined as an ordered sequence of bytes that contains a string of data bits
(SODB). A SODB is defined as an ordered sequence of bits, in which the left-most bit is considered to be the first and
most significant bit (MSB) and the right-most bit is considered to be the last and least significant bit (LSB). The RBSP
contains the SODB in the following form:

a) If the SODB is null, the RBSP is also null.

b) Otherwise, the RBSP shall contain the SODB in the following form:

1) The first byte of the RBSP shall contain the (most significant, left-most) eight bits of the SODB; the
next byte of the RBSP shall contain the next eight bits of the SODB, etc.; until fewer than eight bits
of the SODB remain.

2) The final byte of the RBSP shall have the following form:

i) The first (most significant, left-most) bits of the final RBSP byte shall contain the remaining bits
of the SODB, if any,

ii) The next bit of the final RBSP byte shall consist of a single rbsp_stop_bit having the value one
(‘1‘), and

iii) Any remaining bits of the final RBSP byte, if any, shall consist of one or more
rbsp_alignment_bit having the value zero (‘0‘).

Note that the last byte of a RBSP can never have the value zero (0x00), because it contains the rbsp_stop_bit.

If the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits of
the bytes of the RBSP and discarding the rbsp_stop_bit, which is the last (least significant, right-most) bit having the
value one (‘1‘), and discarding any following (less significant, farther to the right) bits that follow it, which have the
value zero (‘0‘).

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix.

8.2.2 Encapsulated byte sequence payload (EBSP) semantics

ebsp[i] an encapsulated byte sequence payload (EBSP) is an ordered sequence of bytes that contains an RBSP and may
also contain some emulation_prevention_byte syntax elements in order to prevent the presence of certain specific
sequences of data bytes within the EBSP.

emulation_prevention_byte is a byte equal to 0x03.

8.2.3 Parameter set RBSP semantics

The parameter set mechanism decouples the transmission of infrequently changing information from the transmission of
coded macroblock data. A parameter set is a collection of all the parameter values needed to correctly decode the VCL
data. Each slice references the parameter set containing the proper set of values needed to decode that slice.

It is recommended to convey parameter sets out-of-band using a reliable transport mechanism. However, in applications
where the bitstream shall be self-contained, in-band parameter set information units may be used. In error-prone
transmission environments, in-band parameter set information units should be protected in a way that assures their
successful reception. Synchronization between in-band and out-of-band transmission of the parameter set information is
outside of the scope of this Recommendation | International Standard.

All the slices of an independent GOP shall refer to the same parameter set. A received parameter set information unit
shall come into effect just before the next IDR picture is decoded.

parameter_set_id identifies the parameter set to be addressed.

log2_max_frame_num_minus4 specifies the MAX_PN constant used in frame number related arithmetic.
MAX_PN = 2^(log2_max_frame_num_minus4 + 4).

number_of_reference_pictures defines the total number of short- and long-term picture buffers in the multi-frame
buffer.

If required_frame_num_update_behaviour is 1, a specific decoder behaviour in case of missing frame numbers is
mandated (see subclause 9.1.1.2).

DRAFT ISO/IEC 14496-10 : 2002 (E)

28 DRAFT ITU-T Rec. H.264 (2002 E)

frame_width_in_MBs_minus1 and frame_height_in_MBs_minus1 define the size of the luma frame array internal to
the decoder in units of macroblocks. The frame width and height in units of macroblocks is computed by adding 1 to the
decoded values of each of these parameters.

frame_cropping_rect_left, frame_cropping_rect_right, frame_cropping_rect_top, frame_cropping_rect_bottom
define the area of the luma picture internal array which shall be the output of the decoding process. The decoded values
of these offsets consist of non-negative integer values, and the output of the decoding process is defined as the area
within the rectangle containing luma samples with horizontal coordinates from cropping_rect_left to
16*(picture_width_in_MBs_minus1 + 1)-(cropping_rect_right + 1) and with vertical coordinates from
cropping_rect_top to 16*(picture_height_in_MBs_minus1 + 1)-(cropping_rect_bottom + 1), inclusive.

video_signal_type: A flag which if set to ‘1‘ indicates the presence of video_signal_type information. If set to ‘0‘, the
video signal type is undefined or specified externally.

video_format: This is a three bit integer indicating the representation of the pictures before being coded in accordance
with this Recommendation | International Standard. Its meaning is defined in Table 8-2. If the video_signal_type() is not
present in the bitstream then the video format may be assumed to be “Unspecified video format”.

Table 8-2 – Meaning of video_format

video_format Meaning

000 Component

001 PAL

010 NTSC

011 SECAM

100 MAC

101 Unspecified video format

110 Reserved

111 Reserved

video_range: This one-bit flag indicates the black level and range of the luminance and chrominance signals.

colour_description: A flag which if set to ‘1’ indicates the presence of colour_primaries, transfer_characteristics and
matrix_coefficients in the bitstream.

colour_primaries: This 8-bit integer describes the chromaticity coordinates of the source primaries, and is defined in
Table 8-3.

Table 8-3 – Colour Primaries

Value Primaries

0 Reserved

1 ITU-R Recommendation BT.709
primary x y
green 0,300 0,600
blue 0,150 0,060
red 0,640 0,330
white D65 0,3127 0,3290

2 Unspecified video
Image characteristics are unknown.

3 Reserved

4 ITU-R Recommendation BT.470-2 System M
primary x y
green 0,21 0,71
blue 0,14 0,08
red 0,67 0,33
white C 0,310 0,316

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 29

5 ITU-R Recommendation BT.470-2 System B, G
primary x y
green 0,29 0,60
blue 0,15 0,06
red 0,64 0,33
white D65 0,3127 0,3290

6 SMPTE 170M
primary x y
green 0,310 0,595
blue 0,155 0,070
red 0,630 0,340
white D65 0,3127 0,3290

7 SMPTE 240M (1987)
primary x y
green 0,310 0,595
blue 0,155 0,070
red 0,630 0,340
white D65 0,3127 0,3290

8 Generic film (colour filters using Illuminant C)
primary x y
green 0,243 0,692 (Wratten 58)
blue 0,145 0,049 (Wratten 47)
red 0,681 0,319 (Wratten 25)

9-255 Reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the chromaticity is
unspecified or specified externally.

transfer_characteristics: This 8-bit integer describes the opto-electronic transfer characteristic of the source picture,
and is defined in Table 8-4.

Table 8-4 – Transfer Characteristics

Value Transfer Characteristic

0 Reserved

1 ITU-R Recommendation BT.709
V = 1,099 Lc

0,45 - 0,099

for 1 ≥ Lc ≥ 0,018
V = 4,500 Lc

for 0,018 > Lc ≥ 0

2 Unspecified video
Image characteristics are unknown.

3 Reserved

4 ITU-R Recommendation BT.470-2 System M
Assumed display gamma 2,2

5 ITU-R Recommendation BT.470-2 System B, G
Assumed display gamma 2,8

6 SMPTE 170M
V = 1,099 Lc

0,45 - 0,099

for 1 ≥ Lc ≥ 0,018
V = 4,500 Lc

for 0,018 > Lc ≥ 0

DRAFT ISO/IEC 14496-10 : 2002 (E)

30 DRAFT ITU-T Rec. H.264 (2002 E)

7 SMPTE 240M (1987)
V = 1,1115 Lc

0,45 - 0,1115

for Lc≥ 0,0228
V = 4,0 Lc

for 0,0228> Lc
8 Linear transfer characteristics

i.e. V = Lc
9 Logarithmic transfer characteristic (100:1 range)

V = 1.0 - log10(Lc)/2
for 1= Lc = 0.01

V = 0.0
for 0.01> Lc

10 Logarithmic transfer characteristic (316.22777:1 range)
V = 1.0 - log10(Lc)/2.5

for 1 = Lc = 0.0031622777
V = 0.0

for 0.0031622777 > Lc
11-255 Reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the transfer
characteristics are unspecified or are specified externally.

matrix_coefficients: This 8-bit integer describes the matrix coefficients used in deriving luminance and chrominance
signals from the green, blue, and red primaries, as specified in Table 8-5.

Using this table:
E’Y is analogue with values between 0 and 1
E’R, E’G, and E’B are analogue with values between 0 and 1
E’PB and E’PR are analogue between the values -0,5 and 0,5
White is defined as E’R = E’G = E’B = 1
White equivalently given by E’Y = 1, E’PB = 0, E’PR = 0
E’Y = KR * E’R + (1 – KR – KB) * E’G + KB * E’B

E’PB =
RK−1

5,0
(E’R – E’Y)

E’PB =
BK−1

5,0
(E’B – E’Y)

Y, Cb, and Cr are related to E’Y, E’PB, and E’PR by the following formulae:

if video_range=0:
Y = round(219 * E’Y + 16)
Cb = round(224 * E’PB + 128)
Cr = round(224 * E’PR + 128)

if video_range=1:
Y = round(255 * E’Y)
Cb = round(255 * E’PB + 128)
Cr = round(255 * E’PR + 128)

Table 8-5 – Matrix Coefficients

Value Matrix

0 Reserved

1 ITU-R Recommendation BT.709
KG = 0,7152; KR = 0,2126

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 31

2 Unspecified video
Image characteristics are unknown.

3 Reserved

4 FCC
KG = 0,59; KR =0,30

5 ITU-R Recommendation BT.470-2 System B, G:
KG = 0,587; KR = 0,299

6 SMPTE 170M
KG = 0,587; KR = 0,299

7 SMPTE 240M (1987)
KG = 0,701; KR = 0,212

8-255 Reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the matrix coefficients
are assumed to be undefined or specified externally.

In the case that video_signal_type() is not present in the bitstream, video_range is assumed to have the value 0 (a
nominal range of Y from 16 to 235).

aspect_ratio_info is an eight-bit integer which defines the value of sample aspect ratio. Table 8-6 shows the meaning of
the code. If aspect_ratio_info indicates Extended SAR, sample_aspect_ratio is represented by sar_width and sar_height.
The sar_width and sar_height shall be relatively prime. If aspect_ratio_info is zero or if either sar_width or sar_height
are zero, the sample aspect ratio shall be considered unspecified or specified externally.

Table 8-6 – Meaning of sample aspect ratio

aspect_ratio_info Sample aspect ratio

0000 0000 Undefined or specified externally

0000 0001 1:1 (“Square”)

0000 0010 12:11 (625-type for 4:3 picture)

0000 0011 10:11 (525-type for 4:3 picture)

0000 0100 16:11 (625-type stretched for 16:9 picture)

0000 0101 40:33 (525-type stretched for 16:9 picture)

0000 0110 24:11 (Half-wide 4:3 for 625)

0000 0111 20:11 (Half-wide 4:3 for 525)

0000 1000 32:11 (Half-wide 16:9 for 625)

0000 1001 80:33 (Half-wide 16:9 for 525)

0000 1010 18:11 (2/3-wide 4:3 for 625)

0000 1011 15:11 (2/3-wide 4:3 for 525)

0000 1100 24:11 (2/3-wide 16:9 for 625)

0000 1101 20:11 (2/3-wide 16:9 for 525)

0000 1110 16:11 (3/4-wide 4:3 for 625)

0000 1111 40:33 (3/4-wide 4:3 for 525)

0001 0000 64:33 (3/4-wide 16:9 for 625)

0001 0001 160:99 (3/4-wide 16:9 for 525)

0001 0010 to 1111 1110 Reserved

1111 1111 Extended SAR

sar_width is an 8-bit unsigned integer which indicates the horizontal size of sample aspect ratio. A zero value is
forbidden.

sar_height is an 8-bit unsigned integer which indicates the vertical size of sample aspect ratio. A zero value is forbidden.

DRAFT ISO/IEC 14496-10 : 2002 (E)

32 DRAFT ITU-T Rec. H.264 (2002 E)

entropy_coding_mode equal to zero stands for the non-arithmetic variable-length coding, whereas value one stands for
the arithmetic variable-length coding (see clause 10).

motion_resolution equal to zero stands for ¼-sample motion resolution, and equal to one stands for 1/8-sample motion
resolution.

constrained_intra_prediction_flag equal to zero stands for normal intra prediction, whereas one stands for the
constrained intra prediction. In the constrained intra prediction mode, no intra prediction is done from inter blocks.

num_units_in_tick is the number of time units of a clock operating at the frequency time_scale Hz that corresponds to
one increment of a clock tick counter defined externally or in Annex C. A clock tick is the minimum interval of time that
can be represented in the coded data. For example, if the clock frequency of a video signal is (30 000) ÷ 1001 Hz,
time_scale may be 30 000 and num_units_in_tick may be 1001.

time_scale is the number of time units which pass in one second. For example, a time coordinate system that measures
time using a 27 MHz clock has a time_scale of 27 000 000.

num_slice_groups_minus1: The number of slice groups is equal to num_slice_groups_minus1 + 1. If
num_slice_groups_minus1 is zero, all slices of the picture belong to the same slice group, and no flexible macroblock
ordering is applied. If num_slice_groups_minus1 is greater than zero, flexible macroblock ordering is in use. Values
greater than 7 are Reserved for future use.

mb_allocation_map_type: The macroblock allocation map type is present only if num_slice_groups_minus1 is greater
than 0. This parameter indicates how the macroblock allocation map is coded. Values ranging from 0 to 2 are valid.

run_length codeword follows for each slice group. It signals the number of consecutive macroblocks that are assigned to
the slice group in raster scan order

mb_allocation_map_type 0 is used to interleave slices. After the macroblocks of the last slice group have been assigned,
the process begins again from the first slice group. The process ends when all the macroblocks of a picture have been
assigned. For example, to signal interleaved slices in a QCIF picture, the number of slice groups is two and run_length of
11 for both slice groups.

mb_allocation_map_type 1 is used to define a dispersed macroblock allocation. The macroblock allocation map is
formed using the following formula, where n is the number of columns in the picture (in macroblocks) and p is the
number of slice groups to be coded. Specifically, macroblock position x is assigned to slice group S according to the
equation

S =
(x%n) + 1[]%p for x / n() even

(x%n) + 1+ p / 2[]%p for x / n()odd

(8-1)

where “%” and “/” represent the modulo operation and division with truncation respectively.

mb_allocation_map_type 2 is used to explicitly assign a slice group to each macroblock location in raster scan order.

slice_group_id identifies a slice group of a macroblock ranging from 0 to 7.

8.2.4 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode VCL data correctly
but is helpful for decoding or presentation purposes.

An SEI element contains one or more SEI messages. Each SEI message consists of a SEI header and SEI payload. The
type and size of the SEI payload are coded using an extensible syntax. The SEI payload size is indicated in bytes. Valid
SEI payload types are listed in Annex C.

The SEI payload may have a SEI payload header. For example, a payload header may indicate to which picture the
particular data belongs. The payload header shall be defined for each payload type separately. Definitions of SEI
payloads are specified in Annex C.

The transmission of SEI units is synchronous relative to other NAL units. An SEI message may concern a slice, a part of
a picture, a picture, any group of pictures, or a sequence in the past, currently decoded, or in the future. An SEI message
may also concern one or more NAL units previous or next in transmission order.

byte_ff is a byte equal to 0xFF identifying a need for a longer representation of the syntax structure it is used within.

last_payload_type_byte identifies the payload type of the last entry in an SEI message.

last_payload_size_byte identifies the size of the last entry in an SEI message.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 33

8.2.5 Picture layer RBSP semantics

picture_structure identifies the picture structure.

Code_number =0: Progressive frame picture.

Code_number =1: Top field picture.

Code_number =2: Bottom field picture.

Code_number =3: Interlaced frame picture, whose top field precedes its bottom field in time.

Code_number =4: Interlaced frame picture, whose bottom field precedes its top field in time.

Note that when top field and bottom field pictures are coded for a frame, the one that is decoded first is the one that
occurs first in time.

frame_num labels the frame. frame_num shall be incremented by 1 for each coded picture in coding order, in modulo
MAX_frame_num operation, relative to the frame_num of the previous stored frame in coding order. For non-stored
frames, frame_num shall be incremented from the value in the most temporally recent stored frame which precedes the
non-stored frame in coding order. The frame_num serves as a unique ID for each frame stored in the multi-frame buffer.
Therefore, a frame cannot be kept in the buffer after its frame_num has been used by another frame unless it has been
assigned a long-term frame index as specified below. No frame_num of a frame to be added to the multi-frame buffer
shall equal to any other among the short-term frames in the multi-frame buffer. A decoder which encounters a frame
number on a current frame having a value equal to the frame number of some other short-term stored frame in the multi-
frame buffer should treat this condition as an error.

direct_mv_scale_fwd is a scaling factor for the direct motion vector computation pointing into the forward reference set.

direct_mv_scale_bwd is a scaling factor for the direct motion vector computation pointing into the backward reference
set.

direct_mv_scale_divisor scales direct_mv_scale_fwd and direct_mv_scale_bwd.

Reference picture selection layer see subclause 8.4.

8.2.5.1 Adaptive Bi-prediction Picture Coefficient semantics

Explicit_Bi_Prediction_Block_Weight_Indication If explicit_bipred_weight_indicator is 0, the prediction block of a
B-block shall be generated by averaging the sample values of the prediction blocks. If explicit_B_prediction_indication
is 1, the implicit B prediction block weighting is in use. Otherwise, the explicit B prediction block weighting is in use.

Number of Adaptive Bi-prediction Coefficients (number_of_abp_coeff_minus1) The number of adaptive bi-
prediction coefficients is equal to (number_of_abp_coeff_minus1 represents + 1).

Adaptive Bi-prediction Coefficients luma_ weight_factor_fwd specifies the first weighting factor to generate the
luminance prediction signal with reference into the forward reference set. luma_weight_factor_bwd specifies the second
weighting factor to generate the luminance prediction signal with reference into the forward reference set.
luma_constant_factor specifies the constant factor to generate the luminance ABP prediction signal.
luma_logarithmic_weight_denominator is the binary logarithm of the denominator of the weighting factor.

The same applies for chrominance ABP coefficients using chroma_weight_factor_fwd, chroma_weight_factor_bwd,
chroma_constant_factor, and chroma_logarithmic_weight_denominator.

8.2.6 Slice layer RBSP semantics

The slice layer RBSP consists of a slice header defined in subclause 8.3 and the following slice data.

8.2.7 Data partition RBSP semantics

When data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Partition A
contains the header symbols of all coded MBs, partition B the intra Coded Block Patterns (coded_block_patterns) and
coefficients, and partition C the inter coded block patterns and coefficients.

slice_id Each slice of a picture is associated a unique slice identifier within the picture. The first coded slice of the
picture shall have identifier 0 and the identifier shall be incremented by one per each coded slice. Note that the coding
order of slices may not be identical to the normal scan order.

8.3 Slice header semantics

parameter_set_id the parameter set identifier indicates the parameter set in use.

DRAFT ISO/IEC 14496-10 : 2002 (E)

34 DRAFT ITU-T Rec. H.264 (2002 E)

first_mb_in_sliceX specifies the horizontal macroblock position of the first macroblock contained in this slice.

first_mb_in_sliceY specifies the vertical macroblock position of the first macroblock contained in this slice.

num_ref_pic_active_fwd_minus1 specifies the number of reference pictures minus 1 in the forward reference set that
are used to decode the picture.

num_ref_pic_active_bwd_minus1 specifies the number of reference pictures minus 1 in the backward reference set that
are used to decode the picture.

slice_qp_minus26 specifies the value of the QPY for the MBs in the slice unless modified by the value of delta_qp in the
macroblock layer. The decoded value of this parameter shall be in the range of -26 to +25, inclusive. From this value,
the initial QPY parameter for the slice is computed as:

QPY = 26 + slice_qp_minus26 (8-1)

The value of QPY is initialized to the above result and this value is used for the decoding of each macroblock in the slice
unless updated by a delta_qp sent in the macroblock layer.

sp_for_switch_flag controls the value of scaled transform coefficients in a manner that enables switching between
different video bitstreams using an SP picture.

slice_qp_s_minus26 is signalled for SP and SI slices. The decoded value of this parameter shall be in the range of -26 to
+25, inclusive. The QPSY parameter for the slice is computed from slice_qp_s_minus26 as:

QPSY = 26 + slice_qp_s_minus26 (8-2)

This value of QPSY is used for the decoding of all macroblocks in the slice.

num_mbs_in_slice is signalled for the CABAC entropy coding mode, where the number of macroblocks in the slice is
transmitted.

8.4 Reference picture selection layer (rps_layer) semantics

8.4.1 Reference picture reordering indicator (reference_picture_reordering_indicator_fwd/bwd)

reference_picture_reordering_indicator_fwd/bwd indicates the presence of syntax elements to indicate a reordering of
the active reference . reference_picture_reordering_indicator_fwd/bwd shall be one of the following two values: “0”:
remapping_of_pic_nums_indicator, abs_diff_pic_numbers, and long_term_pict_index are not present. In this case the
default buffer indexing order presented in the next subclause shall be applied. RPS layer information sent at the slice
layer does not affect the decoding process of any other slice. “1”: remapping_of_pic_nums_indicator,
abs_diff_pic_numbers, and long_term_pict_index are present. In this case, the buffer indexing used to decode the current
slice and to manage the contents of the picture buffer is sent using the following codewords.

8.4.2 Re-mapping of picture numbers indicator (remapping_of_pic_nums_indicator)

remapping_of_pic_nums_indicator is present in the RPS layer if the picture is a P, B, or SP picture. It is not present if
the picture is an Intra picture. It is present at least once in P and SP pictures and at least twice in B pictures.
remapping_of_pic_nums_indicator indicates whether any default picture indices are to be re-mapped for forward or
backward motion compensation of the current slice – and how the re-mapping of the relative indices into the multi-frame
buffer is to be specified if indicated. The interpretation of remapping_of_pic_nums_indicator is shown in Figure 8-2. If
remapping_of_pic_nums_indicator indicates the presence of an abs_diff_pic_numbers or long_term_pict_index field, an
additional remapping_of_pic_nums_indicator field immediately follows the abs_diff_pic_numbers or
long_term_pict_index field.

Table 8-7 – remapping_of_pic_nums_indicator operations for re-mapping of reference pictures

Code Number Re-mapping Specified

0 abs_diff_pic_numbers field is present and corresponds to a negative difference to add to a
frame number prediction value

1 abs_diff_pic_numbers field is present and corresponds to a positive difference to add to a
frame number prediction value

2 long_term_pict_index field is present and specifies the long-term index for a reference picture

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 35

3 End loop for re-mapping of reference picture set relative indexing default order

8.4.2.1 Absolute difference of picture numbers (abs_diff_pic_numbers)

abs_diff_pic_numbers is present only if indicated by remapping_of_pic_nums_indicator. abs_diff_pic_numbers follows
remapping_of_pic_nums_indicator when present. The code number of the UVLC corresponds to abs_diff_pic_numbers
– 1. abs_diff_pic_numbers represents the absolute difference between the frame number of the currently re-mapped
picture and the prediction value for that frame number. If no previous abs_diff_pic_numbers fields have been sent within
the current RPS layer, the prediction value shall be the frame number of the current picture. If some previous
abs_diff_pic_numbers field has been sent, the prediction value shall be the frame number of the last picture that was re-
mapped using abs_diff_pic_numbers.

If the frame number prediction is denoted PNP, and the frame number in question is denoted PNQ, and MAX_PNF
equals MAX_PN if the current picture is a frame, and MAX_PNF equals 2*MAX_PN if the current picture is a field, the
decoder shall determine PNQ from PNP and abs_diff_pic_numbers in a manner mathematically equivalent to the
following:

if(remapping_of_pic_nums_indicator = = ‘1‘) { /* a negative difference */

if(PNP – abs_diff_pic_numbers < 0)

PNQ = PNP – abs_diff_pic_numbers + MAX_PN;

else

PNQ = PNP – abs_diff_pic_numbers;

}else{ /* a positive difference */

if(PNP + abs_diff_pic_numbers > MAX_PNF-1)

PNQ = PNP + abs_diff_pic_numbers – MAX_PNF;

else

PNQ = PNP + abs_diff_pic_numbers;

}

The encoder shall control remapping_of_pic_nums_indicator and abs_diff_pic_numbers such that the decoded value of
abs_diff_pic_numbers shall not be greater than or equal to MAX_PN.

As an example implementation, the encoder may use the following process to determine values of abs_diff_pic_numbers
and remapping_of_pic_nums_indicator to specify a re-mapped frame number in question, PNQ:

DELTA = PNQ – PNP;

if(DELTA < 0) {

if(DELTA < –MAX_PNF/2-1)

MDELTA = DELTA + MAX_PNF;

else

MDELTA = DELTA;

}else{

if(DELTA > MAX_PNF/2)

MDELTA = DELTA – MAX_PNF;

else

MDELTA = DELTA;

}

abs_diff_pic_numbers = abs(MDELTA);

where abs() indicates an absolute value operation. Note that the code number of the UVLC corresponds to the value of
abs_diff_pic_numbers – 1, rather than the value of abs_diff_pic_numbers itself.

remapping_of_pic_nums_indicator would then be determined by the sign of MDELTA.

8.4.2.2 Long-term picture index for re-mapping (long_term_pict_index)

long_term_pict_index is present only if indicated by remapping_of_pic_nums_indicator. long_term_pict_index follows
remapping_of_pic_nums_indicator when present. long_term_pict_index is transmitted using UVLC codewords. It

DRAFT ISO/IEC 14496-10 : 2002 (E)

36 DRAFT ITU-T Rec. H.264 (2002 E)

represents the long-term picture index to be re-mapped. The prediction value used by any subsequent
abs_diff_pic_numbers re-mappings is not affected by long_term_pict_index.

8.4.3 Reference picture buffering mode (ref_pic_buffering_mode)

ref_pic_buffering_mode specifies the buffering mode of the currently decoded picture picture and thus decides how the
multi-frame buffer will be modified after the current picture is decoded. It follows an remapping_of_pic_nums_indicator
“end loop” indication when the picture is not an Intra picture. It is the first element of the RPS layer if the picture is an
Intra picture. The values for ref_pic_buffering_mode are defined as follows:

ref_pic_buffering_mode = = “0”: Sliding Window,

ref_pic_buffering_mode = = “1”: Adaptive Memory Control.

In the “Sliding Window” buffering mode, the current decoded picture shall be added to the buffer with default relative
index 0, and any marking of pictures as “unused” in the buffer is performed automatically in a first-in-first-out fashion
among the set of short-term pictures. In this case, if the buffer has sufficient “unused” capacity to store the current
picture, no additional pictures shall be marked as “unused” in the buffer. If the buffer does not have sufficient “unused”
capacity to store the current picture, the picture with the largest default relative index among the short-term pictures in
the buffer shall be marked as “unused”. If in this case the current picture is the first field of a frame, then only the field of
the same parity (top or bottom) will be marked as unused in the buffer, so that the second field of the current frame may
still reference the other field of the largest relative index. In the sliding window buffering mode, no additional
information is transmitted to control the buffer contents.

In the "Adaptive Memory Control" buffering mode, the encoder explicitly specifies any addition to the buffer or marking
of data as “unused” in the buffer, and may also assign long-term indices to short-term frames. The current frame and
other frames may be explicitly marked as “unused” in the buffer, as specified by the encoder. This buffering mode
requires further information that is controlled by memory management control operation
(memory_management_control_operation) parameters.

8.4.3.1 Memory management control operation (memory_management_control_operation)

memory_management_control_operation is present only when ref_pic_buffering_mode indicates “Adaptive Memory
Control”, and may occur multiple times if present. It specifies a control operation to be applied to manage the multi-
frame buffer memory. The memory_management_control_operation parameter is followed by data necessary for the
operation specified by the value of memory_management_control_operation, and then an additional
memory_management_control_operation parameter follows – until the memory_management_control_operation value
indicates the end of the list of such operations. memory_management_control_operation commands do not affect the
buffer contents or the decoding process for the decoding of the current frame – rather, they specify the necessary buffer
status for the decoding of subsequent frames in the bitstream. The values and control operations associated with
memory_management_control_operation are defined in Table 8-9.

Note that memory_management_control_operation commands always indicate the same treatment for both fields of a
frame, and the frame numbers referred to in memory_management_control_operation commands are always frame
numbers even if the current picture is a field picture.

If memory_management_control_operation is Reset, all frames in the multi-frame buffer (but not the current frame
unless specified separately) shall be marked “unused” (including both short-term and long-term frames). Moreover, the
maximum long-term frame index shall be reset to zero.

The frame height and width shall not change within the bitstream except within a frame containing a Reset
memory_management_control_operation command.

A “stored frame” does not contain an memory_management_control_operation command in its RPS layer which marks
that (entire) frame as “unused”. If the current frame is not a stored frame, its RPS layer shall not contain any of the
following types of memory_management_control_operation commands:

a) A Reset memory_management_control_operation command,

b) Any memory_management_control_operation command which marks any other frame (other than the
current frame) as “unused” that has not also been marked as “unused” in the RPS layer of a prior stored
frame, or

c) Any memory_management_control_operation command which assigns a long-term index to a frame that
has not also been assigned the same long-term index in the RPS layer of a prior stored frame

Table 8-8 – Memory management control operation (memory_management_control_operation) values

Code Number Memory Management Control Operation Associated Data Fields Following

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 37

0 End memory_management_control_operation Loop None (end of RPS layer)

1 Mark a Short-Term Frame as “Unused” difference_of_pic_nums

2 Mark a Long-Term Frame as “Unused” long_term_pic_index

3 Assign a Long-Term Index to a Frame difference_of_pic_nums and long_term_pic_index

4 Specify the Maximum Long-Term Frame Index max_long_term_pic_index_plus1

5 Reset None

8.4.3.2 Difference of frame numbers (difference_of_pic_nums)

difference_of_pic_nums is present when indicated by memory_management_control_operation. difference_of_pic_nums
follows memory_management_control_operation if present. difference_of_pic_nums is transmitted using UVLC
codewords and is used to calculate the PN of a frame for a memory control operation. It is used in order to assign a long-
term index to a frame, mark a short-term frame as “unused”. If the current decoded frame number is PNC and the
decoded UVLC code number is difference_of_pic_nums, an operation mathematically equivalent to the following
equations shall be used for calculation of PNQ, the specified frame number in question:

if(PNC – difference_of_pic_nums < 0)

PNQ = PNC – difference_of_pic_nums + MAX_PN;

else

PNQ = PNC – difference_of_pic_nums;

Similarly, the encoder may compute the difference_of_pic_nums value to encode using the following relation:

if(PNC – PNQ < 0)

difference_of_pic_nums = PNC – PNQ + MAX_PN;

else

difference_of_pic_nums = PNC – PNQ;

For example, if the decoded value of difference_of_pic_nums is zero and memory_management_control_operation
indicates marking a short-term frame as “unused”, the current decoded frame shall be marked as “unused” (thus
indicating that the current frame is not a stored frame).

8.4.3.3 Long-term picture index (long_term_pic_index)

long_term_pic_index is present when indicated by memory_management_control_operation. long_term_pic_index
specifies the long-term picture index of a frame. It follows difference_of_pic_nums if the operation is to assign a long-
term index to a picture. It follows memory_management_control_operation if the operation is to mark a long-term
picture as “unused”.

8.4.3.4 Maximum long-term frame index plus 1 (max_long_term_pic_index_plus1)

max_long_term_pic_index_plus1 is present if indicated by memory_management_control_operation.
max_long_term_pic_index_plus1 follows memory_management_control_operation if present. If present,
max_long_term_pic_index_plus1 is used to determine the maximum index allowed for long-term reference frames (until
receipt of another value of max_long_term_pic_index_plus1). The decoder shall initially assume
max_long_term_pic_index_plus1 is "0" until some other value has been received. Upon receiving an
max_long_term_pic_index_plus1 parameter, the decoder shall consider all long-term frames having indices greater than
the decoded value of max_long_term_pic_index_plus1 – 1 as “unused” for referencing by the decoding process for
subsequent frames. For all other frames in the multi-frame buffer, no change of status shall be indicated by
max_long_term_pic_index_plus1.

8.5 Slice data semantics

mb_skip_run is the number of skipped macroblocks, which indicates the number of consecutive macroblocks coded in
Skip mode. Skip mode macroblocks are motion-compensated using the last decoded picture as reference. The motion
vector shall be obtained as described in subclause 9.4.3.3. Motion Vector Data and prediction error coding information
are omitted for all the Skip mode macroblocks.

For a B macroblock skip means direct mode without coefficients. mb_skip_run indicates the number of skipped
macroblocks in an inter- or B picture before a coded macroblock. If a picture or slice ends with one or more skipped
macroblocks, they are represented by an additional mb_skip_run which counts the number of skipped macroblocks.

DRAFT ISO/IEC 14496-10 : 2002 (E)

38 DRAFT ITU-T Rec. H.264 (2002 E)

For the explicit B prediction block weighting, the ABP coefficient corresponding to abp_coeff_idx=0 is used.

8.6 Macroblock layer semantics

Following the syntax table for the macroblock elements, the various elements are described.

8.6.1 Macroblock mode (mb_mode)

The macroblock modes for Intra and Inter pictures/slices are defined in Table 8-10. The macroblock modes for bi-
predictive coded pictures/slices are defined in Table QQ.

Table 8-9 – Macroblock modes

mb_mode num_subblock_mb() subblock_prediction_mode(, 1) subbblock_prediction_mode(, 2)

InterSkip 1 Direct

Inter16x16 1 Fwd

Inter16x8 2 Fwd Fwd

Inter8x16 2 Fwd Fwd

Inter8x8 4 na na

Inter8x8ref0 4 na na

Intra16x16 na Intra

Intra4x4 na Intra

InterSkip No further information about the macroblock is transmitted. The motion vector for a Skip mode macroblock
shall be obtained as described in subclause 9.3.1.3. If picture_structure indicates a frame, then the decoded frame with
ref_pic_idx_fwd = = 0, which either was decoded from a frame picture or is the union of two decoded field pictures shall
be used as reference in motion compensation. If picture_structure indicates a field, then the decoded field of the same
parity (top or bottom) with ref_pic_idx_fwd = = 0, which was either decoded from a field picture or is part of the most
recently decoded frame picture shall be used as reference in motion compensation.

Inter16x16, Inter16x8, Inter8x16, and Inter8x8 The macroblock is predicted from a past picture with block size 16x16,
16x8, 8x16, and 8x8 respectively. For the macroblock modes 16x16, 16x8, and 8x16, a motion vector is provided for
each NxM block. If N=M=8, for each 8x8 sub-partition an additional codeword is transmitted which indicates in which
mode the corresponding sub-partition is coded (see subclause QQ). Depending on N,M and the 8x8 sub-partition modes
there may be 1 to 16 sets of motion vector data for a macroblock.

Inter8x8ref0 Same as Inter8x8 but ref_pic_idx_fwd is not sent and set to 0 for all 8x8 blocks.

Intra4x4 The macroblock is coded in Intra mode.

Intra16x16 Imode, nc, AC See definition in subclause QQ. These modes refer to 16x16 intra coding. Imode numbers
from 6 and upwards represent 16x16 intra coding.

8.6.2 Modes for 8x8 blocks

The modes for 8x8 blocks for Intra and Inter pictures/slices are defined in Table 8-11. The block modes for bi-predictive
coded pictures/slices are defined in Table QQ.

Table 8-10 – Modes for 8x8 blocks

block8x8_mode num_subblock_block8x8() block_prediction_mode

Inter8x4 2 Fwd

Inter4x8 2 Fwd

Inter4x4 4 Fwd

Intra8x8 na Intra

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 39

Inter8x4, Inter4x8, Inter4x4 The corresponding 8x8 sub-partition is predicted from a past picture with block size 8x4,
4x8, and 4x4 respectively. A motion vector is transmitted for each NxM block. Depending on N and M, up to 4 motion
vectors are coded for an 8x8 sub-partition, and thus up to 16 motion vectors are transmitted for a macroblock.

Intra8x8 The 8x8 sub-partition is coded in intra mode.

8.6.3 Reference picture (ref_idx_fwd/bwd)

If num_ref_pic_active_fwd_minus1 or num_ref_pic_active_bwd_minus1 indicates the possibility of prediction from
more than one previously-decoded picture, the exact picture to be used must be indicated. This is done according to the
following tables. If picture_structure indicates that the current picture is a frame picture, then the reference picture is a
previous frame in the forward reference buffer that was either indicated as a single frame picture or a frame that was
indicated as two field pictures and has been reconstructed as a frame. Thus for frames the following table gives the
reference frame:

Code_number Reference frame

0 The first frame in the forward reference set

1 The second frame in the forward reference set

2 The third frame in the forward reference set

.. ..

If num_ref_pic_active_fwd_minus1 is equal to 0, ref_idx_fwd is not present. If num_ref_pic_active_fwd_minus1 is
equal to 1, only a single encoded bit is used to represent ref_idx_fwd. If num_ref_pic_active_fwd_minus1 is greater
than 1, the value of ref_idx_fwd is represented by a decoded index.

If num_ref_pic_active_bwd_minus1 is equal to 0, ref_idx_bwd is not present. If num_ref_pic_active_bwd_minus1 is
equal to 1, only a single encoded bit is used to represent ref_idx_bwd. If num_ref_pic_active_bwd_minus1 is greater
than 1, the value of ref_idx_bwd is represented by a decoded index.

The reference index parameter is transmitted for each 16x16, 16x8, or 8x16 motion compensation block. If the
macroblock is coded in 8x8 mode, the reference frame parameter is coded once for each 8x8 sub-partition unless the 8x8
sub-partition is transmitted in intra mode. If the UVLC is used for entropy coding and the macroblock mode is indicated
by codeword 4 (8x8, ref=0), no reference frame parameters are transmitted for the whole macroblock.

8.6.4 Motion vector data (mvd_fwd)

If so indicated by mb_mode, vector data for 1-16 blocks are transmitted. For every block a prediction is formed for the
horizontal and vertical components of the motion vector. mvd_fwd signals the difference between the vector component
to be used and this prediction. The order in which vector data is sent is indicated in Figure 2. Motion vectors are allowed
to point to samples outside the reference frame. If a sample outside the reference frame is referred to in the prediction
process, the nearest sample belonging to the frame (an edge or corner sample) shall be used. All fractional sample
positions shall be interpolated as described in subclause 9.2. If a sample referred in the interpolation process (necessarily
integer accuracy) is outside of the reference frame it shall be replaced by the nearest sample belonging to the frame (an
edge or corner sample). Reconstructed motion vectors shall be clipped to ±19 integer samples outside of the frame.

8.6.5 Coded block pattern (coded_block_pattern)

The coded_block_pattern contains information of which 8x8 blocks - luma and chroma - contain transform coefficients.
Notice that an 8x8 block contains 4 4x4 blocks meaning that the statement ‘8x8 block contains coefficients‘ means that
‘one or more of the 4 4x4 blocks contain coefficients‘. The 4 least significant bits of coded_block_pattern contain
information on which of 4 8x8 luma blocks in a macroblock contains nonzero coefficients. Let us call these 4 bits
coded_block_patternY. The ordering of 8x8 blocks is indicated in Figure 3. A 0 in position n of coded_block_pattern
(binary representation) means that the corresponding 8x8 block has no coefficients whereas a 1 means that the 8x8 block
has one or more non-zero coefficients.

For chroma, 3 possibilities are specified:

nc=0: no chroma coefficients at all.

nc=1 There are nonzero 2x2 transform coefficients. All chroma AC coefficients = 0. Therefore we do not send any
EOB for chroma AC coefficients.

nc=2 There may be 2x2 nonzero coefficients and there is at least one nonzero chroma AC coefficient present. In this
case we need to send 10 EOBs (2 for DC coefficients and 2x4=8 for the 8 4x4 blocks) for chroma in a macroblock.

The total coded_block_pattern for a macroblock is: coded_block_pattern = coded_block_patternY + 16xnc

DRAFT ISO/IEC 14496-10 : 2002 (E)

40 DRAFT ITU-T Rec. H.264 (2002 E)

The coded_block_pattern is indicated with a different codeword for Inter macroblocks and Intra macroblocks since the
statistics of coded_block_pattern values are different in the two cases.

8.6.6 Change of quantiser value (delta_qp)

The value of QPY can be changed in the macroblock layer by the parameter delta_qp. The delta_qp parameter is present
only for non-skipped macroblocks, as defined by:

– If coded_block_pattern indicates that there are nonzero transform coefficients in the MB or

– If the MB is 16x16 based intra coded

The decoded value of delta_qp shall be in the range from -26 to +25, inclusive, which enables the value of QPY to be
changed to any value in the range [0..51], as specified by

QPY = (QPY + delta_qp + 52) % 52 (8-5)

9 Decoding process

9.1 Ordering of decoding steps

A macroblock or sub-partition is decoded in the following order.

1. Parsing of syntax elements using VLC/CAVLC (see subclause 9.7) or CABAC (see subclause 10)

2. Motion compensation (see subclause 9.3) or Intra prediction (see subclause 9.4)

3. Transform coefficient decoding (see subclause 9.5)

4. Deblocking Filter (see subclause 9.6)

9.2 Slice decoding

A slice is decoded as follows:

If the frame number of the slice to be decoded is different from the frame number of the previously decoded slice,
decoding of a new picture is started. Otherwise, decoding of the current picture is continued.

The macroblock address of the first macroblock of the slice is used as an index to the macroblock allocation map to
determine which slice group the slice belongs to. Using the calculated macroblock address, the macroblock can be
reconstructed directly. Since no other macroblock belonging to this slice has been decoded (as it is the first macroblock
after the slice header), all in-picture prediction mechanisms are reset before decoding and reconstruction.

When mb_allocation_map_type equals to zero, the macroblock address of the next macroblock is implicitly the current
macroblock address plus 1. When mb_allocation_map_type is not zero, the next macroblock address is determined by
searching the macroblock allocation map for the next macroblock in raster-scan order belonging to the slice group being
decoded.

A picture reference index parameter (ref_idx_fwd or ref_idx_bwd) is a relative index into an ordered set of reference
pictures. For the coding of a P picture, there is one such set of reference pictures, called the forward reference set. For
the coding of a B picture, there are two such sets of reference pictures, called the forward and backward reference sets.

The remapping_of_pic_nums_indicator, abs_diff_pic_numbers, and long_term_pict_index fields allow the order of that
relative indexing into the multi-frame buffer to be temporarily altered from the default index order for the decoding of a
particular slice. An remapping_of_pic_nums_indicator "end loop" indication indicates the end of a list of re-ordering
commands for the forward or backward reference set.

9.2.1 Default index orders

9.2.1.1 Default index order for P pictures

The default index order for forward prediction of P frames is for the short-term frames (i.e., frames which have not been
given a long-term index) to precede the long-term frames in the reference indexing order. Within the set of short-term
frames, the default order is for the frames to be ordered starting with the most recently-transmitted reference frame and
proceeding through to the reference frame in the short-term buffer that was transmitted first (i.e., in decreasing order of
frame number in the absence of wrapping of the ten-bit frame number field). Within the set of long-term frames, the
default order is for the frames to be ordered starting with the frame with the smallest long-term index and proceeding up
to the frame with long-term index equal to the most recent value of max_long_term_pic_index_plus1-1.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 41

For example, if the buffer contains three short-term frames with short-term frame numbers 300, 302, and 303 (which
were transmitted in increasing frame-number order) and two long-term frames with long-term frame indices 0 and 3, the
default index order is:

default relative index 0 refers to the short-term frame with frame number 303,

default relative index 1 refers to the short-term frame with frame number 302,

default relative index 2 refers to the short-term frame with frame number 300,

default relative index 3 refers to the long-term frame with long-term frame index 0, and

default relative index 4 refers to the long-term frame with long-term frame index 3.

For the purposes of default reference picture index calculation, the transmitted order of reference frames is calculated as
the order in which frames occurred in the bitstream, regardless of whether the transmitted frame had been coded as a pair
of two separate field-structured pictures, or a single frame-structured picture.

In the case that the current picture is field-structured, each field of the stored reference frames is identified as a separate
reference picture with a unique index. Thus field structured pictures effectively have twice the number of pictures
available for referencing. The calculated transmission order of reference fields alternates between reference pictures of
the same and opposite parity, starting with fields that have the same parity as the current field-structured picture. Figure
8-6 shows the case of the first field in a field-structured picture pair, while Figure 8-7 shows the case of the second field.
If one field of a reference frame was neither transmitted nor stored, the transmission order calculation shall ignore the
missing field and instead index the next available stored reference field of the respective parity in transmission order.
The decoder shall treat the missing field as “unknown” data, while encoder shall not generate bitstreams that have data
dependences on the missing field.

DRAFT ISO/IEC 14496-10 : 2002 (E)

42 DRAFT ITU-T Rec. H.264 (2002 E)

current field0 12 34 5

Ref. Frame (field) Buf.

Ref. Field No.

......

f1 f2f1 f2f1 f2f1 f2f1 f2f1 f2 f1 f2

6 78 910 11

Figure 9-1 – Default reference field number assignment when the current picture is the first field coded in a frame

current field0 12 34 5

Ref. Frame (field) Buf.

Ref. Field No.

......

f1 f2f1 f2f1 f2f1 f2f1 f2f1 f2 f1 f2

6 78 910 11

Figure 9-2 – Default reference field number assignment when the current picture is the second field coded in a
frame

9.2.1.2 Default index order for B pictures

The default index order for B frames is defined such that short-term frames that temporally precede the B frame are
distinguished from short-term frames that temporally follow the B frame, based on the display order for each reference
frame. The default order for forward prediction (subclause 8.2.13.2.1) is specified in a manner that gives a lower index
order to short-term frames that temporally precede the current frame, and the default order for backward prediction
(subclause 8.2.13.2.1) is specified in a manner that ordinarily gives a lower index order to short-term frames that
temporally follow the current frame.

The default index order for B field pictures is split between even indices starting at 0 for fields of the same parity (top or
bottom) as the current field and odd indices starting at 1 for fields of the opposite parity as the current field. This split
ordering is analogous to the ordering defined in P pictures above except that a B field picture never references the
opposite-parity field with which it shares the current frame.

9.2.1.2.1 Forward prediction in B pictures

Within the set of short-term pictures, the default order for B-frame forward prediction shall be for the frames to be
ordered starting with the most recently-transmitted temporally-preceding reference frame and proceeding through to the
temporally-preceding reference frame in the short-term buffer that was transmitted first. These temporally-preceding
frames shall then be followed by the temporally-following reference frames, starting with the most recently-transmitted
temporally-following reference frame in the short-term buffer and proceeding through to the temporally-following
reference frame in the short-term buffer that was transmitted first. These frames shall then be followed by the long-term
frames, starting with the frame with the smallest long-term index and proceeding up to the frame with long-term index
equal to the most recent value of max_long_term_pic_index_plus1-1. The default ordering for B field pictures follows

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 43

in like manner except that it is split between even indices for same-parity fields and odd indices for opposite-parity
fields.

9.2.1.2.2 Backward prediction in B pictures

The default order for B picture backward prediction is defined in a similar manner as for forward prediction, but giving
preference in the order for pictures that temporally follow the B picture and swapping the order of the first two pictures if
this would result in an identical forward and backward default indexing order.

Within the set of short-term pictures, the ordinary default order for B picture backward prediction shall be for the
pictures to be ordered starting with the most recently-transmitted temporally-following reference picture and proceeding
through to the temporally-following reference picture that has been in the short-term buffer the longest. These
temporally-following pictures shall then be followed by the temporally-preceding reference pictures, starting with the
most recently-transmitted temporally-preceding reference picture and proceeding through to the temporally-preceding
reference picture that has been in the short-term buffer the longest. These pictures shall then be followed by the long-
term pictures, starting with the picture with the smallest long-term index and proceeding up to the picture with long-term
index equal to the most recent value of max_long_term_pic_index_plus1-1.

The ordinary default order defined in the previous paragraph shall be used as the default index order for backward
prediction unless there is more than one reference picture in the set and the ordinary default index order for backward
prediction is the same as the default index order for forward prediction. In this exceptional case, the default index order
for backward prediction shall be the ordinary default index order with the order of the first two pictures switched.

9.2.1.3 Reordering of forward and backward reference sets

The first abs_diff_pic_numbers or long_term_pict_index field that is received (if any) moves a specified picture out of
the default order to the relative index of zero. The second such field moves a specified picture to the relative index of
one, etc. The set of remaining pictures not moved to the front of the relative indexing order in this manner shall retain
their default order amongst themselves and shall follow the pictures that have been moved to the front of the buffer in
relative indexing order. Note that if the current picture is a frame, then abs_diff_pic_numbers or long_term_pic_index
refer to the relative frame indices defined above; if the current picture is a field, then abs_diff_pic_numbers or
long_term_pic_index refer to the relative field indices defined above.

If there is not more than one forward reference picture used, no more than one abs_diff_pic_numbers or
long_term_pict_index field shall be present in the same RPS layer unless the current picture is a B picture. If the current
picture is a B picture and there is not more than one backward reference picture used, no more than two
abs_diff_pic_numbers or long_term_pict_index fields shall be present in the same RPS layer.

Any re-mapping of frame numbers specified for some slice shall not affect the decoding process for any other slice.

In a P picture an remapping_of_pic_nums_indicator “end loop” indication is followed by ref_pic_buffering_mode. In a
B picture, the first remapping_of_pic_nums_indicator "end loop" indication, which concludes the remapping of the
forward reference set, is followed by an additional remapping_of_pic_nums_indicator indicator that begins the
remapping operations (if any) for the backward reference set.

Within one RPS layer, remapping_of_pic_nums_indicator shall not specify the placement of any individual reference
picture into more than one re-mapped position in relative index order.

9.2.2 Multi-picture decoder process

The decoder stores the reference pictures for inter picture decoding in a multi-frame buffer. The decoder replicates the
multi-frame buffer of the encoder according to the reference picture buffering mode and any memory management
control operations specified in the bitstream. The buffering scheme may also be operated when partially erroneous
pictures are decoded.

Each coded and stored picture is assigned a Frame number (PN) which is stored with the picture in the multi-frame
buffer. PN represents a sequential picture counting identifier for stored pictures. PN is constrained, using modulo
MAX_PN arithmetic operation. For the first coded picture of an independent GOP, PN shall be "0". For each and every
other coded and stored picture, PN shall be increased by 1.

Besides the PN, each picture stored in the multi-frame buffer has an associated index, called the default relative index.
When a picture is first added to the multi-frame buffer it is given default relative index 0 – unless it is assigned to a long-
term index. The default relative indices of pictures in the multi-frame buffer are modified when pictures are added to or
removed from the multi-frame buffer, or when short-term pictures are assigned to long-term indices.

The pictures stored in the multi-frame buffers can also be divided into two categories: long-term pictures and short-term
pictures. A long-term picture can stay in the multi-frame buffer for a long time (more than MAX_PN-1 coded and stored
picture intervals). The current picture is initially considered a short-term picture. Any short-term picture can be changed
to a long-term picture by assigning it a long-term index according to information in the bitstream. The PN is the unique

DRAFT ISO/IEC 14496-10 : 2002 (E)

44 DRAFT ITU-T Rec. H.264 (2002 E)

ID for all short-term pictures in the multi-frame buffer. When a short-term picture is changed to a long-term picture, it is
also assigned a long-term picture index (long_term_picture_index). A long-term picture index is assigned to a picture by
associating its PN to an long_term_picture_index. Once a long-term picture index has been assigned to a picture, the
only potential subsequent use of the long-term picture’s PN within the bitstream shall be in a repetition of the long-term
index assignment. long_term_picture_index becomes the unique ID for the life of a long-term picture.

PN (for a short-term picture) or long_term_picture_index (for a long-term picture) can be used to re-map the pictures
into re-mapped relative indices for efficient reference picture addressing.

9.2.2.1 Decoder process for short/long-term picture management

The decoder may have both long-term pictures and short-term pictures in its multi-frame buffer. The
max_long_term_index_plus1 field is used to indicate the maximum long-term picture index allowed in the buffer. If no
prior value of max_long_term_index_plus1 has been sent, no long-term pictures shall be in use, i.e.
max_long_term_index_plus1 shall initially have an implied value of "0". Upon receiving an
max_long_term_index_plus1 parameter, a new max_long_term_index_plus1 shall take effect until another value of
max_long_term_index_plus1 is received. Upon receiving a new max_long_term_index_plus1 parameter in the bitstream,
all long-term pictures with associated long-term indices greater than or equal to max_long_term_index_plus1 shall be
considered marked “unused”. The frequency of transmitting max_long_term_index_plus1 is out of the scope of this
Recommendation. However, the encoder should send an max_long_term_index_plus1 parameter upon receiving an error
message, such as an Intra request message.

A short-term picture can be changed to a long-term picture by using an memory_management_control_operation
command with an associated difference_of_pic_nums and long_term_picture_index. The short-term frame number is
derived from difference_of_pic_nums and the long-term picture index is long_term_picture_index. Upon receiving such
an memory_management_control_operation command, the decoder shall change the short-term picture with PN
indicated by difference_of_pic_nums to a long-term picture and shall assign it to the long-term index indicated by
long_term_picture_index. If a long-term picture with the same long-term index already exists in the buffer, the
previously-existing long-term picture shall be marked “unused”. An encoder shall not assign a long-term index greater
than max_long_term_index_plus1–1 to any picture. If long_term_picture_index is greater than
max_long_term_index_plus1–1, this condition should be treated by the decoder as an error. For error resilience, the
encoder may send the same long-term index assignment operation or max_long_term_index_plus1 specification message
repeatedly. If the picture specified in a long-term assignment operation is already associated with the required
long_term_picture_index, no action shall be taken by the decoder. An encoder shall not assign the same picture to more
than one long term index value. If the picture specified in a long-term index assignment operation is already associated
with a different long-term index, this condition should be treated as an error. An encoder shall only change a short-term
picture to a long-term picture if its PN has not been used in any subsequent coded picture. An encoder shall not assign a
long-term index to a short-term picture that has been marked as “unused” by the decoding process prior to the first such
assignment message in the bitstream. An encoder shall not assign a long-term index to a frame number that has not been
sent.

9.2.2.2 Decoder process for reference picture buffer mapping

The decoder employs indices when referencing a picture for motion compensation on the macroblock layer. In pictures
other than B pictures, these indices are the default relative indices of pictures in the multi-frame buffer when the fields
abs_diff_pic_numbers and long_term_pict_index are not present in the current slice layer as applicable, and are re-
mapped relative indices when these fields are present. In B pictures, the first one or two pictures (depending on BTPSM)
in relative index order are used for backward prediction, and the forward picture reference parameters specify a relative
index into the remaining pictures for use in forward prediction. [Ed. Note: needs to be changed]

The indices of pictures in the multi-frame buffer can be re-mapped onto newly specified indices by transmitting the
remapping_of_pic_nums_indicator, abs_diff_pic_numbers, and long_term_pict_index fields.
remapping_of_pic_nums_indicator indicates whether abs_diff_pic_numbers or long_term_pict_index is present. If
abs_diff_pic_numbers is present, remapping_of_pic_nums_indicator specifies the sign of the difference to be added to a
frame number prediction value. The abs_diff_pic_numbers value corresponds to the absolute difference between the PN
of the picture to be re-mapped and a prediction of that PN value. The first transmitted abs_diff_pic_numbers is
computed as the absolute difference between the PN of the current picture and the PN of the picture to be re-mapped.
The next transmitted abs_diff_pic_numbers field represents the difference between the PN of the previous picture that
was re-mapped using abs_diff_pic_numbers and that of another picture to be re-mapped. The process continues until all
necessary re-mapping is complete. The presence of re-mappings specified using long_term_pict_index does not affect
the prediction value for subsequent re-mappings using abs_diff_pic_numbers. If remapping_of_pic_nums_indicator
indicates the presence of an long_term_pict_index field, the re-mapped picture corresponds to a long-term picture with a
long-term index of long_term_pict_index. If any pictures are not re-mapped to a specific order by
remapping_of_pic_nums_indicator, these remaining pictures shall follow after any pictures having a re-mapped order in
the indexing scheme, following the default order amongst these non-re-mapped pictures.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 45

If the indicated parameter set in the latest received slice or data partition signals the required frame number update
behaviour, the decoder shall operate as follows. The default picture index order shall be updated as if pictures
corresponding to missing frame numbers were inserted to the multi-frame buffer using the “Sliding Window” buffering
mode. An index corresponding to a missing frame number is called an “invalid” index. The decoder should infer an
unintentional picture loss if any “invalid” index is referred to in motion compensation or if an “invalid” index is re-
mapped.

If the indicated parameter set in the latest received slice or data partition does not signal the required frame number
update behaviour, the decoder should infer an unintentional picture loss if one or several frame numbers are missing or if
a picture not stored in the multi-frame buffer is indicated in a transmitted abs_diff_pic_numbers or
long_term_pict_index.

In case of an unintentional picture loss, the decoder may invoke some concealment process. If the required frame number
update behaviour was indicated, the decoder may replace the picture corresponding to an “invalid” index with an error-
concealed one and remove the “invalid” indication. If the required frame number update behaviour was not indicated, the
decoder may insert an error-concealed picture into the multi-frame buffer assuming the “Sliding Window” buffering
mode. Concealment may be conducted by copying the closest temporally preceding picture that is available in the multi-
frame buffer into the position of the missing picture. The temporal order of the short-term pictures in the multi-frame
buffer can be inferred from their default relative index order and PN fields. In addition or instead, the decoder may send
a forced intra update signal to the encoder by external means (for example, Recommendation H.245), or the decoder may
use external means or back-channel messages (for example, Recommendation H.245) to indicate the loss of pictures to
the encoder.

9.2.2.3 Decoder process for multi-picture motion compensation

Multi-picture motion compensation is applied if the use of more than one reference picture is indicated. For multi-frame
motion compensation, the decoder chooses a reference picture as indicated using the reference frame fields on the
macroblock layer. Once, the reference picture is specified, the decoding process for motion compensation proceeds.

9.2.2.4 Decoder process for reference picture buffering

The buffering of the currently decoded picture can be specified using the reference picture buffering mode
(ref_pic_buffering_mode). The buffering may follow a first-in, first-out ("Sliding Window") mode. Alternatively, the
buffering may follow a customized adaptive buffering ("Adaptive Memory Control") operation that is specified by the
encoder.

The "Sliding Window" buffering mode operates as follows. First, the decoder determines whether the picture can be
stored into “unused” buffer capacity. If there is insufficient “unused” buffer capacity, the short-term picture with the
largest default relative index (i.e. the oldest short-term picture in the buffer) shall be marked as “unused”. The current
picture is stored in the buffer and assigned a default relative index of zero. The default relative index of all other short-
term pictures is incremented by one. The default relative indices of all long-term pictures are incremented by one minus
the number of short-term pictures removed.

In the "Adaptive Memory Control" buffering mode, specified pictures may be removed from the multi-frame buffer
explicitly. The currently decoded picture, which is initially considered a short-term picture, may be inserted into the
buffer with default relative index 0, may be assigned to a long-term index, or may be marked as “unused” by the
encoder. Other short-term pictures may also be assigned to long-term indices. The buffering process shall operate in a
manner functionally equivalent to the following: First, the current picture is added to the multi-frame buffer with default
relative index 0, and the default relative indices of all other pictures are incremented by one. Then, the
memory_management_control_operation commands are processed:

If memory_management_control_operation indicates a reset of the buffer contents or if the current picture is the first one
in an independent GOP, all pictures in the buffer are marked as “unused” except the current picture (which will be the
picture with default relative index 0). Moreover, the maximum long-term index shall be reset to zero.

If memory_management_control_operation indicates a maximum long-term index using max_long_term_index_plus1,
all long-term pictures having long-term indices greater than or equal to max_long_term_index_plus1 are marked as
“unused” and the default relative index order of the remaining pictures are not affected.

If memory_management_control_operation indicates that a picture is to be marked as “unused” in the multi-frame buffer
and if that picture has not already been marked as “unused”, the specified picture is marked as “unused” in the multi-
frame buffer and the default relative indices of all subsequent pictures in default order are decremented by one.

If memory_management_control_operation indicates the assignment of a long-term index to a specified short-term
picture and if the specified long-term index has not already been assigned to the specified short-term picture, the
specified short-term picture is marked in the buffer as a long-term picture with the specified long-term index. If another
picture is already present in the buffer with the same long-term index as the specified long-term index, the other picture
is marked as “unused”. All short-term pictures that were subsequent to the specified short-term picture in default relative

DRAFT ISO/IEC 14496-10 : 2002 (E)

46 DRAFT ITU-T Rec. H.264 (2002 E)

index order and all long-term pictures having a long-term index less than the specified long-term index have their
associated default relative indices decremented by one. The specified picture is assigned to a default relative index of one
plus the highest of the incremented default relative indices, or zero if there are no such incremented indices.

9.3 Motion compensation

The motion compensation process generates predictions for picture blocks using previously decoded reference pictures.
The selected reference picture and motion vectors to be used are described in subclauses 7.4.5 and 7.4.6, respectively. If
picture_structure indicates a field picture, only the reference field indicated by the ref_idx_fwd or ref_idx_bwd is used in
the motion compensation.

9.3.1 Prediction of vector components

No vector component prediction takes place across macroblock boundaries of macroblocks that do not belong to the
same slice. For the purpose of vector component prediction, macroblocks that do not belong to the same slice are treated
as outside the picture.

With exception of the 16x8 and 8x16 block shapes, "median prediction" (see subclause 9.3.1.1) is used. In case the
macroblock may be classified to have directional segmentation the prediction is defined in subclause 9.3.1.2. Motion
vector for a Skip mode macroblock shall be obtained as described in subclause 9.3.1.3.

9.3.1.1 Median prediction

In the Figure below the vector component E of the indicated block shall be predicted. The prediction is normally formed
as the median of A, B and C. However, the prediction may be modified as described below. Notice that it is still
referred to as "median prediction"

A The component applying to the sample to the left of the upper left sample in E

B The component applying to the sample just above the upper left sample in E

C The component applying to the sample above and to the right of the upper right sample in E

D The component applying to the sample above and to the left of the upper left sample in E

D B C
A

E

Figure 9-3 – Median prediction of motion vectors

A, B, C, D and E may represent motion vectors from different reference pictures. As an example we may be seeking
prediction for a motion vector for E from the last decoded picture. A, B, C and D may represent vectors from 2, 3, 4 and
5 pictures back. The following substitutions shall be made prior to median filtering.

– If A and D are outside the picture, their values are assumed to be zero and they are considered to have
"different reference picture than E".

– If D, B, C are outside the picture, the prediction is equal to A (equivalent to replacing B and C with A
before median filtering).

– If C is outside the picture or still not available due to the order of vector data (see Figure 2), C is replaced
by D.

If any of the blocks A, B, C, D are intra coded they count as having "different reference picture”. If one and only one of
the vector components used in the median calculation (A, B, C) refer to the same reference picture as the vector
component E, this one vector component is used to predict E.

9.3.1.2 Directional segmentation prediction

If the macroblock where the block to be predicted is coded in 16x8 or 8x16 mode, the prediction is generated as follows
(refer to Figure below and the definitions of A, B, C, E above):

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 47

a) Vector block size 8x16:

1) Left block: A is used as prediction if it has the same reference picture as E, otherwise "median
prediction" is used

2) Right block: C is used as prediction if it has the same reference picture as E, otherwise "median
prediction" is used

b) Vector block size 16x8:

1) Upper block: B is used as prediction if it has the same reference picture as E, otherwise "median
prediction" is used

2) Lower block: A is used as prediction if it has the same reference picture as E, otherwise "median
prediction" is used

If the indicated prediction block is outside the picture, the same substitution rules are applied as in the case of median
prediction.

16x88x16

Figure 9-4 – Directional segmentation prediction

9.3.1.3 Motion vector for a skip mode macroblock

Motion vector for a Skip mode macroblock shall be obtained identically to the prediction motion vector for the 16x16
macroblock mode. However, if any of the conditions below hold, a zero motion vector shall be used instead:

a) The Macroblock immediately above or to the left is not available (that is, is outside of the picture or
belongs to a different slice)

b) Either one of the motion vectors applying to samples A or B (as described in subclause 9.3.1.1) uses the
last decoded picture as reference and has zero magnitude.

9.3.1.4 Chroma vectors

Chroma vectors are derived from the luma vectors. Since chroma has half resolution compared to luma, the chroma
vectors are obtained by dividing the corresponding luma motion vectors by two.

Due to the lower resolution of the chroma array relative to the luma array, a chroma vector applies to 1/4 as many
samples as the luma vector. For example if the luma vector applies to 8x16 luma samples, the corresponding chroma
vector applies to 4x8 chroma samples and if the luma vector applies to 4x4 luma samples, the corresponding chroma
vector applies to 2x2 chroma samples.

9.3.2 Fractional sample accuracy

Fractional sample accuracy is indicated by motion_resolution. If motion_resolution has the value 0, quarter-sample
interpolation with a 6-tap filter is applied to the luma samples in the block. If motion_resolution has the value 1, eighth-
sample interpolation with an 8-tap filter is used. The prediction process for chroma samples in both cases is described in
subclause 9.3.2.3.

9.3.2.1 Quarter sample luma interpolation

The positions labelled ‘A‘ in Figure 8-1 below represent reference picture samples in integer positions. Other symbols
represent interpolated values at fractional sample positions.

DRAFT ISO/IEC 14496-10 : 2002 (E)

48 DRAFT ITU-T Rec. H.264 (2002 E)

A d bh d A

e h f h

bv g cm g bv

e h f i

A bh A

Figure 9-5 – Integer samples (‘A‘) and fractional sample positions for quarter sample luma interpolation

The prediction values at integer positions shall be obtained by using the samples of the reference picture without
alteration. The prediction values at half sample positions shall be obtained by applying a 6-tap filter with tap values (1, -
5, 20, 20, -5, 1). The prediction values at quarter sample positions shall be generated by averaging samples at integer and
half sample positions. The process for each position is described below.

– The samples at half sample positions labelled as ‘bh‘ shall be obtained by first calculating intermediate
value b applying the 6-tap filter to the nearest samples ‘A‘ at integer positions in horizontal direction. The
final value shall be calculated using bh = clip1(((b+16)>>5). The samples at half sample positions labelled
as ‘bv‘ shall be obtained equivalently with the filter applied in vertical direction.

– The samples at half sample positions labelled as ‘cm‘ shall be obtained by applying the 6-tap filter to
intermediate values b of the closest half sample positions in either vertical or horizontal direction to form
an intermediate result c. The final value shall be calculated using cm = clip1(((c+512)>>10).

– The samples at quarter sample positions labelled as ‘d‘, ‘g‘, ‘e‘ and ‘f‘ shall be obtained by averaging with
truncation the two nearest samples at integer or half sample position using d=(A+bh)>>1, g=(bv+c)>>1,
e=(A+bv)>>1, f=(bh+cm)>>1.

– The samples at quarter sample positions labelled as ‘h‘ shall be obtained by averaging with truncation the
closest ‘bh‘ and ‘bv‘ samples in diagonal direction using h = (bh+bv)>>1.

– The samples at quarter sample positions labelled as ‘i‘ shall be computed using the four nearest samples in
integer positions using i = (A1+A2+A3+A4+2)>>2.

9.3.2.2 One eighth sample luma interpolation

The positions labelled ‘A‘ in the Figure 9-2 represent reference picture samples in integer positions. Other symbols
represent interpolated values at fractional sample positions.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 49

A d bh d bh d bh d A

d e d fh d fh d e

bv d cq d cq d cq d bv

d fv d g d g d fv

bv d cq d cm d cq d bv

d fv d g d g d fv

bv d cq d cq d cq d bv

d e d fh d fh d e

A bh bh bh A

Figure 9-6 – Integer samples (‘A‘) and fractional sample locations for one eighth sample luma interpolation

The samples at half and quarter sample positions shall be obtained by applying 8-tap filters with following coefficients:

– 1/4 position: (-3, 12, -37, 229, 71, -21, 6, -1)

– 2/4 position: (-3, 12, -39, 158, 158, -39, 12, -3)

– 3/4 position: (-1, 6, -21, 71, 229, -37, 12, -3)

The samples at one eighth sample positions are defined as weighted averages of reference picture samples at integer, half
and quarter sample positions. The process for each position is described below.

– The samples at half and quarter sample positions labelled as ‘bh‘ shall be obtained by first calculating an
intermediate value b applying 8-tap filtering to the nearest samples ‘A’ at integer positions in horizontal
direction. The final value of ‘bh’ shall be obtained using bh = clip1(((b+128)>>8). The samples at half and
quarter sample positions labelled as ‘bv’ shall be obtained equivalently with the filter applied in vertical
direction.

– The samples at half and quarter sample positions labelled as ‘cm’ and ‘cq’ shall be obtained by 8-tap
filtering of the closest intermediate values b in either horizontal or vertical direction to obtain a value c,
and then the final result shall be obtained using cm = clip1(((c+32768)>>16) or cq =
clip1(((c+32768)>>16).

– The samples at one eighth sample positions labelled as ‘d’ shall be obtained by averaging with truncation
the two closest ‘A’, ‘b’ or ‘c’ samples using d = (A+bh)>>1, d = (bh

0+bh
1)>>1, d = (A+bv)>>1, d =

(bh+cq)>>1, d = (bv+cq)>>1, d = (cq
0+cq

1)>>1, d = (bv
0+bv

1)>>1, or d = (cq+cm)>>1.

– The samples at one eighth sample positions labelled as ‘e’ shall be obtained by averaging with truncation
the closest ‘bh’ and ‘bv’ samples in diagonal direction using e = (bh+bv)>>1.

– The samples at one eighth sample positions labelled as ‘g’ shall be obtained from the closest integer
samples ‘A’ and the ‘cc’ samples using g = (A+3cc+2)>>2.

– The samples at one eighth sample positions labelled as ‘fh’ and ‘fv’ shall be calculated as fh = (3bh+
bv+2)>>2 and fv = (3bv+ bh+2)>>2.

DRAFT ISO/IEC 14496-10 : 2002 (E)

50 DRAFT ITU-T Rec. H.264 (2002 E)

Integer position samples

Samples at one eight positions

Samples at half and quarter
positions

Figure 9-7 – Diagonal interpolation for one eighth sample luma interpolation

9.3.2.3 Chroma interpolation

Motion compensated prediction fractional chroma samples shall be obtained using Equation 9-1.

22 /)2/)()())(((ssDddCddsBdsdAdsdsv yxyxyxyx ++−+−+−−= (9-1)

where A, B, C and D are the integer position reference picture samples surrounding the fractional sample location; dx and
dy are the fractional parts of the sample position in units of one eighth samples for quarter sample interpolation or one
sixteenth samples for one eighth sample interpolation; and s is 8 for quarter sample interpolation and is 16 for one eighth
sample interpolation. The relationships between the variables in Equation 9-1 and reference picture positions are
illustrated in Figure 9-4.

A B

C D

dy

dx s - dx

s - dy

Figure 9-8 – Fractional sample position dependent variables in chroma interpolation and surrounding integer
position samples A, B, C, and D.

9.4 Intra Prediction

Two Intra coding modes for macroblocks are described below.

9.4.1 Intra Prediction for 4x4 mode for luma

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 51

Figure 9-9 – Identification of samples used for intra spatial prediction

For the luma signal, there are nine intra prediction modes labelled 0 to 8. Mode 0 is ‘DC-prediction’ (see below). The
other modes represent directions of predictions as indicated below.

Figure 9-10 – Intra prediction directions

9.4.1.1 Mode 0: DC prediction

If all samples A, B, C, D, I, J, K, L, are within the slice, all samples are predicted by (A+B+C+D+I+J+K+L+4)>>3. If
A, B, C, and D are outside the slice and I, J, K, and L are not, all samples are predicted by (I+J+K+L+2)>>2. If I, J, K,
and L are outside the slice and A, B, C, and D are not, all samples are predicted by (A+B+C+D+2)>>2. If all eight
samples are outside the slice, the prediction for all samples in the block is 128. A block may therefore always be
predicted in this mode.

9.4.1.2 Mode 1: vertical Prediction

If A, B, C, D are inside the slice, then

– a, e, i, m are predicted by A,

– b, f, j, n are predicted by B,

– c, g, k, o are predicted by C,

– d, h, l, p are predicted by D.

9.4.1.3 Mode 2: horizontal prediction

If I, J, K, L are inside the slice, then

– a, b, c, d are predicted by I,

– e, f, g, h are predicted by J,

– i, j, k, l are predicted by K,

– m, n, o, p are predicted by L.

DRAFT ISO/IEC 14496-10 : 2002 (E)

52 DRAFT ITU-T Rec. H.264 (2002 E)

9.4.1.4 Mode 3: diagonal down/right prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice. This is a 'diagonal' prediction.

– m is predicted by: (J + 2K + L + 2) >> 2

– i, n are predicted by (I + 2J + K + 2) >> 2

– e, j, o are predicted by (Q + 2I + J + 2) >> 2

– a, f, k, p are predicted by (A + 2Q + I + 2) >> 2

– b, g, l are predicted by (Q + 2A + B + 2) >> 2

– c, h are predicted by (A + 2B + C + 2) >> 2

– d is predicted by (B + 2C + D + 2) >> 2

9.4.1.5 Mode 4: diagonal down/left prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice. This is a 'diagonal' prediction.

– a is predicted by (A + 2B + C + I + 2J + K + 4) >> 3

– b, e are predicted by (B + 2C + D + J + 2K + L + 4) >> 3

– c, f, i are predicted by (C + 2D + E + K + 2L + M + 4) >> 3

– d, g, j, m are predicted by (D + 2E + F + L + 2M + N + 4) >> 3

– h, k, n are predicted by (E + 2F + G + M + 2N + O + 4) >> 3

– l, o are predicted by (F + 2G + H + N + 2O + P + 4) >> 3

– p is predicted by (G + H + O + P + 2) >> 2

9.4.1.6 Mode 5: vertical-left prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice. This is a 'diagonal' prediction.

– a, j are predicted by (Q + A + 1) >> 1

– b, k are predicted by (A + B + 1) >> 1

– c, l are predicted by (B + C + 1) >> 1

– d is predicted by (C + D + 1) >> 1

– e, n are predicted by (I + 2Q + A + 2) >> 2

– f, o are predicted by (Q + 2A + B + 2) >> 2

– g, p are predicted by (A + 2B + C + 2) >> 2

– h is predicted by (B + 2C + D + 2) >> 2

– i is predicted by (Q + 2I + J + 2) >> 2

– m is predicted by (I + 2J + K + 2) >> 2

9.4.1.7 Mode 6: vertical-right prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice. This is a 'diagonal' prediction.

– a is predicted by (2A + 2B + J + 2K + L + 4) >> 3

– b, i are predicted by (B + C + 1) >> 1

– c, j are predicted by (C + D + 1) >> 1

– d, k are predicted by (D + E + 1) >> 1

– l is predicted by (E + F + 1) >> 1

– e is predicted by (A + 2B + C + K + 2L + M + 4) >> 3

– f, m are predicted by (B + 2C + D + 2) >> 2

– g, n are predicted by (C + 2D + E + 2) >> 2

– h, o are predicted by (D + 2E + F + 2) >> 2

– p is predicted by (E + 2F + G + 2) >> 2

9.4.1.8 Mode 7: horizontal-up prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice. This is a 'diagonal' prediction.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 53

– a is predicted by (B + 2C + D + 2I + 2J + 4) >> 3

– b is predicted by (C + 2D + E + I + 2J + K + 4) >> 3

– c, e are predicted by (D + 2E + F + 2J + 2K + 4) >> 3

– d, f are predicted by (E + 2F + G + J + 2K + L + 4) >> 3

– g, i are predicted by (F + 2G + H + 2K + 2L + 4) >> 3

– h, j are predicted by (G + 3H + K + 3L + 4) >> 3

– l, n are predicted by (L + 2M + N + 2) >> 2

– k, m are predicted by (G + H + L + M + 2) >> 2

– o is predicted by (M + N + 1) >> 1

– p is predicted by (M + 2N + O + 2) >> 2

9.4.1.9 Mode 8: horizontal-down prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice. This is a 'diagonal' prediction.

– a, g are predicted by (Q + I + 1) >> 1

– b, h are predicted by (I + 2Q + A+ 2) >> 2

– c is predicted by (Q + 2A + B+ 2) >> 2

– d is predicted by (A + 2B + C+ 2) >> 2

– e, k are predicted by (I + J + 1) >> 1

– f, l are predicted by (Q + 2I + J+ 2) >> 2

– i, o are predicted by (J + K + 1) >> 1

– j, p are predicted by (I + 2J + K+ 2) >> 2

– m is predicted by (K + L + 1) >> 1

– n is predicted by (J + 2K + L + 2) >> 2

9.4.2 Intra prediction for 16x16 mode for luma

Assume that the block to be predicted has sample locations 0 to 15 horizontally and 0 to 15 vertically. We use the
notation P(i,j) where i,j = 0..15. P(i,-1), i=0..15 are the neighbouring samples above the block and P(-1,j), j=0..15 are the
neighbouring samples to the left of the block. Pred(i,j) i,j = 0..15 is the prediction for the whole luma macroblock. We
have 4 different prediction modes:

9.4.2.1 Mode 0: vertical prediction

Pred(i, j) = P(i, -1), i, j=0..15

9.4.2.2 Mode 1: horizontal prediction

Pred(i, j) = P(-1, j), i, j=0..15

9.4.2.3 Mode 2: DC prediction

Pred(i, j) = 5)16)))1,(),1((((
15

0

>>+−+−∑
=i

iPiP i, j=0..15,

where only the average of 16 samples are used when the other 16 samples are outside the slice. If all 32 samples are
outside the slice, the prediction for all samples in the block is 128.

9.4.2.4 Mode 3: plane prediction

Pred(i,j) = clip1((a + b·(i-7) + c·(j-7) +16) >> 5),

where:

– a = 16·(P(-1,15) + P(15,-1))

– b = (5*H+32)>>6

– c = (5*V+32)>>6

and H and V are defined as:

DRAFT ISO/IEC 14496-10 : 2002 (E)

54 DRAFT ITU-T Rec. H.264 (2002 E)

∑
=

−−−−+⋅=
8

1

))1,7()1,7((
i

iPiPiH (8-1)

∑
=

−−−+−⋅=
8

1

))7,1()7,1((
j

jPjPjV (8-2)

9.4.3 Prediction in intra coding of chroma blocks

For chroma prediction there is only one mode. No information is therefore needed to be transmitted. The prediction is
indicated in Figure 9-11. The 8x8 chroma block consists of 4 4x4 blocks A,B,C,D. S0,1,2,3 are the sums of 4
neighbouring samples.

If S0, S1, S2, S3 are all inside the frame:

– A = (S0 + S2 + 4)>>3

– B = (S1 + 2)>>2

– C = (S3 + 2)>>2

– D = (S1 + S3 + 4)>>3

If only S0 and S1 are inside the frame:

– A = (S0 + 2)>>2

– B = (S1 + 2)>>2

– C = (S0 + 2)>>2

– D = (S1 + 2)>>2

If only S2 and S3 are inside the frame:

– A = (S2 + 2)>>2

– B = (S2 + 2)>>2

– C = (S3 + 2)>>2

– D = (S3 + 2)>>2

If S0, S1, S2, S3 are all outside the frame: A = B = C = D = 128

A B

C D

S1S0

S2

S3

Figure 9-11 – Prediction of chroma blocks

9.5 Transform coefficient decoding and picture construction prior to deblocking

This subclause defines aspects related to transform coefficient decoding.

9.5.1 Zig-zag scan

The decoder maps the sequence of transform coefficient levels to the transform coefficient level positions. For this
mapping, the scanning pattern is:

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 55

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

Figure 9-12 – Zig-zag scan

In the case of 16x16 intra macroblocks, the coefficients of the 4x4 luma DC transform are scanned in the same scan
order as ordinary 4x4 coefficient blocks. Then for each 4x4 block of luma coefficients with AC coefficients to scan, the
15 remaining coefficients are scanned by starting the zig-zag scan at its second position.

The coefficients of the 2x2 chroma DC transform are scanned in raster order. Then for each 4x4 block of chroma
coefficients with AC coefficients to scan, the 15 remaining coefficients are scanned by starting the zig-zag scan at its
second position.

9.5.2 Scaling and transformation

There are 52 different values of QP values that are used, ranging from 0 to 51, inclusive. The value of QPC for chroma is
determined from the current value of QPY. The scaling equations are defined such that the equivalent scaling parameter
doubles for every increment of 6 in QP. Thus, there is an increase in scaling magnitude of approximately 12% from one
QP to the next.

The value of QPC shall be determined from the value of QPY as specified in Table 9-1:

Table 9-1 – Specification of QPC as a function of QPY

QPY <30 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

QPC =QPY 29 30 31 32 32 33 34 34 35 35 36 36 37 37 37 38 38 38 39 39 39 39

QPY shall be used as the QP to be applied for luma scaling and QPC shall be used for chroma scaling.

The coefficients)(m
ijR , used in the formulas below, are defined as:

∈
∈

=
otherwise;

)},3,3(),1,3(),3,1(),1,1{(),(for

)},2,2(),0,2(),2,0(),0,0{(),(for

2

1

0
)(

m

m

m

m
ij

V

jiV

jiV

R (9-2)

where the first and second subscripts of V are row and column indices, respectively, of the matrix defined as:

=

232918

202516

182314

162013

141811

131610

V . (9-3)

DRAFT ISO/IEC 14496-10 : 2002 (E)

56 DRAFT ITU-T Rec. H.264 (2002 E)

9.5.2.1 Luma DC coefficients in Intra 16x16 macroblock

After decoding the coefficient levels for a 4x4 block of luma DC coefficients coded in 16x16 intra mode and assembling
these into a 4x4 matrix C of elements cij, a transform process shall be applied in a manner mathematically equivalent to
the following process. The process uses application of a transform before the scaling process.

The transform for the 4x4 luma DC coefficients in 16x16 intra macroblocks is defined by:

−−
−−

−−

−−
−−

−−
=

1111

1111

1111

1111

1111

1111

1111

1111

33323130

23222120

13121110

03020100

cccc

cccc

cccc

cccc

F . (9-4)

A bitstream conforming to this Recommendation | International Standard shall not contain indicated data that results in
any element of F that exceeds the range of integer values from –215 to 215–1, inclusive.

After the transform, scaling is performed according to the following:

a) If QP is greater than or equal to 12, then the scaled result shall be calculated as

3,,0,),26/(][)6%(
00 …=−<<⋅= jiQPRFDC QP

ijij . (9-5)

b) If QP is less than 12, then the scaled results shall be calculated as

3,,0,),6/2(]2[6/1)6%(
00 …=−>>+⋅= − jiQPRFDC QPQP

ijij . (9-6)

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in element of
DCij that exceeds the range of integer values from –215 to 215–1, inclusive.

9.5.2.2 Chroma DC coefficients

After decoding the coefficient levels for a 2x2 block of chroma DC coefficients and assembling these into a 2x2 matrix C
of elements cij, the transform process is applied before the scaling process.

Definition of transform:

−

−

=
11

11

11

11

1110

0100

cc

cc
F . (9-7)

A bitstream conforming to this Recommendation | International Standard shall not contain indicated data that results in
any element of F that exceeds the range of integer values from –215 to 215–1, inclusive.

After the transform, scaling is performed according to the following.

a) If QP is greater than or equal to 6, then the scaling result shall be calculated as

3,...,0,),16/(][)6%(
00 =−<<⋅= jiQPRFDC QP

ijij . (9-8)

b) If QP is less than 6, then the scaling results shall be calculated by

3,...,0,,1][)6%(
00 =>>⋅= jiRFDC QP

ijij . (9-9)

A bitstream conforming to this Recommendation | International Standard shall not contain indicated data that results in
any element of DCij that exceeds the range of integer values from –215 to 215–1, inclusive.

9.5.2.3 Residual 4x4 blocks

Scaling of coefficient levels cij other than those as specified in subclauses 9.5.2.1 and 9.5.2.2 shall be performed
according to the following equation:

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 57

3,...,0,),6/(][)6%(=<<⋅= jiQPRcw QP
ijijij . (9-10)

A bitstream conforming to this Recommendation | International Standard shall not contain indicated data that results in a
value of wij that exceeds the range of integer values from –215 to 215–1, inclusive.

After constructing an entire 4x4 block of scaled transform coefficients and assembling these into a 4x4 matrix W of
elements wij illustrated as

=

33323130

23222120

13121110

03020100

wwww

wwww

wwww

wwww

W (9-11)

in which the w00 element may be a result DCij from Equation 9-5, 9-6, 9-8, or 9-9; or may be from Equation 9-10, as
appropriate, the transform process shall convert the block of reconstructed transform coefficients to a block of output
samples in a manner mathematically equivalent to the following process:

a) First, each row of reconstructed transform coefficients is transformed using a one-dimensional transform,
and

b) Second, each column of the resulting matrix is transformed using the same one-dimensional transform.

The one-dimensional transform is defined as follows for four input samples w0, w1, w2, w3.

a) First, a set of intermediate values is computed:

z0 = w0 + w2 (9-12)

z1 = w0 – w2 (9-13)

z2 = (w1 >> 1) – w3 (9-14)

z3 = w1 + (w3 >> 1) (9-15)

b) Then the transformed result is computed from these intermediate values

x0 = z0 + z3 (9-16)

x1 = z1 + z2 (9-17)

x2 = z1 – z2 (9-18)

x3 = z0 – z3 (9-19)

A bitstream conforming to this Recommendation | International Standard shall not contain indicated data that results in a
value of z0, z1, z2, z3, x0, x1, x2, or x3 that exceeds the range of integer values from –215 to 215–1, inclusive, in either the
first (horizontal) or second (vertical) stage of application of this transformation process. A bitstream conforming to this
Recommendation | International Standard shall not contain indicated data that results in a value of x0, x1, x2, or x3 that
exceeds the range of integer values from –215 to 215–33, inclusive, in the second (vertical) stage of application of this
transformation process.

After performing the transform in both the horizontal and vertical directions to produce a block of transformed samples,

DRAFT ISO/IEC 14496-10 : 2002 (E)

58 DRAFT ITU-T Rec. H.264 (2002 E)

=

33323130

23222120

13121110

03020100

''''

''''

''''

''''

'

xxxx

xxxx

xxxx

xxxx

X , (9-20)

the final reconstructed sample residual values shall be obtained as

6]2'['' 5 >>+= ijij xX (9-21)

9.5.3 Adding decoded samples to prediction with clipping

Finally, the reconstructed sample residual values X'' from Equation 9-21 are added to the prediction values Pij from
motion compensated prediction or spatial prediction and clipped to the range of 0 to 255 to form the final decoded
sample result prior to application of the deblocking filter:

S'ij = clip1(Pij + X''ij) (9-22)

9.6 Deblocking Filter

A conditional filtering shall be applied to all reconstructed macroblocks of a picture. This filtering is done on a
macroblock basis. As the first step, the 16 pels of each of the 3 vertical edges internal to the macroblock of the 4x4
raster shall be filtered as shown on the left side of Figure 9-11 (horizontal filtering). Filtering of the 3 horizontal edges
internal to the macroblock follows (vertical filtering). Next the left edge of the macroblock is filtered, followed by the
top edge after the corresponding macroblocks to the left and top of the current macroblock are reconstructed. Picture
edges are not filtered.

Vertical edges (luma)

Vertical edges (chroma)

Horizontal edges (luma)

Horizontal edges (chroma)

16x16 Macroblock 16x16 Macroblock

Figure 9-13 – Boundaries in a macroblock to be filtered (luma boundaries shown with solid lines and chroma boundaries
shown with dotted lines)

Note 1: The intra prediction of a macroblock takes place based on the unfiltered content of the already decoded neighbouring
macroblocks. Depending on the implementation, the values necessary for intra prediction may need to be stored before filtering in
order to be used in the intra prediction of the macroblocks to the right and below the current macroblock.

Note 2: When picture_structure indicates a field picture, then all calculations for the deblocking filter are based solely on within
the current field.

9.6.1 Content dependent boundary filtering strength

For each boundary between neighbouring 4x4 luma blocks, a “Boundary Strength” Bs is assigned as shown in Figure
9-8 that influences the strength of filtering for this particular piece of boundary. As indicated in Figure 9-7, every block

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 59

boundary of a chroma block corresponds to a specific boundary of a luma block. Bs values for chroma are not calculated,
but simply copied from the corresponding luma Bs.

Block boundary
between blocks j and k

por q

Bs = 3

in block

NO

R(j)≠R(k) or

|V(j,x)-V(k,x)|≥1 pixel or
|V(j,y)-V(k,y)|≥1 pixel?

Bs = 1

YES

Bs = 0
(Skip)

Block boundary
between blockspand q

Block or

Intra coded?

Bs = 4

YES

Coefficients coded

in block p or q?

NO

Bs = 2

|V(p,x)-V(q,x)|≥1 pel or
|V(p,y)-V(q,y)|≥1 pel

Bs = 1

YES

NO

Bs = 0
(Skip)

NO

Bs = 3Bs = 3

YESBlock boundary is
also macroblock

boundary?

Bs = 4

Ref(p) != Ref(q)
or

Figure 9-14 – Flow chart for determining the boundary strength (Bs), for the block boundary between two
neighbouring blocks p and q, where Ref(p) is the reference frame or field of block p and V(p) is the motion vector

of block p

9.6.2 Thresholds for each block boundary

p3 p2 p1 p0 q0 q1 q2 q3

Figure 9-15 – Convention for describing samples across 4x4 block horizontal or vertical boundary

In the following description, the set of eight samples across a 4x4 block horizontal or vertical boundary is denoted as
shown in Figure 9-9 with the actual boundary lying between p0 and q0. In the default mode, up to two samples on both
sides of the boundary can be updated as a result of the filtering process (that is at most p1, p0, q0, q1). Filtering across a
certain 4x4 block boundary is skipped altogether if the corresponding Bs is equal to zero. Sets of samples across this
edge are only filtered if the condition

Bs ≠ 0 && |p0 – q0| < α && |p1 – p0| < β && |q1 – q0| < β (9-26)

is true. The values of the thresholds α and β are dependent on the average value of QP for the two macroblocks, as
determined by QPav = (QPp+QPq)>>1 is used to determineα and β. The values for the thresholds are shown in Table 9-1.

DRAFT ISO/IEC 14496-10 : 2002 (E)

60 DRAFT ITU-T Rec. H.264 (2002 E)

Table 9-1 – QPav dependent threshold parameters αααα and ββββ

QPav

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α 0 4 4 5 6 7 9

β 0 3 3 3 4 4 4

Table 9-1 (concluded)

QPav

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

α 10 12 14 17 20 24 28 33 39 46 55 65 76 90 106 126 148 175 207 245 255 255 255 255 255 255

β 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18

9.6.3 Filtering of edges with Bs < 4

Two types of filtering are defined. In the default case the equations below are used to filter p0 and q0. Here, uppercase
letters indicate filtered and lower case letters indicate unfiltered samples with regard to the current edge filtering
operation. However, p1 and p2 may indicate samples that have been modified by the filtering of a previous block edge.

∆ = clip3(-C, C, (((q0 – p0) << 2 + (p1 – q1) + 4) >> 3)) (9-27)

P0 = clip1(p0+∆) (9-28)

Q0 = clip1(q0- ∆) (929)

where C is determined as specified below.

Two intermediate threshold variables

ap = |p2 – p0| (9-30)

aq = |q2 – q0| (9-31)

shall be used to determine whether luma samples p1 and q1 are filtered. These samples are only processed for luma.

If ap < β for a luma edge, a filtered sample P1 shall be produced as specified by

P1 = p1 + clip3(-C0, C0, (p2 + (p0 + q0)>>1 – 2*p1) >> 1) (9-32)

If aq < β for a luma edge, a filtered sample Q1 shall be produced as specified by

Q1 = q1 + clip3(-C0, C0, (q2 + (p0 + q0)>>1 – 2*q1) >> 1) (9-33)

where C0 is specified in Table 9-2.

C is determined by setting C equal to C0 and then incrementing C by one if ap<β, and again by one if aq<β.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 61

Table 9-2 – Value of filter clipping parameter C as a function of QPav and Bs

QPav

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Bs = 1 0 1 1 1

Bs = 2 0 1 1 1 1 1

Bs = 3 or 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Table 9-2 (concluded)

QPav

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Bs = 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13

Bs = 2 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6 7 8 8 10 11 12 13 15 17

Bs = 3 or 4 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13 14 16 18 20 23 25

9.6.4 Filtering of edges with Bs = 4

When Bs is equal to 4, if the following condition holds:

ap < β (9-34)

filtering of the left/upper side of the block edge is defined by the equations:

P0 = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + ditherP[pos]) >> 3 (9-35)

P1 = (p3 + 2*p2 + 2*p1 + 2*p0 + q0 + ditherP[pos]) >> 3 (9-36)

and in the case of luma filtering only:

P2 = (2*p3 + 3*p2 + p1 + p0 + q0 + ditherP[pos]) >> 3 (9-38)

Otherwise, if the condition of 9-34 does not hold, the following filter is applied:

P0 = (2*p1 + p0 + q1 + 2) >> 2 (9-39)

Similarly, for filtering of the right/lower side of the edge, if the following condition holds:

aq < β (9-40)

filtering is defined by the equations:

Q0 = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + ditherQ[pos]) >> 3 (9-41)

Q1 = (p0 + 2*q0 + 2*q1 + 2*q2 + q3 + ditherQ[pos]) >> 3 (9-42)

and, in the case of luma filtering only:

Q2 = (2*q3 + 3*q2 + q1 + q0 + p0 + ditherQ[pos]) >> 3 (9-43)

DRAFT ISO/IEC 14496-10 : 2002 (E)

62 DRAFT ITU-T Rec. H.264 (2002 E)

Otherwise, if the condition of 9-39 does not hold, the following filter is applied:

Q0 = (2*q1 + q0 + p1 + 2) >> 2 (9-44)

Where ditherP and ditherQ are taken from Table 9-3 and pos is the distance from the top line of the macroblock when
filtering vertical edges (horizontal filtering) and the distance from the left column of the macroblock when filtering
horizontal edges (vertical filtering).

Table 9-3 – Rounding Value for Strong Filter

pos 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ditherP[pos] 4 5 3 6 2 7 1 5 3 1 7 2 6 3 5 4

ditherQ[pos] 4 3 5 2 6 1 7 3 5 7 1 6 2 5 3 4

NOTE – Q1(blockn) might be used and be overwritten as P2 during the calculation of blockn+1. The same is true for Q2(blockn)
which might become P1(blockn+1).

10 Entropy Coding

10.1 Variable Length Coding

10.1.1 Exp-Golomb entropy coding

The table of Exp-Golomb codewords is written in the following compressed form.

1

0 1 x0

0 0 1 x1 x0

0 0 0 1 x2 x1 x0

0 0 0 0 1 x3 x2 x1 x0

…..............

where xn take values 0 or 1. A codeword can be referred by its length in bits (L = 2n-1) and INFO = xn,…x1, x0. Notice
that the number of bits in INFO is n-1 bits. The codewords are numbered from 0 and upwards. The definition of the
numbering is:

Code_number = 2^L/2 + INFO -1 (L/2 use division with truncation. INFO = 0 when L = 1). Some of the first code
numbers and codewords are written explicitly in Table 10-1. As an example, for the code number 5, L = 5 and INFO =
10 (binary) = 2 (decimal).

Table 10-1 – Code number and Exp-Golomb codewords in explicit form

Code_number Code word

0 1

1 0 1 0

2 0 1 1

3 0 0 1 0 0

4 0 0 1 0 1

5 0 0 1 1 0

6 0 0 1 1 1

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 63

7 0 0 0 1 0 0 0

8 0 0 0 1 0 0 1

9 0 0 0 1 0 1 0

10 0 0 0 1 0 1 1

......

When L (L = 2N-1) and INFO is known, the regular structure of the table makes it easy to create a codeword. Similarly,
a decoder may easily decode a codeword by reading in N bit prefix followed by N-1 INFO. L and INFO is then readily
available. For each parameter to be coded, there is a conversion rule from the parameter value to the code number (or L
and INFO).

10.1.2 Unsigned Exp-Golomb entropy coding

The value of syntax elements that are represented by unsigned Exp-Golomb entropy coding directly corresponds to the
code_number value of Table 10-1. This type of entropy coding is indicated via ue(v).

10.1.3 Signed Exp-Golomb entropy coding

The syntax elements that are represented by signed Exp-Golomb entropy coding are assigned to the code_number by
ordering using their absolute values in increasing order and representing the positive value with the lower code_number.
Table 10-2 provides the assignment for the first 11 code_numbers.

Table 10-2 – Assignment of symbol values and code_numbers for signed Exp-Golomb entropy coding

Code_number Symbol value

0 0

1 1

2 -1

3 2

4 -2

5 3

6 -3

7 4

8 -4

9 5

10 -5

… …

This type of entropy coding is indicated via se(v).

10.1.4 Mapped Exp-Golomb entropy coding

Table 10-3 specifies the assignment of all mapped Exp-Golomb-coded slice data symbols. This type of entropy coding is
indicated via me(v). Please note that for some of these symbols are coded differently when entropy_coding_mode = = 1.

Table 10-3 – Assignment of codeword number and parameter values for all mapped Exp-Golomb-coded symbols

Code_
number

mb_mode 8x8

mode

coded_block_pattern Tcoeff_chroma_DC1 Tcoeff_chroma_AC1

Tcoeff_luma1

Simple scan

Tcoeff_luma1

Double scan

DRAFT ISO/IEC 14496-10 : 2002 (E)

64 DRAFT ITU-T Rec. H.264 (2002 E)

Intra Inter Intra Inter Level Run Level Run Level Run

0 Intra4x4 16x16 8x8 47 0 EOB - EOB - EOB -

1 0,0,02 16x8 8x4 31 16 1 0 1 0 1 0

2 1,0,0 8x16 4x8 15 1 -1 0 -1 0 -1 0

3 2,0,0 8x8 4x4 0 2 2 0 1 1 1 1

4 3,0,0 8x8
(ref=0)

Intra 23 4 -2 0 -1 1 -1 1

5 0,1,0 Intra4x4 27 8 1 1 1 2 2 0

6 1,1,0 0,0,02 29 32 -1 1 -1 2 -2 0

7 2,1,0 1,0,0 30 3 3 0 2 0 1 2

8 3,1,0 2,0,0 7 5 -3 0 -2 0 -1 2

9 0,2,0 3,0,0 11 10 2 1 1 3 3 0

10 1,2,0 0,1,0 13 12 -2 1 -1 3 -3 0

11 2,2,0 1,1,0 14 15 1 2 1 4 4 0

12 3,2,0 2,1,0 39 47 -1 2 -1 4 -4 0

13 0,0,1 3,1,0 43 7 1 3 1 5 5 0

14 1,0,1 0,2,0 45 11 -1 3 -1 5 -5 0

15 2,0,1 1,2,0 46 13 4 0 3 0 1 3

16 3,0,1 2,2,0 16 14 -4 0 -3 0 -1 3

17 0,1,1 3,2,0 3 6 3 1 2 1 1 4

18 1,1,1 0,0,1 5 9 -3 1 -2 1 -1 4

19 2,1,1 1,0,1 10 31 2 2 2 2 2 1

20 3,1,1 2,0,1 12 35 -2 2 -2 2 -2 1

21 0,2,1 3,0,1 19 37 2 3 1 6 3 1

22 1,2,1 0,1,1 21 42 -2 3 -1 6 -3 1

23 2,2,1 1,1,1 26 44 5 0 1 7 6 0

24 3,2,1 2,1,1 28 33 -5 0 -1 7 -6 0

25 3,1,1 35 34 4 1 1 8 7 0

26 0,2,1 37 36 -4 1 -1 8 -7 0

27 1,2,1 42 40 3 2 1 9 8 0

28 2,2,1 44 39 -3 2 -1 9 -8 0

29 3,2,1 1 43 3 3 4 0 9 0

30 2 45 -3 3 -4 0 -9 0

31 4 46 6 0 5 0 10 0

32 8 17 -6 0 -5 0 -10 0

33 17 18 5 1 3 1 4 1

34 18 20 -5 1 -3 1 -4 1

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 65

35 20 24 4 2 3 2 2 2

36 24 19 -4 2 -3 2 -2 2

37 6 21 4 3 2 3 2 3

38 9 26 -4 3 -2 3 -2 3

39 22 28 7 0 2 4 2 4

40 25 23 -7 0 -2 4 -2 4

41 32 27 6 1 2 5 2 5

42 33 29 -6 1 -2 5 -2 5

43 34 30 5 2 2 6 2 6

44 36 22 -5 2 -2 6 -2 6

45 40 25 5 3 2 7 2 7

46 38 38 -5 3 -2 7 -2 7

47 41 41 8 0 2 8 11 0

..

For the entries above the horizontal line, the table is needed for relation between code number and Level/Run/EOB. For
the remaining Level/Run combination there is a simple rule. The Level/Run combinations are assigned a code number
according to the following priority: 1) sign of Level (+ -) 2) Run (ascending) 3) absolute value of Level (ascending).

10.1.5 Entropy coding for Intra

In intra mode, prediction is always used for each sub block in a macroblock. A 4x4 block is to be coded (samples
labeled a to p below). The samples A to Q from neighbouring blocks may already be decoded and may be used for
prediction. When samples E-H are not available, whether because they have not yet been decoded, are outside the picture
or outside the current slice, the sample value of D is substituted for samples E-H. When samples M-P are not available,
the sample value of L is substituted for samples M-P..

10.1.5.1 Coding of Intra 4x4 prediction modes

Since each of the 4x4 luma blocks is assigned a prediction mode, this will require a considerable number of bits if coded
independently. The chosen prediction of a block is highly correlated with the prediction modes of adjacent blocks. This
is illustrated in Figure 8-4. When the prediction modes of A and B are known (including the case that A or B or both are
outside the slice) an ordering of the most probable, next most probable etc. of C is given. When an adjacent block is
coded by 16x16 intra mode, prediction mode is “mode 0: DC_prediction”; when it is coded in inter mode, prediction
mode is “mode 0: DC_prediction” in the usual case and “outside” in the case of constrained intra update. This ordering is
listed in Table 8-10.

For each prediction mode of A and B a list of 9 numbers is given in Table 8-10. Example: Prediction mode for A and B
is 2. The string 2 8 7 1 0 6 4 3 5 indicates that mode 2 is also the most probable mode for block C. Mode 8 is the next
most probable one etc. In the bitstream there will for instance be information that Prob0 = 1 (see Table 9-5) indicating
that the next most probable mode shall be used for block C. In our example this means Intra prediction mode 8. Use of
‘–‘ in the table indicates that this instance cannot occur because A or B or both are outside the slice.

For more efficient coding, information on intra prediction of two 4x4 luma blocks are coded in one codeword (Prob0 and
Prob1 in Table 9-5). The order of the resulting eight codewords is indicated in Table 8-4.

DRAFT ISO/IEC 14496-10 : 2002 (E)

66 DRAFT ITU-T Rec. H.264 (2002 E)

0

1

0

1

2

3

2

3

4

5

4

5

6

7

6

7C

A

B

a b

Figure 10-1 – a) Prediction mode of block C to be established, where A and B are adjacent blocks. b) order of
intra prediction information in the bitstream

Table 10-4 – Prediction mode as a function of ordering indicated in the bitstream

Index B/A Outside 0 1 2 3

0a Outside 0-------- 01------- 10------- --------- ---------

1a 0 02------- 021648573 125630487 021876543 021358647

2a 1 --------- 102654387 162530487 120657483 102536487

3a 2 20------- 280174365 217683504 287106435 281035764

4a 3 --------- 201385476 125368470 208137546 325814670

5a 4 --------- 201467835 162045873 204178635 420615837

6a 5 --------- 015263847 152638407 201584673 531286407

7a 6 --------- 016247583 160245738 206147853 160245837

8a 7 --------- 270148635 217608543 278105463 270154863

9a 8 --------- 280173456 127834560 287104365 283510764

Table 10-4 (concluded)

Index B/A 4 5 6 7 8

0b Outside --------- --------- --------- --------- ---------

1b 0 206147583 512368047 162054378 204761853 208134657

2b 1 162045378 156320487 165423078 612047583 120685734

3b 2 287640153 215368740 216748530 278016435 287103654

4b 3 421068357 531268470 216584307 240831765 832510476

5b 4 426015783 162458037 641205783 427061853 204851763

6b 5 125063478 513620847 165230487 210856743 210853647

7b 6 640127538 165204378 614027538 264170583 216084573

8b 7 274601853 271650834 274615083 274086153 278406153

9b 8 287461350 251368407 216847350 287410365 283074165

10.1.5.2 Coding of mode information for Intra-16x16 mode

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 67

See Table 7. Three parameters have to be indicated. They are all included in MB-mode.

Imode: 0,1,2,3

AC: 0 means there are no ac coefficients in the 16x16 block. 1 means that there is at least one ac coefficient and all
16 blocks are scanned.

nc: coded_block_pattern for chroma (see qq)

For 16x16 based intra mode. The 3 numbers refer to values for (Imode,AC,nc) - see qq.

Table 10-5 – Connection between codeword number and Intra Prediction Mode Probability

Code_

number

Prob0,
Prob13

Code_

number

Prob0,
Prob13

Code_

number

Prob0,
Prob13

Code_

number

Prob0,
Prob13

0 0,0 21 2,3 41 2,6 61 6,5

1 0,1 22 3,2 42 6,2 62 4,7

2 1,0 23 1,5 43 3,5 63 7,4

3 1,1 24 5,1 44 5,3 64 3,8

4 0,2 25 2,4 45 1,8 65 8,3

5 2,0 26 4,2 46 8,1 66 4,8

6 0,3 27 3,3 47 2,7 67 8,4

7 3,0 28 0,7 48 7,2 68 5,7

8 1,2 29 7,0 49 4,5 69 7,5

9 2,1 30 1,6 50 5,4 70 6,6

10 0,4 31 6,1 51 3,6 71 6,7

11 4,0 32 2,5 52 6,3 72 6,7

12 3,1 33 5,2 53 2,8 73 5,8

13 1,3 34 3,4 54 8,2 74 8,5

14 0,5 35 4,3 55 4,6 75 6,8

15 5,0 36 0,8 56 6,4 76 8,6

16 2,2 37 8,0 57 5,5 77 7,7

17 1,4 38 1,7 58 3,7 78 7,8

18 4,1 39 7,1 59 7,3 79 8,7

19 0,6 40 4,4 60 5,6 80 8,8

20 6,0

Prob0 and Prob1 defines the Intra prediction modes of two blocks relative to the prediction of prediction modes (see
details in the subclause for Intra coding).

10.1.6 Context-based adaptive variable length coding (CAVLC) of transform coefficients

CAVLC (Contex-Adaptive VLC) is the method used for decoding of transform coefficients. The following coding
elements are used:

DRAFT ISO/IEC 14496-10 : 2002 (E)

68 DRAFT ITU-T Rec. H.264 (2002 E)

1. If there are non-zero coefficients, it is typically observed that there is a string of coefficients at the highest
frequencies that are ±1. A common parameter Num-Trail is used that contains the number of coefficients as
well as the number of "Trailing 1s" (from now referred to as T1s). For T1s only the sign has to be decoded.

2. For coefficients other than the T1s, Level information is decoded.

3. Lastly, the Run information is decoded. Since the number of coefficients is already known, this limits possible
values for Run. Run is split into Total number of zeros before all coefficients and Run before each non-zero
coefficient.

Zig-zag scanning as described in subclause 9.4.1 is used, but in the decoding of coefficient data, both levels and runs, the
scanning is done in reverse order. Therefore, in the Level information, the signs of T1s are decoded first (in reverse
order), then the Level information of the last coefficient where this is needed, and so on. Run information is decoded
similarly. First Total number of zeros in Runs is decoded, followed by Run before the last nonzero coefficient, and so
on.

10.1.6.1 Num-trail

Three luma and one chroma DC VLC tables are used for combined decoding of number of coefficients and T1s, i.e. one
codeword signals both parameters. VLCs are listed in the tables below. T1s is clipped to 3. Any remaining trailing 1s
are decoded as normal levels.

Table 10-6 – Number of coefficients / Trailing Ones: Num-VLC0

NumCoef\T1s 0 1 2 3

0 1 - - -

1 000011 01 - -

2 00000111 0001001 001 -

3 000001001 00000110 0001000 00011

4 000001000 000001011 000000101 000010

5 0000000111 000001010 000000100 0001011

6 00000000111 0000000110 0000001101 00010101

7 000000001001 00000000110 0000001100 00010100

8 000000001000 00000001001 000000001010 000000111

9 0000000000111 000000001011 000000000101 0000000101

10 0000000000110 0000000001101 0000000001111 00000001000

11 00000000000011 0000000001100 0000000001110 000000000100

12 00000000000010 00000000000100 00000000000110 0000000000101

13 00000000000101 00000000000111 000000000010001 00000000001001

14 000000000000011 000000000000010 000000000010000 0000000000000011

15 00000000000000001 00000000000000011 00000000000000010 00000000000000101

16 00000000000000000 000000000000001001 0000000000000010001 0000000000000010000

Table 10-7 – Number of coefficients / Trailing Ones: Num-VLC1

NumCoeff\T1s 0 1 2 3

0 11 - - -

1 000011 011 - -

2 000010 00011 010 -

3 001001 001000 001010 101

4 1000001 001011 100101 0011

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 69

5 00000111 1000000 1000010 00010

6 00000110 1000011 1001101 10001

7 000001001 10011101 10011100 100100

8 000001000 000001011 000000101 1001100

9 0000000111 000001010 000000100 10011111

10 0000000110 0000001101 0000001100 10011110

11 00000000101 00000000111 00000001001 000000111

12 00000000100 00000000110 00000001000 0000000101

13 000000000011 000000000010 000000000100 000000000111

14 0000000000011 000000000101 0000000000010 0000000001101

15 00000000000001 00000000000000 000000000000111 0000000001100

16 000000000000101 000000000000100 0000000000001101 0000000000001100

Table 10-8 – Number of coefficients / Trailing Ones: Num-VLC2

NumCoeff\T1s 0 1 2 3

0 0011 - - -

1 0000011 0010 - -

2 0000010 101110 1101 -

3 000011 101001 010110 1100

4 000010 101000 010001 1111

5 101101 101011 010000 1110

6 101100 101010 010011 1001

7 101111 010101 010010 1000

8 0110101 010100 011101 00011

9 0110100 010111 011100 00010

10 0110111 0110110 0110000 011111

11 01111001 0110001 01111010 0110011

12 01111000 01111011 01100101 01100100

13 000000011 000000010 000000100 000000111

14 0000000011 000000101 0000001101 0000001100

15 0000000010 00000000011 00000000010 00000000001

16 0000000000001 000000000001 00000000000001 00000000000000

Table 10-9 – Number of coefficients / Trailing Ones: Num-VLC_Chroma_DC

NumCoeff\T1s 0 1 2 3

1 0001 1 - -

2 00001 00111 01 -

3 00110 000001 001010 00100

4 0000001 00000000 00000001 001011

DRAFT ISO/IEC 14496-10 : 2002 (E)

70 DRAFT ITU-T Rec. H.264 (2002 E)

9.7.3.1.1 Table selection

For all elements, except chroma DC, a choice between three tables and one FLC is made. Selection is done as follows:
N is calculated based on the number of coefficients in the block above and to the left of the current block: NU and NL. In
the table below, X means that the block is available in the same slice

Table 10-10 – Calculation of N for Num-VLCN

Upper block (NU) Left block (NL) N

X X (NL+NU)/2

X NU

X NL

0

0 <= N < 2 : Num-VLC0

2 <= N < 4 : Num-VLC1

5 <= N < 8 : Num-VLC2

N >= 8 : 6 bit FLC xxxxyy, as follows:

NumCoeff–1 is transmitted in the first 4 bits (xxxx). The last 2 bits (yy) are used for T1. There is one exception: the
codeword 000011 represents NumCoeff=0.

For chroma DC, Num-VLC_Chroma_DC is used.

10.1.6.2 Decoding of level information

First, the sign of T1s are decoded from 1 bit each. For the remaining level information, four structured VLCs are used to
decode levels. The structured level tables are explained in Table 9-11.

Table 10-11 – Level tables

Lev-VLC0

Code no Code Level (±1, ±2..) Level (±2, ±3..)

0 1 1 2

1 01 -1 -2

2 001 2 3

3 000` -2 -3

..

13 00000000000001 -7 -8

14-29 000000000000001xxxx ±8 to ±15 ±9 to ±16

30-> 0000000000000001xxxxxxxxxxxx ±16 -> ±17 ->

Lev-VLC1

Code no Code Level (±1, ±2..) Level (±2, ±3..)

0-1 1x ±1 ±2

2-3 01x ±2 ±3

..

26-27 00000000000001x ±14 ±15

28-43 000000000000001xxxx ±15 to ±22 ±16 to ±23

44 -> 0000000000000001xxxxxxxxxxxx ±23 -> ±24 ->

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 71

Lev-VLC2

Code no Code Level (±1, ±2..)

0-3 1xx ±1 to ±2

4-7 01xx ±3 to ±4

..

52-55 00000000000001xx ±27 to ±28

56-71 000000000000001xxxx ±29 to ±36

72 -> 0000000000000001xxxxxxxxxxxx ±37 ->

Lev-VLC3

Code no Code Level (±1, ±2..)

0-7 1xxx ±1 to ±4

8-16 01xxx ±5 to ±8

..

104-111 00000000000001xxx ±53 to ±56

112-127 000000000000001xxxx ±57 to ±64

128 -> 0000000000000001xxxxxxxxxxxx ±66 ->

Lev-VLC4

Code no Code no Code no

0-15 1xxxx ±1 to ±8

16-31 01xxxx ±9 to ±16

..

112-127 000000000000001xxxx ±57 to ±64

128 -> 0000000000000001xxxxxxxxxxxx ±66 ->

Normally levels to be coded take values ± 1, ± 2 etc. However, for the first coefficient to be decoded (after T1s) and if
T1s < 3 or Number_of_coefficients = T1s, levels to be decoded take values ± 2, ± 3 etc (Level’). Since the first
coefficient is always decoded with Lev-VLC0 or Lev-VLC1, these levels starting at ± 2 are only applicable to Lev-VLC0
and Lev-VLC1.

Levels are assigned according to ascending code numbers. Positive values receive the lowest code number and negative
values receive the next code number.

The last two entries in each table are escape codes. The first escape code, with four “x”’s, is used to decode the 8 levels
above the last regularly coded level. The next escape code, with 12 “x”’s, is used to decode all remaining levels.

9.7.3.2.1 Table selection

The tables are changed along with the decoding process based on QP value, number of coefficients, and the size of the
previously decoded level value.

After each Level is decoded, the VLC number is updated according to the following method, where Level is the absolute
value of the previously decoded level.

Inter and intra with QP >= 21

First coefficient with VLC0. Next VLC1.

DRAFT ISO/IEC 14496-10 : 2002 (E)

72 DRAFT ITU-T Rec. H.264 (2002 E)

Increase VLC by one (up to 2) if |Level|> 3

Intra with QP < 21

if(number of coefficients > 10)

First coefficient with VLC1. Next VLC2.

else

First coefficient with VLC0. Next VLC1.

if(vlc == VLC1) change to VLC2 if |Level|> 3.

if(vlc >=VLC2) increase vlc by one (up to 4) if |Level| > 5

The same procedure is used for chroma AC and DC coefficient levels.

10.1.6.3 Decoding of run information

Run decoding is separated in total number of Zeros (i.e. the number of zeros located before the last non-zero coefficient)
and Run (of zeros) before each coefficient.

9.7.3.3.1 TotalZeros

The parameter TotalZeros is the sum of all zeros located before the last non-zero coefficient in a forward scan. For
example, given the string of coefficients 0 0 3 0 0 4 0 0 0 0 2 0 1 0 0 0, TotalZeros will be 2+2+4+1=9. Since NumCoeff
is already known, it determines the maximum possible value of TotalZeros. One out of 15 VLC tables is chosen based
on NumCoeff.

If NumCoeff indicates that all coefficients are non-zero, TotalZeros is not decoded since it is known to be zero

Table 10-12 – TotalZeros tables for all 4x4 blocks

NumCoeff
TotalZeros

1 2 3 4 5 6 7

1 1 111 0010 111101 01000 101100 111000

2 011 101 1101 1110 01010 101101 111001

3 010 011 000 0110 01011 1010 11101

4 0011 001 010 1010 1110 001 1001

5 0010 000 1011 000 011 010 1111

6 00011 1000 1111 100 100 000 00

7 00010 0101 011 110 1111 110 01

8 000011 1001 100 1011 110 111 101

9 000010 1100 0011 010 101 100 110

10 0000011 01000 1110 001 001 011 100

11 0000010 11011 1010 0111 000 10111 -

12 00000001 11010 11000 1111 01001 - -

13 00000000 010010 110011 111100 - - -

14 00000011 0100111 110010 - - - -

15 000000101 0100110 - - - - -

NumCoeff
TotalZeros

8 9 10 11 12 13 14 15

1 101000 111000 10000 11000 1000 100 00 0

2 101001 111001 10001 11001 1001 101 01 1

3 10101 11101 1001 1101 101 11 1 -

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 73

4 1011 1111 101 111 0 0 - -

5 110 00 01 0 11 - - -

6 00 01 11 10 - - -

7 111 10 00 - - - - -

8 01 110 - - - - - -

9 100 - - - - - - -

10 - - - - - - - -

11 - - - - - - - -

12 - - - - - - - -

13 - - - - - - - -

14 - - - - - - - -

15 - - - - - - - -

Table 10-13 – TotalZeros table for chroma DC 2x2 blocks

NumCoeff
TotalZeros

1 2 3

0 1 1 1

1 01 01 0

2 001 00 -

3 000 - -

10.1.6.4 Run before each coefficient

At this stage it is known how many zeros are left to distribute (call this ZerosLeft). When decoding a non-zero
coefficient for the first time, ZerosLeft begins at TotalZero, and decreases as more non-zero coefficients are decoded.

For example, if there is only 1 zero left, the run before the next coefficient must be either of length 0 or 1, and only one
bit is needed.

The number of preceding zeros before each non-zero coefficient (called RunBefore) needs to be decoded to properly
locate that coefficient. Before decoding the next RunBefore, ZerosLeft is updated and used to select one out of 7 tables.
RunBefore does not need to be decoded in the following two situations:

• If the total number of zeros has been reached (ZerosLeft = 0)

• For the last coefficient in the backward scan. Then the value is known to be ZerosLeft. This also means that the
maximum value to be coded is 14.

Table 10-14 – Tables for Run before each coefficient

RunsLeft
Run Before

1 2 3 4 5 6 >6

0 1 1 01 01 01 01 000

1 0 01 00 00 00 00 010

2 - 00 11 11 11 101 101

3 - - 10 101 101 100 100

4 - - - 100 1001 111 111

5 - - - - 1000 1101 110

6 - - - - - 1100 0011

DRAFT ISO/IEC 14496-10 : 2002 (E)

74 DRAFT ITU-T Rec. H.264 (2002 E)

7 - - - - - - 0010

8 - - - - - 00011

9 - - - - - - 00010

10 - - - - - - 00001

11 - - - - - - 0000011

12 - - - - - - 0000010

13 - - - - - - 0000001

14 - - - - - - 00000001

10.2 Context-based adaptive binary arithmetic coding (CABAC)

10.2.1 Introduction

First we give a short overview of the main coding elements of the CABAC entropy coding scheme. Suppose a symbol
related to an arbitrary syntax element is to be coded. In a first step, a suitable set of prior transmitted symbols is chosen
that should be useful in estimating the symbol to be coded. This process of constructing a model conditioned on
neighbouring symbols is commonly referred to as context modelling and is the first step in the CABAC entropy coding
scheme. The particular context models that are designed for each given symbol are described in detail in subclauses
10.2.3-10.2.5. Generally, the design of the context models is such that it involves at most two neighbouring symbols to
the left and on top of a given symbol, as is shown in Figure 10-2.

In a second step, if a given symbol is non-binary valued, it will be mapped onto a sequence of binary decisions called
bins. The actual binarization of non-binary valued symbols is done according to specific binary trees, as specified in
subclauses 10.2.3-10.2.5.

Next, for each bin a Context Variable is defined by an equation containing the prior transmitted symbols, or parts
thereof, defined by the Context Modelling. The possible numerical values of the Context Variable are called Contexts.
Typically, there are several possible values, i.e. several Contexts. However, in some cases the context variable may
simply be a constant, in which case there is only one Context.

Associated with each Context is a probability distribution. Since only bins are encoded, each probability distribution is
determined by just a single number p, which, for example, represents the probability of the bin value “1”. In some cases
several bins may share the same Context Variable and Probability Model. The initial values for the Probability Model
may be supplied by the Context Modelling or the binarization.

During actual coding of a bin at a particular point, block, macroblock, etc. in the picture, first the context is calculated,
then the bin is encoded with the adaptive binary arithmetic coding (AC) engine using the probability distribution
corresponding to the calculated context. After encoding of each bin, the Probability Model will be updated using the
value of the encoded bin. Hence, CABAC keeps track of the actual statistics during coding.

C

B

A

Figure 10-2 – Illustration of generic conditioning scheme using neighbouring symbols A and B for conditional
coding of a current symbol C

10.2.2 Initialisation of context models

For a proper initialisation of the probability model associated with each context, initial counts c0 and c1 of the events “0”
and “1”, respectively, are provided. Regarding the initialisation, there are three categories of models: a) models with
initial counts depending on the quantisation parameter (QP), b) models with fixed initial counts (independent of the QP)
and c) models with a flat, i.e. uniform initialisation. In each of the three cases, the given initial counts have to be

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 75

translated into the representation of the probability models, which is further specified in subclause 10.2.6.2. Next, a
detailed description of the initialisation process for all three categories of context models is given.

10.2.2.1 Models with QP-independent initial counts

Given the initial counts c0 and c1, in a first step a conditional rescaling operation is performed in order to guarantee that
the condition 2 ≤ctotal <17 holds, where : ctotal = c0 + c1:

Count_Rescaling:

while (ctotal >16)
{

ctemp ← c1
c1 ← (c1+1)>>1

ctotal ← c1+((ctotal - ctemp+ 1)>>1)
}

In a second step, the most probable symbol (MPS) and the state index State corresponding to the underlying probability
model is determined by using the appropriately rescaled counts of the first step:

Get MPS:

MPS ← 0
if((ctotal - c1)< c1)
{

MPS←1
State ← StateTab[ctotal – c1 – 1][[ctotal – 2]
}
else
{

State ← StateTab[c1 – 1][[ctotal – 2]
}

Here the translation between counts and the corresponding probability states of the LPS is obtained by means of the table
StateTab as shown in Table 10-1. In the following, this method of initialisation will be referred as Ini_type 1.

Table 10-15 – StateTab for translating between given counts and LPS related probability states

ctotal−2

cLPS−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 1 2 3 4 5 32 33 34 35 36 37 38 39 40

1 -/- -/- 6 7 8 9 23 25 26 27 28 29 30 31 32

2 -/- -/- -/- -/- 10 11 17 20 20 21 23 24 25 26 27

3 -/- -/- -/- -/- -/- -/- 12 15 16 18 20 21 22 22 23

4 -/- -/- -/- -/- -/- -/- -/- -/- 13 14 16 18 19 19 20

5 -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 13 14 16 17 17

6 -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 13 14 15

7 -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 13

10.2.2.2 Models with QP-dependent initialisation

For QP-dependent initialisation, scaling factors r0 and r1 will be given in addition to the initial counts c0 and c1 such that
scaled counts cs0 and cs1 are determined either as:

Scale_Counts Case1:

{
qp_factor ← min(21, max (0,QP-22))
cs0 ← c0 + (r0*qp_factor)/16
cs1 ← c1 + (r1*qp_factor)/16

}
or

DRAFT ISO/IEC 14496-10 : 2002 (E)

76 DRAFT ITU-T Rec. H.264 (2002 E)

Scale_Counts Case2:

{
qp_factor ← min(24, max (0,40-QP))
cs0 ← c0 + (r0*qp_factor)/32
cs1 ← c1 + (r1*qp_factor)/32

}.

In both cases the scaled counts cs0 and cs1 are further processed in the same way as described in subclause 10.2.1 (with
c0 = cs0, c1 = cs1) in order to obtain the corresponding probability state index State and the value of MPS. This method of
QP-dependent initialisation will be called Ini_type 2, case 1 or Ini_type 2, case 2 depending on whether
Scale_Counts_Case1 or Scale_Counts_Case2 will be applied, respectively.

10.2.2.3 Models with uniform initialisation

In this case, no assumption of the initial probability distribution is made and the initial values of the counts are given by

c0 = c1 = 1,

such that MPS=0 and State=0. This method of initialisation is called Ini_type 3.

10.2.3 Context modelling and binarization for coding of motion and mode information

In this subclause the context models and binarization schemes used for the syntax elements macroblock mode
(mb_mode), motion vector data (MVD, MVDFW, MVDBW) and reference frame parameter (ref_idx_fwd,
ref_idx_bwd) are described.

10.2.3.1 Macroblock mode (mb_mode)
Context models and binarization for mb_mode depend on the slice mode. In the following, a detailed description for the
distinct cases of I-, P- and B-slices is given.

10.2.3.1.1 I slices

For Intra slices, there are two possible mode decisions for each macroblock, namely Intra4x4 and Intra16x16 mode, such
that signalling the mode information is reduced to transmitting a binary decision. Coding of the binary decision
mb_mode(C) for a given macroblock C is conditioned on the mb_mode values of the neighbouring macroblocks A to the
left and B on top of the current macroblock C as depicted in Figure (10-1). The related context ctx_mb_mode_I(C) is
determined by

ctx_mb_mode_I(C) = ((mb_mode(A)!=Intra4x4) ? 1 : 0) + ((mb_mode(B)!=Intra4x4) ? 1 : 0).(10-1)

This results in three different contexts (0,1,2) according to the 4 possible combinations of mb_mode for A and B, which
are initialised using Ini_type 1 with initial counts as given in Table 10-2. In the case that one or both of the neighbouring
macroblocks A and B are not available, their corresponding values in the sum of the right hand side of (10-1) are
assumed to be zero.

Additional information has to be encoded if mb_mode(C)=Intra16x16. This will be described in subclause 10.3.1.4.

Table 10-16 – Initial counts for context variable ctx_mb_mode_I

Value of
ctx_mb_mode_I

Count c0 Count c1

0 8 1

1 2 1

2 2 1

Table 10-17 – Binarization for macroblock modes in P-slices

Code Number Macroblock Mode Binarization

0 SKIP 0

1 16x16 1 0 0 0

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 77

2 16x8 1 0 1 1

3 8x16 1 0 1 0

4 8x8 (split) 1 0 0 1

5 (VLC only) 8x8 (split, all ref=0) -/-

6 Intra4x4 1 1 0

7 Intra16x16 1 1 1

bin 1 2 3 4

Table 10-18 – Binarization for 8x8 sub-partition modes in P-slices

Code Number 8x8 Partition Mode Binarization

0 8x8 1

1 8x4 0 0 0

2 4x8 0 0 1 1

3 4x4 0 0 1 0

4 BlockIntra4x4 0 1

bin 1 2 3 4

10.2.3.1.2 P slices

Tables (10-3) and (10-4) show the macroblock modes and the modes of 8x8 sub-partitions for P-slices together with their
binarization. The context modelling for the individual bins as shown in Tables (10-3) and (10-4) depends on their
position and the values of the preceding bins in the corresponding binarization in the following way.

For the first bin of the binarization of the macroblock mode given in Table (10-3) three distinct context models are used
depending on the macroblock mode of the neighbouring macroblocks. The context determination is as follows:

ctx_mb_mode_P(C) = ((mb_mode(A)!=SKIP) ? 1 : 0) + ((mb_mode(B)!=SKIP) ? 1 : 0), (10-2)

where A and B denote the neighbouring macroblocks to the left and on top of the current macroblock C. In the case that
one or both of the neighbouring macroblocks A and B are not available, their corresponding values in the sum of the
right side of Equation (10-2) are assumed to be zero.

Table 10-19 – Initial counts for context variable ctx_mb_mode_P

Value of
ctx_mb_mode_P

c0 c1 r0 r1

0 7 2 3 0

1 1 2 0 0

2 1 2 0 0

3 30 1 0 0

4 2 1 0 0

5 5 9 6 -6

6 4 3 0 0

For coding of the second bin a fixed context model ctx_mb_mode_P(C)=3 is used. Depending on the coding decision in
the second bin, the decision in bin 3 is coded either in context model ctx_mb_mode_P(C)=4 (second bin = 0) or
ctx_mb_mode_P(C)=6 (second bin = 1). The decision in bin 4 is finally coded using ctx_mb_mode_P(C)=5, if the

DRAFT ISO/IEC 14496-10 : 2002 (E)

78 DRAFT ITU-T Rec. H.264 (2002 E)

decision in third bin has the value 0; otherwise it is coded using ctx_mb_mode_P(C)=6. The initialisation of the context
model ctx_mb_mode_P is performed using Ini_type 2, case 1, where the start values of Table 10-5 are used.

Table 10-20 – Initial counts for context variable ctx_b8_mode_P

Value of
ctx_b8_mode_P

Count c0 Count c1

0 1 2

1 2 1

2 1 1

3 1 2

Coding of the bins corresponding to the modes for 8x8 sub-partitions as shown in Table 10-4 is performed as follows:
The first bin is coded using a fixed context model ctx_b8_mode_P(C)=0 and for each binary decision in the next higher
bin > 1 ctx_b8_mode_P(C) is incremented by one. Thus, a total number of 3 additional context models (1,2,3) are used
for the coding of the modes for 8x8 sub-partitions. The initial counts for context variable ctx_b8_mode_P are given in
Table 10-6, where the initialisation method Ini_type 1 is applied to this context variable.

If mb_mode(C)=Intra16x16, the additional information is encoded as described in subclause 10.3.1.4

10.2.3.1.3 B slices

In Table 10-7 the binarization for the macroblock modes of B-slices are shown. Similar to the coding of the P slice
modes, the context modelling for the individual bins as shown in Table 10-7 depends on their position and the values of
the preceding bins in the corresponding binarization. In the following, a detailed specification of the context
determination for each bin is given.

Table 10-21 – Binarization for macroblock modes in B-slices

Macroblock Mode 1. Block 2. Block Binarization

Direct (coded_block_pattern=0) 0

Direct 1 0

16x16 Fwd 1 1 0 0

16x16 Bwd 1 1 0 1

16x16 Bipred 1 1 1 0 0 0 0

16x8 Fwd Fwd 1 1 1 0 0 0 1

8x16 Fwd Fwd 1 1 1 0 0 1 0

16x8 Bwd Bwd 1 1 1 0 0 1 1

8x16 Bwd Bwd 1 1 1 0 1 0 0

16x8 Fwd Bwd 1 1 1 0 1 0 1

8x16 Fwd Bwd 1 1 1 0 1 1 0

16x8 Bwd Fwd 1 1 1 0 1 1 1

8x16 Bwd Fwd 1 1 1 1 1 1 0

16x8 Fwd Bipred 1 1 1 1 0 0 0 0

8x16 Fwd Bipred 1 1 1 1 0 0 0 1

16x8 Bwd Bipred 1 1 1 1 0 0 1 0

8x16 Bwd Bipred 1 1 1 1 0 0 1 1

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 79

16x8 Bipred Fwd 1 1 1 1 0 1 0 0

8x16 Bipred Fwd 1 1 1 1 0 1 0 1

16x8 Bipred Bwd 1 1 1 1 0 1 1 0

8x16 Bipred Bwd 1 1 1 1 0 1 1 1

16x8 Bipred Bipred 1 1 1 1 1 0 0 0

8x16 Bipred Bipred 1 1 1 1 1 0 0 1

8x8 (split) 1 1 1 1 1 1 1

Intra4x4 1 1 1 1 1 0 1 0

Intra16x16 1 1 1 1 1 0 1 1

bin 1 2 3 4 5 6 7 8

Table 10-22 – Binarization for 8x8 sub-partition modes in B-slices

Code Number 8x8 Sub-partition Mode Binarization

0 Direct 0

1 8x8 Fwd 1 0

2 8x8 Bwd 1 1 0 0

3 8x8 Bidirect 1 1 0 1

4 8x4 Fwd 1 1 1 0 0 0 0

5 4x8 Fwd 1 1 1 0 0 0 1

6 8x4 Bwd 1 1 1 0 0 1 0

7 4x8 Bwd 1 1 1 0 0 1 1

8 8x4 Bidirect 1 1 1 0 1 0 0

9 4x8 Bidirect 1 1 1 0 1 0 1

10 4x4 Fwd 1 1 1 0 1 1 0

11 4x4 Bwd 1 1 1 0 1 1 1

12 4x4 Bidirect 1 1 1 1 1 1 0

13 BlockIntra4x4 1 1 1 1 0 0 0

bin 1 2 3 4 5 6 7

The first bin of the binarization of the macroblock mode given in Table 10-7 uses three context models depending on the
macroblock mode of the neighboring macroblocks. For this bin the context determination is as follows:

ctx_mb_mode_B(C) = ((mb_mode(A)=== =SKIP) ? 1 : 0) + ((mb_mode(B)=== =SKIP) ? 1 : 0),
(10-3)

where SKIP denotes the macroblock mode Direct mode with coded_block_pattern=0, and where A and B denote the
neighbouring macroblocks to the left and on top of the current macroblock C. In the case that one or both of the
neighbouring macroblocks A and B are not available, their corresponding values in the sum of the right hand side of
Equation (10-3) are assumed to be zero.

This results in three different contexts (0,1,2) according to the 4 possible combinations of mb_mode for A and B. For
coding of the second bin another three context models (3,4,5) are determined in the following way:

DRAFT ISO/IEC 14496-10 : 2002 (E)

80 DRAFT ITU-T Rec. H.264 (2002 E)

ctx_mb_mode_B(C) = ((mb_mode(A)!=Direct) ? 1 : 0) + ((mb_mode(B)!=Direct) ? 1 : 0). (10-4)

Here, the choice of the context depends on whether the neighbouring macroblock A to the left and B on top of the current
macroblock is coded in Direct mode regardless of the value of the corresponding coded_block_pattern. As before, the
values in the sum of the right hand side of Equation (10-4) are assumed to be zero, if one or both of the neighbouring
macroblocks A and B are not available.

Table 10-23 – Initial counts for context variable ctx_mb_mode_B

Value of
ctx_mb_mode_B

c0 c1 r0 r1

0 17 1 -13 0

1 2 3 0 -2

2 1 7 0 -3

3 2 5 0 0

4 1 6 0 0

5 1 10 0 0

6 1 5 0 -3

7 2 5 0 -3

8 2 3 0 0

For coding of the third bin a fixed context model ctx_mb_mode_B(C)=6 is used. If the decision of the third bin has the
value 1, the fourth bin is coded with context model ctx_mb_mode_B(C)=7, otherwise the model ctx_mb_mode_B(C)=8 is
used. All remaining bins use the fixed model ctx_mb_mode_B(C)=8. The initialisation of the context model
ctx_mb_mode_B is performed by using Ini_type 2, case 1. The corresponding initial values are given in Table 10-9.

The binarizations of the modes for 8x8 sub-partitions are shown in Table 10-8. The corresponding context models are
chosen as follows: The first bin is coded with context model ctx_b8_mode_B(C)=0, while for the second bin the context
model ctx_b8_mode_B(C)=1 is chosen. In the case the value of the second bin is equal to one, the decision of the third
bin is coded using the model ctx_b8_mode_B(C)=2; otherwise it is coded using the model ctx_b8_mode_B(C)=3. All
decisions related to bin > 3 are coded using the fixed model ctx_b8_mode_B(C)=3. The initial counts for the context
variable ctx_b8_mode_B are given in Table 10-10; the initialisation method Ini_type 1 applies to this context variable.

If mb_mode(C)=Intra16x16, the additional information has to be encoded. This will be described in subclause 10.3.1.4.

Table 10-24 – Initial counts for context variable ctx_b8_mode_B

Value of
ctx_b8_mode_B

Count c0 Count c1

0 1 3

1 3 1

2 3 2

3 1 1

Table 10-25 – Initial counts for context variable ctx_mb_intra16x16

I slice P-,B-slice
Value of

ctx_mb_intra16x16
c0 c1 c0 c1

0 1 1 7 2

1 1 1 2 1

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 81

2 2 1 3 2

3 2 1 -/- -/-

4 1 1 -/- -/-

10.2.3.1.4 Additional information for mode Intra16x16

For the macroblock mode Intra16x16, additional information has to be encoded to signal the occurrence of significant
AC-coefficients (AC=1 or 2), the coded block pattern for the chroma coefficients (nc=0,1 or 2) and the chosen intra
prediction mode (Imode= 0,1,2 or 3) of the related macroblock. This will be done as follows.

First, the one-bit symbol AC is coded using the fixed context model ctx_mb_intra16x16=0. For I-Slices, a model
increment ctx_incr=1 is chosen, while for P- and B-Slices ctx_incr=0, such that in a second step nc is encoded as
follows:

if(nc=== =0)
{

Encode(0, (ctx_mb_intra16x16=1));
}
else
{

Encode(1, (ctx_mb_intra16x16=1));
if(nc=== =1)
{

Encode(0, (ctx_mb_intra16x16=1+ctx_incr));
}
else
{

Encode(1, (ctx_mb_intra16x16=1+ctx_incr));
}

}

Finally, the two-bit symbol Imode is coded bit by bit using one fixed context model ctx_mb_intra16x16=2 in case of a
P- or B-slice, or two fixed context models ctx_mb_intra16x16=3,4 in case of an I-slice:

Encode((Imode>>1), (ctx_mb_intra16x16=2+ctx_incr));
Encode((Imode&1), (ctx_mb_intra16x16=2+2*ctx_incr)).

The initial counts for the context variable ctx_mb_intra16x16 are given in Table 10-11; the initialisation method Ini_type
1 applies to this context variable.

10.2.3.2 Motion vector data

Motion vector data consists of residual vectors obtained by applying motion vector prediction. Thus, it is a reasonable
approach to build a model conditioned on the local prediction error. The simple estimate of the local prediction error at a
given block C, which is used in this Recommendation | International Standard, is given by evaluating the L1-norm

|)(||)(|),(BmvdAmvdBAe kkk += (10-5)

of two neighbouring motion vector prediction residues)(Amvdk and)(Bmvdk for each component k (k=0: horizontal;

k=1: vertical) of a motion vector residue)(Cmvdk of a given block, where A and B are neighbouring blocks to the left

and on top of the current block C, as shown in Figure 10-1. Since the neighbouring blocks A and B may belong to a
different macroblock partition, the following principle for identifying the proper neighbouring blocks that are used in
Equation (10-5) is established. First, the motion vector data is assumed to be given in oversampled form such that each
4x4 block has its own mvd. That means, on the one hand, that in case of a neighbouring block having a coarser partition,
the related 4x4 sub-blocks are assumed to inherit the mvd from the corresponding parent block(s) in the quadtree
partition. On the other hand, if the current block C represents a larger block than a 4x4 block, it is assumed to be
represented by the corresponding leftmost 4x4 sub-block in the top row of 4x4 sub-blocks. Then, given a block C, the
neighbouring 4x4 sub-blocks B on top and A to the left of the representing 4x4 sub-block of C are chosen for evaluation
of Equation (10-5). If one of the neighbouring blocks is not available, because, for instance, it is intra coded or located at
the slice boundary, the corresponding value of the right hand side of Equation (10-5) is set to zero. By using ek as defined
in Equation (10-5), a context variable ctx_mvd(C,k) for the residual motion vector component)(Cmvdk is defined as

follows:

DRAFT ISO/IEC 14496-10 : 2002 (E)

82 DRAFT ITU-T Rec. H.264 (2002 E)

>
<

=
.,1

,32)(,2

,3)(,0

),(_

otherwise

Ce

Ce

kCmvdctx k

k

(10-6)

Note, that in the case of a B-slice motion vector prediction residue MVDFW or MVDBW the corresponding two
neighbouring motion vector prediction residues)(Amvd k and)(Bmvdk , which are used in Equation (10-5) must both be

chosen forward or backward, respectively. If one of these residual vectors is not available, the corresponding value of the
right hand side of Equation (10-5) is set to zero.

For the actual coding process,)(Ckmvd is separated into sign and modulus. The modulus is encoded using the

binarization in Table 10-12. The construction of a codeword of this modified unary binarization table for a given index v
is given by the following rules, where index v= ABS()(Ckmvd):

If v<64 (the unary code cut-off value for MVD),
Use a unary code of v ’1’s’ terminated with a 0.

If v>=64,

1. Form an initial prefix of 63 ’1’s’.

2. Extract the symbol γ representing the most significant bits (MSB) of v-62, i.e.,)62(log 2 −= vγ , and put it in

a unary representation. This part is appended to the initial prefix to form the prefix of the codewords shown in
the ‘‘Unary Prefix’’ column of Table 10-12.

3. Append the γ least significant bits (LSB) in its binary representation to the prefix.

4. The corresponding suffix bits are shown in the LSB column of Table 10-12.

Given the binarization of the modulus of)(Cmvdk according to Table 10-12, only the first bin is coded using the context

variable ctx_mvd(C,k). For the remaining bins of the modulus, 4 additional context models are used: ctx_mvd(C,k)=3 for
the second bin, ctx_mvd(C,k)=4 for the third bin, ctx_mvd(C,k)=5 for the fourth bin, and the context ctx_mvd(C,k)=6 for
all remaining bins. This results in a total sum of 7 context models for each vector component. Initialisation of ctx_mvd is
performed by using Ini_type 1. The corresponding initial values are given in Table 10-13.

Finally, the sign of)(Cmvdk is encoded/decoded by using the arithmetic coding bypass routine Encode_eq_prob/-

Decode_eq_prob as specified in subclause 10.6.3.5.

Table 10-26 – Binarization of the MVD modulus

Index Unary Prefix
Exp-Golomb

Suffix

0 0

1 1 0

2 1 1 0

3 1 1 1 0

63 1 … … 1 0

64 1 … … 1 10 0

65 1 … … 1 10 1

66 1 … … 1 110 0 0

67 1 … … 1 110 0 1

68 1 … … 1 110 1 0

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 83

69 1 … … 1 110 1 1

70 1 … … 1 1110 0 0 0

71 1 … … 1 1110 0 0 1

72 1 … … 1 1110 0 1 0

73 1 … … 1 1110 0 1 1

74 1 … … 1 1110 1 0 0

75 1 … … 1 1110 1 0 1

… … …

bin 1.2.3.4… …

Table 10-27 – Initial counts for context variable ctx_mvd

k=0 k=1
Value of

ctx_mvd(⋅.,k)
c0 c1 c0 c1

0 9 5 13 5

1 1 1 6 5

2 4 5 1 1

3 1 2 4 5

4 1 4 1 4

5 1 2 2 5

6 1 10 1 10

10.2.3.3 Reference frame parameter

If the option of temporal prediction from more than one reference frame is enabled, the chosen reference frame
parameters for each sub-block C of a given macroblock partition must be signalled. The context number for the current
block C is determined by

ctx_ref_idx (C) = ((ref_idx_fwd(A)!=0)?1:0) + 2 × ((ref_idx_fwd (B)!=0)?1:0), (10-7)

where A and B represent the corresponding blocks to the left and on the top of the regarded block C (see Figure 10-1). If
a neighbouring block X (A or B) is not available, because it is positioned in a different slice, or because e.g. X is
INTRA-coded, the corresponding ref_idx_fwd(X) value is replaced by the default value zero. In case of coding a
reference parameter ref_idx_fwd or ref_idx_bwd from a B-slice, the corresponding reference parameters from
neighbouring blocks as used in Equation (10-7) must be located in the same reference set (forward or backward, resp.). If
none of those is available, the corresponding value in Equation (10-7) is set to zero.

Equation (10-7) results in 4 possible contexts (0 to 3) used for coding of the first bin of the binary equivalent of the
reference frame parameter ref_idx_fwd(C). A single context ctx_ref_idx(C)=4 is used for the second bin. Another
context ctx_ref_idx(C)=5 is used for all remaining bins of the reference frame parameter, which sums up to a total
number of six different contexts (and thus six probability estimations) for the reference frame information. Table 10-14
shows the unary binarization, which is applied to the reference frame parameter. Initialisation of ctx_ref_idx is
performed by using Ini_type 1, where the corresponding initial values are given in Table 10-15.

Table 10-28 – Binarization by means of the unary code tree

Code Symbol Binarization

0 0

DRAFT ISO/IEC 14496-10 : 2002 (E)

84 DRAFT ITU-T Rec. H.264 (2002 E)

1 1 0

2 1 1 0

3 1 1 1 0

4 1 1 1 1 0

… … … … … … … …

bin 1 2 3 4 5 6 …

Table 10-29 – Initial counts for context variable ctx_ref_idx

Value of
ctx_ref_idx

Count c0 Count c1

0 10 1

1 2 1

2 1 1

3 1 3

4 2 1

5 1 1

10.2.4 Context modelling and binarization for coding of texture information

This subclause provides detailed information about the context models used for the syntax elements of coded block
pattern (coded_block_pattern) and intra prediction mode (IPRED). Furthermore, the coding of transform coefficients is
described.

10.2.4.1 Coded block pattern

Except for mb_mode Intra16x16, the context modelling for the coded block pattern is treated as follows. There are 4
luma coded_block_pattern bits belonging to four 8x8 blocks in a given macroblock. Let cbp_luma_bit(C) denote the Y-
coded_block_pattern bit for a sub-block C. Then, we define the corresponding context variable for the coding of
cbp_luma_bit(C) by

ctx_cbp_luma(C) = cbp_luma_bit(A) + 2*cbp_luma_bit(B), (10-8)

where cbp_luma_bit(A) and cbp_luma_bit(B) are Y-coded_block_pattern bits of the neighbouring 8x8 blocks A and B,
respectively, as depicted in Figure 10-2. In the case, that the corresponding coded_block_pattern information is not
available, default values of zero are substituted in the right hand side of Equation (10-8).

The remaining 2 bits of coded_block_pattern are related to the chroma coefficients. These bits are translated into two
dependent binary decisions, such that, in a first step, we send a bit cbp_chroma_sig, which signals whether there are
significant chroma coefficients at all. Let C denote the corresponding macroblock, then the related context model is
defined similar to that of the Y-coded_block_pattern bits, i.e. the context variable is defined as

ctx_cbp_chroma_sig(C) = cbp_chroma_sig(A)+ 2* cbp_chroma_sig(B), (10-9)

where cbp_chroma_sig(A) and cbp_chroma_sig(B) are notations for the corresponding cbp_chroma_sig bits of
neighbouring macroblocks A and B to the left and on top of C, respectively.

If cbp_chroma_sig(C) = 1 (indicating that non-zero chroma coefficients exist), then a second bit cbp_chroma_ac is
signalled, which indicates the presence of non-zero AC chroma coefficients. This is done by using a context model
conditioned on the cbp_chroma_ac decisions cbp_chroma_ac(A) and cbp_chroma_ac(B) of neighbouring macroblocks,
i.e. the corresponding context variable is given by:

ctx_cbp_chroma_ac(C) = cbp_chroma_ac(A) + 2* cbp_chroma_ac(B). (10-10)

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 85

Here and in Equation (10-9) the coded_block_pattern information of non-available macroblocks is replaced by default
values of zero. Note, that due to the different statistics there are different models for Intra and Inter macroblocks for each
of the coded_block_pattern bits, so that the total number of different contexts (and probability distributions) for
coded_block_pattern amounts to 2 × 3 × 4=24. In Table 10-16 and 10-17 the initial values used for the
coded_block_pattern information is shown. Here the method of initialisation depends on the slice type. For Intra slices
Ini_type 1 is used with corresponding values in Table 10-16, while for P- and B-slices method Ini_type 2, case 1 is
applied using the values given in Table 10-17.

The context modelling and coding of coded_block_pattern for mb_mode Intra16x16 is given in subclause 10.3.1.4.

Table 10-30 – Initial counts for context variables of coded_block_pattern coding (I-slices only)

ctx_cbp_luma ctx_cbp_chroma_sig ctx_cbp_chroma_acValue of
context
variable c0 c1 c0 c1 c0 c1

0 1 4 1 2 1 1

1 1 2 1 3 1 1

2 1 2 1 3 1 2

3 4 3 1 3 1 2

Table 10-31 – Initial counts for context variables of coded_block_pattern coding (P,B-slices only)

ctx_cbp_luma ctx_cbp_chroma_sig ctx_cbp_chroma_acValue of
context
variable c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1

0 1 4 2 -2 3 1 3 0 5 2 2 0

1 1 1 3 0 6 5 0 -2 1 1 3 2

2 1 1 3 0 6 5 -3 -3 1 1 0 0

3 3 1 6 0 1 2 2 0 1 2 0 0

10.2.4.2 Intra prediction mode

In Intra4x4 mode, coding of the intra prediction mode of a given block C is conditioned on the intra prediction mode of
the previous block A to the left of C (see Figure 10-1). In fact, it is not the prediction mode value itself, which is
signalled and which is used for conditioning, but rather its predicted order ipred(C) as it is described in subclause 8.5.4.1.
Note however, that unlike the case of VLC coding, information on intra prediction of two 4x4 luma blocks is not coded
in one codeword.

There are nine different prediction modes (0,…,8) and for each predicted order ipred(A) of the neighbouring block A ,
two different contexts are supplied:

ctx_ipred(C)= 2*ipred(A)

for the first bin of the binary equivalent of C and

ctx_ipred(C)=2* ipred(A)+1

for all remaining bins. If ipred(A) of the neighbouring block A is not available, ctx_ipred(C)=0 is used for the first bin
and ctx_ipred(C)=1 for the second bin. In total, there are 2*9=18 different contexts for coding of intra prediction modes.
The method of initialisation Ini_type 1 is used with the corresponding initial counts given in Table 10-18.

Binarization of ipred(C) is performed using the unary binarization of Table 10-14. However, since the maximum number
of ipred(C) is known in advance, the binarization can be restricted to a truncated code tree. That means, that for the
binarization of the maximum value 8 of ipred(C) the terminating “0” can be omitted.

Note, that coding of the prediction modes for the macroblock mode Intra16x16 is defined in subclause 10.3.1.4.

DRAFT ISO/IEC 14496-10 : 2002 (E)

86 DRAFT ITU-T Rec. H.264 (2002 E)

Table 10-32 – Initial counts for context variable ctx_ipred

Value of
ctx_ipred

Count c0 Count c1
Value of
ctx_ipred

Count c0 Count c1

0 2 1 9 1 1

1 1 1 10 2 3

2 3 2 11 1 1

3 1 1 12 1 1

4 1 1 13 1 1

5 2 3 14 1 1

6 1 1 15 1 1

7 2 3 16 1 1

8 1 1 17 1 1

10.2.4.3 Transform coefficients

10.2.4.3.1 Overview

Figure 10-2 gives an overview of the coding scheme for transform coefficients. Firstly, a one-bit symbol called
coded_block_pattern is transmitted for each block of transform coefficients unless the coded_block_pattern (on
macroblock level) indicates that the regarded block has no non-zero coefficients. The coded_block_pattern symbol is
one, if there are any significant coefficients inside the block. If it is zero, no further information is transmitted for the
block; otherwise a significance map specifying the positions of significant coefficients is encoded. Afterwards, the
absolute value as well as the sign is encoded for each significant transform coefficient. These values are transmitted in
reverse scanning order.

As shown in Table 10-19, there are 12 different types of transform coefficient blocks. In general, each of these transform
coding units has a different statistics. However, for most sequences and coding conditions, the statistics of some of the
12 different types are very similar. Thus, in order to keep the number of contexts reasonably small, the given block types
are classified into 5 categories as specified in the right column of Table 10-19. For each of these categories, a separate set
of context models is used, as will be explained in more detail below.

Table 10-33 – Context categories for the different block types

Block type max_coeff. Context category

Luma DC block for INTRA16x16 mode 16 0:Luma-Intra16-DC

Luma AC block for INTRA16x16 mode 15 1:Luma-Intra16-AC

Luma block for INTRA 4x4 mode 16

Luma block for INTER mode 16
2:Luma-4x4

U-Chroma DC block for INTRA mode 4

V-Chroma DC block for INTRA mode 4

U-Chroma DC block for INTER mode 4

V-Chroma DC block for INTER mode 4

3:Chroma-DC

U-Chroma AC block for INTRA mode 15

V-Chroma AC block for INTRA mode 15

U-Chroma AC block for INTER mode 15

4:Chroma-AC

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 87

V-Chroma AC block for INTER mode 15

Figure 10-2 –Illustration of CABAC coding scheme for transform coefficients

10.2.4.3.2 coded_block_pattern

For each of the given transform block types, a one-bit symbol coded_block_pattern is signalled first to indicate whether
there are significant (non-zero) coefficients inside the regarded block of transform coefficients. If the
coded_block_pattern symbol is zero, no further information needs to be transmitted for the block.

For encoding the coded_block_pattern bit, four different contexts are used for each of the five categories specified in
Table 10-19. The context variable ctx_cbp4 (C) for the current block C is determined by

ctx_cbp4 (C) = coded_block_pattern (A) + 2 × coded_block_pattern (B),

where A and B represent the corresponding blocks of the same type to the left and on the top of the regarded block C
(see Figure 10-1). Only blocks of the same type (Luma-DC, Luma-AC, Chroma-U-DC, Chroma-V-DC, Chroma-U-AC,
Chroma-V-AC) are used for context determination. If a neighboring block X (A or B) is positioned in a different slice, or
if no neighboring block X of the same type exist (e.g. because the current macroblock is coded in INTRA-16x16 mode
while the neighboring macroblock X is coded in INTRA-4x4 or INTER mode), the corresponding
coded_block_pattern(X) value is replaced by a default value. If the current block is coded in an INTRA-mode, a default
value of 1 is used; otherwise, a default value of 0 is used. This results in a total sum of four contexts for each of the block
types.

So, while six block types (Luma-DC, Luma-AC, Chroma-U-DC, Chroma-V-DC, Chroma-U-AC, Chroma-V-AC) are
distinguished for determining the context variable ctx_cbp4 (C), only five different sets of contexts (each for one
category specified in the right column of Table 10-19) are used for encoding the coded_block_pattern symbol. This
results in a total number of 5 × 4=20 contexts for the coded_block_pattern bit. Table 10-20 contains the initial counts,
which are used for initialisation by employing method Ini_type 2, case 2.

CBP4

For (i=0; i<ma x_coeff[type]-1; i++)
{

Encode significance bit (SIG[i])

If (SIG[i])
{

Encode end-of-bloc k bit (LAST [i])
}

}

For (i=ma x_coeff[type]-1; i>=0; i--)
{

If (SIG[i])
{

Encode ABS[i]
Encode SIGN[i]

}
}

Significance Map

Level Information

If (CBP4)

CBP4

For (i=0; i<ma x_coeff[type]-1; i++)
{

Encode significance bit (SIG[i])

If (SIG[i])
{

Encode end-of-bloc k bit (LAST [i])
}

}

For (i=ma x_coeff[type]-1; i>=0; i--)
{

If (SIG[i])
{

Encode ABS[i]
Encode SIGN[i]

}
}

Significance Map

Level Information

If (CBP4)

DRAFT ISO/IEC 14496-10 : 2002 (E)

88 DRAFT ITU-T Rec. H.264 (2002 E)

Table 10-34 – Initial counts for context variable ctx_cbp4

Context category 0 Context category 1
Context category 2

(I-slice)

Context category 2

(P-,B-slices)
Context category 3 Context category 4

Value of
Context
Variable

c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1

0 5 7 -5 7 8 1 -5 0 9 7 -5 -1 1 1 8 14 6 7 1 1 11 3 -4 0

1 1 2 0 13 11 6 -4 1 7 11 -8 -9 1 1 3 12 6 11 -4 -8 5 6 4 7

2 1 2 0 13 11 4 -3 4 9 11 -9 -8 9 10 -11 -9 1 2 5 9 12 11 -7 0

3 3 8 -3 5 7 11 -4 0 1 3 0 12 5 6 -5 7 3 10 0 -3 7 12 -5 -5

10.2.4.3.3 Significance map

If the coded_block_patternpattern indicates that a block has significant coefficients, a significance map is encoded. For
each coefficient in scanning order, a one-bit symbol (SIG) is transmitted. If the SIG symbol is one, that is, if a non-zero
coefficient exists at this scanning position, a further one-bit symbol (LAST) is sent. This symbol indicates if the current
significant coefficient is the last one inside the block or if further significant coefficients follow.

Coefficients 14 0 -5 3 0 0 -1 0 1
SIG 1 0 1 1 0 0 1 0 1

LAST 0 0 0 0 1

Coefficients 18 -2 0 0 0 -5 1 -1 0 0 0 0 1 0 0 1
SIG 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 (1)

LAST 0 0 0 0 0 0 (1)

Figure 10-3 – Two examples for encoding the significance map (the symbols in parenthesis are not transmitted)

Figure 10-3 shows two examples for the significance map encoding. Note, that the significance information (SIG, LAST)
for the last scanning position of a block is never transmitted. If the last scanning position is reached and the significance
map encoding was not already terminated by a LAST-symbol of one, it is obvious that the last coefficient has to be
significant (see positions in parenthesis in Figure 10-3).

For encoding the significance map, up to 15 (max_coeff-1) contexts (depending on the block type category) are used for
both the SIG and the LAST symbols. The context variables are determined by the corresponding scanning position, i.e.
for a coefficient coeff[i[i], which was scanned at the i-th position, the contexts ctx_sig(coeff[i[i]) and
ctx_last(coeff[i[i]) are chosen as follows:

ctx_sig(coeff[i[i]) = ctx_last(coeff[i[i]) = i.

For each category of block types, we use max_coeff-1 different contexts. This gives a total number of
15+14+15+3+14=61 contexts for both the SIG and the LAST symbol. Tables 10-21 and 10-22 contain the initial counts,
which are used for initialisation of the context models related to the SIG and LAST symbol by employing method
Ini_type 2, case 2.

Table 10-35 – Initial counts for context variable ctx_sig

Context category 0 Context category 1
Context category 2

(I-slices)

Context category 2

(P-,B-slices)
Context category 3 Context category 4Value of

Context
Variable

c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1

0 6 11 -5 -3 -/- -/- -/- -/- 7 10 -5 1 6 7 5 0 8 7 -7 -3 -/- -/- -/- -/-

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 89

1 3 2 0 4 7 4 -5 3 11 7 -12 -3 11 6 -12 -7 8 7 0 3 3 7 8 1

2 5 6 -3 1 2 3 4 4 10 11 -9 -1 11 9 -4 -5 1 3 0 -1 3 5 5 0

3 8 5 -4 1 5 4 8 7 8 5 -5 5 8 3 -4 0 -/- -/- -/- -/- 10 3 -9 -3

4 2 1 1 1 3 2 7 4 10 7 -11 -3 11 6 1 1 -/- -/- -/- -/- 12 11 -7 -8

5 11 7 -8 -4 12 11 -11 -11 11 8 -13 -8 9 7 3 -1 -/- -/- -/- -/- 3 8 8 0

6 2 1 3 5 9 2 -8 -1 9 2 0 11 11 2 1 4 -/- -/- -/- -/- 11 4 0 4

7 3 1 -1 0 2 1 1 1 9 5 -11 -4 9 5 4 3 -/- -/- -/- -/- 5 7 4 -3

8 2 1 9 5 11 12 -13 -15 1 1 1 5 1 1 3 1 -/- -/- -/- -/- 7 9 7 -3

9 7 11 -8 -12 7 12 -3 -8 8 7 -3 5 12 11 -1 -5 -/- -/- -/- -/- 2 3 1 -1

10 11 9 -13 -11 7 3 -5 -1 7 2 -5 4 7 2 -3 1 -/- -/- -/- -/- 4 3 9 4

11 5 3 3 4 4 9 -4 -9 6 11 -4 -4 3 5 -3 -5 -/- -/- -/- -/- 2 3 11 5

12 1 1 0 0 1 2 0 -1 7 9 -8 -9 1 2 12 9 -/- -/- -/- -/- 1 12 0 -13

13 10 9 0 3 10 7 -5 0 2 1 4 13 10 7 -3 3 -/- -/- -/- -/- 9 4 3 5

14 1 2 5 12 1 12 0 -5 1 12 0 -8 1 12 0 -11 -/- -/- -/- -/- 1 12 4 -4

Table 10-36 – Initial counts for context variable ctx_last

Context category 0 Context category 1
Context category 2

(I-slices)

Context category 2

(P-,B-slices)
Context category 3 Context category 4Value of

Context
Variable

c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1

0 12 5 -4 -5 -/- -/- -/- -/- 2 1 13 0 6 7 7 -7 3 7 1 -3 -/- -/- -/- -/-

1 5 1 9 0 7 6 -5 -7 3 1 12 0 9 11 4 -13 1 4 14 7 6 7 7 -7

2 10 3 -4 3 7 9 -7 -11 11 6 1 -7 7 10 0 -12 1 8 9 3 3 4 8 -3

3 10 3 0 -3 7 10 7 -7 12 7 0 -8 4 7 5 -8 -/- -/- -/- -/- 2 5 3 -5

4 11 2 1 -1 11 12 -5 -12 11 6 1 -7 5 11 3 -13 -/- -/- -/- -/- 2 9 3 -11

5 11 3 1 -3 2 3 0 -3 7 6 7 -7 1 3 7 -3 -/- -/- -/- -/- 1 8 13 -4

6 10 7 1 -5 3 5 3 -4 11 12 1 -15 3 11 4 -13 -/- -/- -/- -/- 1 12 1 -15

7 9 2 4 -1 3 5 3 -4 1 1 15 0 1 4 5 -4 -/- -/- -/- -/- 1 12 9 -9

8 9 2 4 -1 5 11 -3 -12 2 3 13 -3 1 6 12 -4 -/- -/- -/- -/- 1 12 13 -7

9 8 11 -4 -11 1 7 8 -1 3 10 12 -12 1 12 13 -9 -/- -/- -/- -/- 3 10 8 -3

10 8 7 4 -5 1 5 8 -3 2 5 13 -5 1 8 1 -9 -/- -/- -/- -/- 1 12 8 -9

11 2 1 4 0 1 8 9 -1 2 9 11 -11 1 12 13 -5 -/- -/- -/- -/- 1 12 8 -4

12 7 8 5 -4 1 10 0 -12 1 12 5 -15 1 12 0 -15 -/- -/- -/- -/- 1 12 1 -9

13 8 9 1 -5 1 9 7 -5 1 12 3 -15 1 12 9 -1 -/- -/- -/- -/- 1 12 4 -4

DRAFT ISO/IEC 14496-10 : 2002 (E)

90 DRAFT ITU-T Rec. H.264 (2002 E)

14 3 10 -3 -12 1 12 0 -12 1 12 3 -9 1 12 3 -9 -/- -/- -/- -/- 1 12 0 -9

10.2.4.3.4 Level information

The encoded significance map determines the positions of all significant coefficients inside a block of quantized
transform coefficients. The values of the significant coefficients (levels) are encoded by two coding symbols: ABS
(representing the absolute value), and SIGN (representing the sign). While SIGN is a one-bit symbol (1 for negative
coefficients), a modified unary binarization scheme (see Table 10-25) is used for encoding the absolute values of the
coefficients. The levels are transmitted in reverse scanning order (beginning with the last significant coefficient of the
block); this allows the usage of more reasonable and effective context models.

The absolute value of the significant coefficients is encoded using the modified uniform binarization as shown in Table
10-25. Here we use two different sets of contexts, one for the first bin given by ctx_abs_1bit, and another one
(ctx_abs_rbits) for all remaining bins of the binarization (see Figure 10-4):

ctx_abs_1bit = (# transmitted ABS(coeff)>1 ? 4 : min (3, # transmitted ABS(coeff)=1)), (10-11)

ctx_abs_rbits = min (4, # transmitted ABS(coeff)>1). (10-12)

The level information is transmitted in reverse scanning order. The context ctx_abs_1bit for the first bin of the absolute
values is determined by the number of successive coefficients (in reverse scanning order) having an absolute value of 1.
If more than three coefficients have an absolute value of 1, context ctx_abs_1bit=3 is always chosen for the first bin.
When a coefficient with an absolute value greater 1 is encoded, context ctx_abs_1bit=4 is used for the first bin of all
remaining coefficients of the regarded block.

All remaining bins of the absolute value are encoded using the context model ctx_abs_rbits. It is determined by the
number of transmitted coefficients with an absolute value greater than 1 (in reverse scanning order); the maximum
context number is restricted to 4. Figure 10-4 shows two examples of the context determination for encoding the absolute
values of significant coefficients.

Coefficients 14 0 -5 3 0 0 -1 0 1
ctx_number_abs_1bit 4 4 2 1 0
ctx_number_abs_rbits 2 1 0

Coefficients 18 -2 -1 6 4 -5 1 -1 0 1 0 0 1 0 0 1
ctx_number_abs_1bit 4 4 4 4 4 3 3 3 2 1 0
ctx_number_abs_rbits 4 3 2 1 0

Figure 10-4 – Examples of context determination for encoding the absolute value of significant coefficients. The
level information is transmitted in reverse scanning order.

The absolute values of significant coefficients are encoded using the binarization in Table 10-25. The construction of a
codeword of this binarization table is similar to that used for the modulus of MVDs, i.e. for a given index v it is given by
the following rules, where index v =ABS(coeff)-1:

If v<16 (the unary code cut-off value for ABS(coeff)),

Use a unary code of v ’1’s’ terminated with a 0.

If v>=16,

Form an initial prefix of 15 ’1’s.’

Extract the symbol γ representing the most significant bits (MSB) of v-14, i.e.,)14(log2 −= vγ , and put it in a unary

representation. This part is appended to the initial prefix to form the prefix of the codewords shown in the ‘‘Unary
Prefix’’ column of Table 10-25.

Append the γ least significant bits (LSB) in its binary representation to the prefix.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 91

The corresponding suffix bits are shown in the LSB column of Table 10-25.

For the sign of significant coefficients, the arithmetic bypass routine Decode_eq_prob() as specified in subclause
10.6.3.5 is used

Thus the total number of contexts for encoding the level information is 5*(5+5)-1=49 (for the chroma DC blocks, there
are only 4 different contexts for the “remaining” bins of the absolute value, since at maximum 4 coefficients are
transmitted). Tables 10-23 and 10-24 contain the initial counts, which are used for initialisation of the context models
ctx_abs_1bit and ctx_abs_rbits by employing method Ini_type 2, case 2.

Table 10-37 – Initial counts for context variable ctx_abs_1bit

Context category 0 Context category 1
Context category 2

(I-slices)

Context category 2

(P-,B-slices)
Context category 3 Context category 4Value of

Context
Variable

c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1

0 11 7 -1 5 3 1 1 5 8 5 -8 0 3 1 5 7 3 4 1 7 2 1 -1 0

1 12 1 -8 0 12 1 0 0 12 1 -11 0 12 1 -3 0 12 1 -4 0 7 1 7 0

2 7 1 3 1 9 1 -1 0 8 1 -1 3 12 1 -8 0 12 1 -9 0 8 1 -3 0

3 5 1 -3 0 6 1 -1 0 9 2 3 5 9 1 0 1 5 1 7 3 11 2 -3 0

4 10 3 -1 3 10 3 1 0 11 4 -1 4 6 1 -4 0 7 1 -7 0 11 4 -1 -1

Table 10-38 – Initial counts for context variable ctx_abs_rbits

Context category 0 Context category 1
Context category 2

(I-slices)

Context category 2

(P-,B-slices)
Context category 3 Context category 4Value of

Context
Variable

c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1 c0 c1 r0 r1

0 8 3 -8 -3 9 1 -7 0 4 1 0 3 12 1 -5 3 7 1 1 5 8 1 -7 0

1 5 3 5 7 5 1 -3 1 2 1 7 12 4 1 9 9 11 4 -8 4 4 1 3 5

2 3 2 11 13 9 2 -7 4 9 7 -5 5 11 3 -3 9 11 4 -11 4 5 2 0 5

3 9 7 -8 -4 11 5 -12 -3 6 5 -7 -3 10 3 -4 9 9 8 -9 -4 1 1 5 8

4 4 3 -4 -1 10 7 -5 5 11 12 -13 -8 2 1 3 11 1 1 0 0 12 5 -11 8

Table 10-39 – Coefficient level binarization

Index Unary Prefix
Exp-Golomb
Suffix

0 0

1 1 0

2 1 1 0

3 1 1 1 0

15 1 … … 1 0

16 1 … … 1 10 0

17 1 … … 1 10 1

18 1 … … 1 110 0 0

DRAFT ISO/IEC 14496-10 : 2002 (E)

92 DRAFT ITU-T Rec. H.264 (2002 E)

19 1 … … 1 110 0 1

20 1 … … 1 110 1 0

21 1 … … 1 110 1 1

22 1 … … 1 1110 0 0 0

23 1 … … 1 1110 0 0 1

24 1 … … 1 1110 0 1 0

25 1 … … 1 1110 0 1 1

… … …

bin 1 2 3 4 5… …

10.4.3.5 Scanning of transform coefficients

In CABAC entropy coding the simple single scan (zig-zag scan) is used for all block types including the luma blocks
coded in INTRA-4x4 mode.

10.2.5 Context modelling and binarization for coding of delta_qp

For a given macroblock C, a change of the quantiser value QPY given by the value of delta_qp(C) is first mapped to a
positive value using the arithmetic wrap. This wrapped value of delta_qp(C) is then coded conditioned on the
corresponding delta_qp(A) of the left neighbouring macroblock A. The context variable ctx_delta_qp (C) is given by

ctx_delta_qp(C)=((delta_qp(A) !=0) ? 1:0).

This results in two contexts (0,1) for the first bin. Another context ctx_delta_qp(C) =2 is used for the second bin. Finally,
all remaining bins of the binarized value C are coded using the last context ctx_delta_qp(C) = 3. Thus, a total of four
contexts are used for delta_qp. The unary binarization applied to the coding of delta_qp is given in Table 10-14; the
method of initialisation is Ini_type 3. There are two context sets, one for intra macroblocks (4x4, 16x16) and one for
inter macroblocks, each consisting of four contexts, as described above.

10.2.6 Table-based arithmetic coding

10.2.6.1 Introduction

Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p(“0”) and
p(“1)=1−p(“0”) of a binary decision (“0”,”1”), an initially given interval with range R will be subdivided into two sub-
intervals having range p(“0”)×R and R−p(“0”)×R, respectively. Depending on the decision, which has been observed, the
corresponding sub-interval will be chosen as the new code interval, and a binary code string pointing into that interval
will represent the sequence of observed binary decisions. It is useful to distinguish between the most probable symbol
(MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or LPS, rather
than “0” or “1”. Given this terminology, each context model CTX is defined by the probability pLPS of the LPS and the
value of MPS, which is either ”0” or “1”.

The arithmetic core engine in this Recommendation | International Standard has three distinct properties:

1) The probability estimation is performed by means of a finite-state machine with a table-based transition process
between 64 different representative probability states {Pk | 0≤ k <64} for the LPS probability pLPS.

2) The range R representing the state of the coding engine is quantized to a small set {Q1,…,Q4} of pre-defined
quantization values prior to the calculation of the new interval range. Storing a table containing all 64×4 pre-
computed product values of Qi× Pk allows a multiplication-free approximation of the product R× Pk.

3) For syntax elements or parts thereof with an approximately uniform probability distribution a separate
simplified encoding and decoding path is used.

10.2.6.2 Probability estimation

The probability estimator is realized by a finite-state machine (FSM) consisting of a set of representative probabilities
{Pk | 0≤ k <64} for the LPS together with some appropriately defined state transition rules. Table 10-26 shows the
transition rules for adapting to a given MPS or LPS decision. For transition from one state to another each state is only
addressed by its index State, which will be appropriately changed to a new index Next_State_MPS(State) or
Next_State_LPS(State) after the encoding of a MPS or LPS symbol, respectively.

States with indices State=0 to 11 correspond to the initial phase of the coding process and a State>11 is employed after
initialisation, with decreasing LPS probability towards higher states. However, for I-slices it is of advantage to restrict

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 93

the number of states to the first 36 state indices. Therefore, Table 10-26 contains a separate column containing the
transition rule Next_State_MPS_INTRA that is used for coding the syntax elements of an I-slice only. Note, that
Next_State_MPS_INTRA differs from Next_State_MPS only by one entry. To prevent the FSM from switching to states
higher than State=35, we set Next_State_MPS(35)= 35 for I-slices coding. For the clarity of presentation, a separate
table entry for I-slice coding is shown in Table 10-26.

After encoding or decoding a decision, an update of the probability estimate is obtained by switching the state index
State to a new index, such that for I-slice coding

if(decision == = MPS)

State ← Next_State_MPS_INTRA(State)
else

State ← Next_State_LPS(State)

and all other slice types
if(decision == = MPS)

State ← Next_State_MPS(State)
else

State ← Next_State_LPS(State).

In the case, where the current state corresponds to a probability value of 0.5 with a State index of 0,6,10 or 12 and a LPS
symbol is observed, the sense of MPS and LPS has to be interchanged, which is indicated by the binary-valued
Switch_MPS table entries. Thus, each time an LPS is observed, it has to be tested whether the condition
Switch_MPS(State)=== =1 holds, in which case the meaning of MPS and LPS has to be changed:

if(decision == = LPS)
{

if(Switch_MPS(State) == = 1)

MPS(State) ← MPS(State)^1
}

Table 10-40 – Probability transition and MPS/LPS Switch

State Next_State_MPS_INTRA Next_State_MPS Next_State_LPS Switch_MPS

0 1 1 1 1

1 2 2 6 0

2 3 3 7 0

3 4 4 8 0

4 5 5 9 0

5 32 32 23 0

6 7 7 7 1

7 8 8 10 0

8 9 9 11 0

9 23 23 17 0

10 11 11 11 1

11 17 17 12 0

12 13 13 12 1

13 14 14 12 0

14 15 15 13 0

15 16 16 14 0

16 17 17 14 0

DRAFT ISO/IEC 14496-10 : 2002 (E)

94 DRAFT ITU-T Rec. H.264 (2002 E)

17 18 18 15 0

18 19 19 16 0

19 20 20 17 0

20 21 21 18 0

21 22 22 19 0

22 23 23 20 0

23 24 24 20 0

24 25 25 22 0

25 26 26 22 0

26 27 27 22 0

27 28 28 23 0

28 29 29 24 0

29 30 30 25 0

30 31 31 26 0

31 32 32 26 0

32 33 33 26 0

33 34 34 26 0

34 35 35 27 0

35 35 36 28 0

36 -/- 37 29 0

37 -/- 38 30 0

38 -/- 39 31 0

39 -/- 40 31 0

40 -/- 41 32 0

41 -/- 42 32 0

42 -/- 43 33 0

43 -/- 44 33 0

44 -/- 45 34 0

45 -/- 46 34 0

46 -/- 47 35 0

47 -/- 48 35 0

48 -/- 49 36 0

49 -/- 50 36 0

50 -/- 51 37 0

51 -/- 52 37 0

52 -/- 53 38 0

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 95

53 -/- 54 38 0

54 -/- 55 39 0

55 -/- 56 39 0

56 -/- 57 40 0

57 -/- 58 40 0

58 -/- 59 41 0

59 -/- 60 41 0

60 -/- 61 42 0

61 -/- 62 42 0

62 -/- 63 42 0

63 -/- 63 43 0

Table 10-41 – RTAB[State][Q] table for interval subdivision

State 0 1 2 3

0 9216 11264 13312 15360

1 6144 7488 8896 10240

2 4608 5632 6656 7680

3 3712 4480 5312 6144

4 3072 3776 4416 5120

5 2624 3200 3776 4416

6 9216 11264 13312 15360

7 7360 9024 10624 12288

8 6144 7488 8896 10240

9 5248 6464 7616 8768

10 9216 11264 13312 15360

11 7872 9664 11392 13184

12 9216 11264 13312 15360

13 8832 10816 12800 14720

14 8512 10368 12288 14144

15 8128 9920 11712 13504

16 7680 9344 11072 12736

17 7168 8768 10368 11968

18 6912 8448 9984 11520

19 6336 7808 9216 10624

20 5888 7232 8512 9856

21 5440 6656 7872 9088

DRAFT ISO/IEC 14496-10 : 2002 (E)

96 DRAFT ITU-T Rec. H.264 (2002 E)

22 5120 6208 7360 8512

23 4608 5632 6656 7680

24 4224 5184 6144 7104

25 3968 4800 5696 6592

26 3712 4480 5312 6144

27 3456 4224 4992 5760

28 3072 3776 4416 5120

29 2816 3456 4096 4736

30 2624 3200 3776 4416

31 2432 3008 3520 4096

32 2304 2816 3328 3840

33 2048 2496 2944 3392

34 1856 2240 2688 3072

35 1664 2048 2432 2816

36 1536 1856 2240 2560

37 1408 1728 2048 2368

38 1344 1600 1920 2176

39 1216 1472 1792 2048

40 1152 1408 1664 1920

41 1088 1344 1536 1792

42 1024 1280 1472 1728

43 960 1216 1408 1600

44 896 1152 1344 1536

45 896 1088 1280 1472

46 832 1024 1216 1408

47 832 960 1152 1344

48 768 960 1088 1280

49 768 896 1088 1216

50 704 896 1024 1152

51 704 832 960 1152

52 640 832 960 1088

53 640 768 896 1088

54 640 768 896 1024

55 576 704 832 960

56 576 704 832 960

57 576 704 832 960

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 97

58 512 640 768 896

59 512 640 768 896

60 512 640 768 832

61 512 640 704 832

62 512 576 704 832

63 448 576 704 768

Done

Decoder

Init Decoder

S = Decode (CTX)

Read CTX

Finished ?

Yes

No

Figure 10-5 - Overview of the Decoding Process

10.2.6.3 Description of the arithmetic decoding engine

The status of the arithmetic decoding engine is represented by a value V pointing into the code sub-interval and the
corresponding range R of that sub-interval.

Figure 10-5 gives an illustration of the whole decoding process. Performing the InitDecoder procedure, which is further
specified in subclause 10.6.3.1, appropriately initialises V and R. For decoding of each single decision S, the following
two-step operation is employed: First, the related context model CTX is determined according to the rules specified in
subclauses 10.3-10.5. Given the context model CTX, the decoding operation Decode(CTX) then delivers the decoded
symbol S as is described in detail in subclause 10.6.3.2.

DRAFT ISO/IEC 14496-10 : 2002 (E)

98 DRAFT ITU-T Rec. H.264 (2002 E)

Init Decoder

BG = 0
V = 0
C=64
i = 0

Done

i < 16

Yes

No

BG = BG - 1

R = 0x8000

BG < 0 Yes

GetByte

No

V = (V <<1) | (B&1)
B = B >> 1

i = i +1

Figure 10-6 – Flowchart of initialisation of the decoding engine

10.2.6.3.1 Initialisation of the decoding engine

In the initialisation procedure of the decoder, as illustrated in Figure 10-6, V is first filled with two bytes of the
compressed data using the GetByte routine as specified in subclause 10.6.3.4. Then, the range R is set to 0x8000 and
finally a counter C is initialized to -64.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 99

V >= RMPS

S = !MPS(CTX)
V = V - RMPS

R=RLPS

S = MPS(CTX)
R=RMPS

State(CTX) = Next_State_MPS[State(CTX)]

Yes No

RenormD

Done

Decode (CTX)

Q = (R-0x4001)>>12
RLPS = RTAB[State(CTX)][Q]

RMPS = R - RLPS

Switch_MPS[State(CTX)]?

MPS(CTX) = MPS(CTX)^1

State(CTX) = Next_State_LPS[State(CTX)]

Yes

No

Figure 10-7 – Flowchart for decoding a decision

10.2.6.3.2 Decoding a decision

Figure 10-7 shows the flowchart for decoding a single decision. In a first step, the estimation of the sub-interval ranges
RLPS and RMPS corresponding to the LPS and the MPS decision is performed as follows.

Given the interval range R, we first map R to a quantized value Q using

Q=(R-0x4001)>>12, (10-13)

such that the state index State and Q are used as an entry in the look-up table RTAB to determine RLPS:

RLPS=RTAB[State][Q]. (10-14)

Table 10-27 contains the corresponding values of RTAB in 16-bit representation. The tabulated values are actually given
in 8-bit accuracy; the maximum value of RTAB corresponds to 14 bits and all values have been left-shifted by 6 bits for
a better access in a 16-bit architecture.

In a second step, the current value of V is compared to the size of the MPS sub-interval RMPS. If V is greater than or equal
to RMPS a LPS is decoded, V is decremented by RMPS and the new range R is set to RLPS; otherwise a MPS is decoded and
the new range R is determined to be RMPS. Given the decoded decision, the probability update is performed accordingly
as specified in subclause 10.6.2. Depending on the current value of the new range R, renormalization will be performed
as described in more detail in subclause 10.6.3.3.

DRAFT ISO/IEC 14496-10 : 2002 (E)

100 DRAFT ITU-T Rec. H.264 (2002 E)

Figure 10-8 – Flowchart of renormalization

10.2.6.3.3 Renormalization in the decoding engine (RenormD)

Renormalization is illustrated in Figure 10-8. The current range R is first logically compared to 0x4000: If it is greater
than that value, no renormalization is needed and RenormD is finished by incrementing C by 1; otherwise the
renormalization loop is entered. Within this loop, it is first tested whether the counter C has a negative value. If this
condition is true, the range R is doubled, i.e. left-shifted by 1. In any case, the next step consists of decrementing the
counter C by 4 and the bit-counter BG by 1. In the case, that the condition BG<0 holds, a new byte of compressed is
inserted into B by calling the GetByte routine. Finally, the next bit of B is shifted into V and the counter C is incremented
by 1.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 101

B = C[CL]
CL = CL + 1

BG = 7

Done

Get Byte

Figure 10-9 – Flowchart for Input of Compressed Bytes

10.2.6.3.4 Input of compressed bytes (GetByte)

Figure 10-9 shows how the input of compressed data is performed. At the initialsation stage of the whole decoding
process or in case a renormalization occurs and the bit-counter BG has a negative value, this procedure will be invoked.
First, a new byte of compressed data is read out of the bitstream C; then the index CL pointing to the current position of
the bitstream C is incremented by 1 and the bit-counter is set to 7.

V >= Rhalf

S = 1
V = V - Rhalf

S = 0

Yes No

Done

Decode_eq_prob

BG < 0

V = (V<<1) | (B&1)
B = B>>1

Yes

No

Rhalf = R >> 1

BG = BG - 1

GetByte

C = C-3

Figure 10-10 – Flowchart of decoding bypass

10.2.6.3.5 Decoder bypass for decisions with uniform pdf (Decode_eq_prob)

This special decoding routine applies to encoding of the sign information of motion vector data and the sign of the levels
of significant transform coefficients, which are assumed to have a uniform probability distribution. Consequently
omitting the probability estimation in this special case reduces the decoding process to a single comparison (V>=Rhalf?)

DRAFT ISO/IEC 14496-10 : 2002 (E)

102 DRAFT ITU-T Rec. H.264 (2002 E)

in order to determine the right subinterval and its corresponding decoded symbol value S. The subsequent
renormalization process is similar to that performed in the renormalization procedure RenormD, as depicted in Figure
10-10 with three modifications. Firstly, the rescaling operation R←(R<<1) is unnecessary; secondly, the initial
comparison (R<=0x4000?) can be omitted, and thirdly, the counter C is simply decremented by 3.

11 B pictures

11.1 Introduction

The use of B (bi-predictive) pictures is indicated in the nal_unit_type. A B picture is a predictive-coded picture. The
substantial difference between a B picture and P picture is that B pictures are coded in a manner in which some
macroblocks or blocks may use a weighted average of two distinct motion-compensated prediction values for building
the prediction signal. Generally, B pictures utilize two distinct indexed reference frame sets: a forward reference set and
a backward reference set. Each of these sets is composed of pictures in the reference picture buffer. It should be noted
that the term “forward reference” does not indicate that only temporally preceding pictures are used in this manner. The
same is true for “backward reference” use. The terms “forward” and “backward” reflect a historical practice (and
common use) of the two reference frame sets that is one of the uses enabled in this Recommendation | International
Standard. Which pictures are actually referenced by a forward or backward motion compensation prediction operation is
an issue of the reference frame buffer control (see subclause 8.2 and 9.1).

I0 B1 B2 B3 P4 B5 B6 B7 P8

Figure 11-1 – Illustration of B picture concept

The location of pictures in the bitstream is in a data-dependence order rather than in temporal or display order. Pictures
that are dependent on other pictures shall occur in the bitstream after the pictures on which they depend. Figure 11-1
shows a typical example, where three B pictures are inserted in display order between two successive P pictures. The P
picture P4 only depends on the first Intra picture I0. The B picture B2, which is temporally located between I0 and P4,
depends on both of these pictures. The B picture B1 depends on I0, P4, and B2; the B picture B3 additionally depends on
B1. While the display order for this example is given by I0, B1, B2, B3, P4, …, the only possible transmission order is
I0, P4, B2, B1, B3, …

11.2 Macroblock modes and 8x8 sub-partition modes

There are five different prediction types supported by B pictures. They are the forward, backward, bi-predictive, direct,
and intra prediction modes. While forward prediction indicates that the prediction signal is formed by utilizing motion
compensation from a picture of the forward reference frame buffer, a picture of the backward reference frame buffer is
used for building the prediction signal if backward prediction is used. As mentioned above, forward and backward
prediction are not restricted to prediction from temporally preceding or subsequent pictures, respectively. Both the direct
mode and the bi-predictive mode are bi-predictive prediction modes. The prediction signal is formed by a weighted
average of a forward and backward prediction signal. The only difference is that the bi-predictive mode has separate
encoded reference frame parameters and motion vectors for forward and backward prediction, whereas the reference
frame parameters, as well as the forward and backward motion vectors of the direct mode, are derived from the motion
vectors used in the corresponding macroblock of the picture, which is stored at reference index 0 in the backward

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 103

reference frame buffer. In the direct mode, the same number of motion vectors is used as in the co-located macroblock
of the picture that is stored at index 0 in the backward reference frame buffer. To calculate prediction blocks for the
direct and bi-predictive prediction mode, the forward and backward motion vectors are used to obtain appropriate blocks
from the corresponding reference pictures and then these blocks are averaged by dividing the sum of the two prediction
blocks by two. For the bi-predictive modes, the forward and backward prediction signals is always build by utilizing
motion compensated prediction form pictures of the forward and backward reference frame buffer, respectively. These
prediction signals could even be formed from the same reference picture, if both reference buffers have been assigned to
the same picture. Intra predicted macroblocks are spatially predicted, and coded with one of the intra modes.

B pictures utilize a similar tree-structured macroblock partitioning to P pictures. Depending on the size of the reference
frame buffers, up to two reference frame parameters are transmitted for each 16x16, 16x8, and 8x16 block as well as for
any 8x8 sub-partition. Additionally, for each 16x16, 16x8, 8x16 block, and each 8x8 sub-partition, the prediction
direction (forward, backward, bi-predictive) can be chosen separately. For avoiding a separate code word to specify the
prediction direction, the indication of the prediction direction is incorporated into the codewords for macroblock modes
and 8x8 partitioning modes, respectively, as shown in the table Table 11-1 and Table 11-2. An 8x8 sub-partition of a B
picture macroblock can also be coded in direct mode.

Table 11-1 – Macroblock modes for B pictures

Code number Macroblock
mode mb_mode

num_subblock_mb() subblock_prediction_mode(
, 1)

subblock_prediction_mode(
, 2)

0 Direct16x16 1 Direct

1 16x16 1 Fwd

2 16x16 1 Bwd

3 16x16 1 Bipred

4 16x8 2 Fwd Fwd

5 8x16 2 Fwd Fwd

6 16x8 2 Bwd Bwd

7 8x16 2 Bwd Bwd

8 16x8 2 Fwd Bwd

9 8x16 2 Fwd Bwd

10 16x8 2 Bwd Fwd

11 8x16 2 Bwd Fwd

12 16x8 2 Fwd Bipred

13 8x16 2 Fwd Bipred

14 16x8 2 Bwd Bipred

15 8x16 2 Bwd Bipred

16 16x8 2 Bipred Fwd

17 8x16 2 Bipred Fwd

18 16x8 2 Bipred Bwd

19 8x16 2 Bipred Bwd

20 16x8 2 Bipred Bipred

21 8x16 2 Bipred Bipred

22 8x8(split) 4 na

DRAFT ISO/IEC 14496-10 : 2002 (E)

104 DRAFT ITU-T Rec. H.264 (2002 E)

23 Intra4x4 1 Intra

24 … Intra16x16 1 Intra

Table 11-2 – Modes for 8x8 blocks in B pictures/slices

Code number 8x8 partition mode num_subblock_block8x8() block_prediction_mode()

0 Direct8x8 1 Direct

1 8x8 1 Fwd

2 8x8 1 Bwd

3 8x8 1 Bipred

4 8x4 2 Fwd

5 4x8 2 Fwd

6 8x4 2 Bwd

7 4x8 2 Bwd

8 8x4 2 Bipred

9 4x8 2 Bipred

10 4x4 4 Fwd

11 4x4 4 Bwd

12 4x4 4 Bipred

13 Intra8x8 1 Intra

11.3 B-Picture Syntax

Some additional syntax elements are needed for B pictures. The macroblock layer syntax for B pictures is shown in
Figure 11-2. The fields ref_idx_fwd, ref_idx_bw, mvd_fwd, and mvd_bwd are inserted to enable bi-predictive (and the
more general multi-hypothesis) prediction. These fields replace the syntax elements ref_idx and mvd_fwd.

11.3.1 Number of Skipped macroblocks (mb_skip_run)

The syntax element mb_skip_run specifies the number of skipped macroblocks in coding order. For a B-picture
macroblock, skip means direct mode without coefficients. See subclause 8.3.1.

11.3.2 Macroblock mode (mb_mode) and 8x8 sub-partition mode

Table 11-1 shows the macroblock modes for B-pictures.

In “Direct” prediction mode, no motion vector data is transmitted.

In NxM mode, each NxM block of a macroblock is predicted by using different motion vectors, reference pictures, and
prediction directions. As indicated in Table 11-11, three different macroblock modes that differ in their prediction
directions exist for the 16x16 mode. For the 16x8 and 8x16 macroblock modes, 9 different combinations of the
prediction directions are possible. If a macroblock is transmitted in 8x8 mode, an additional codeword for each 8x8 sub-
partition indicates the decomposition of the 8x8 block as well as the chosen prediction direction (see Table 11-2).

The “MBintra4x4” and “MBintra16x16” prediction mode indicates that the macroblock is encoded by intra coding with
different intra prediction modes which are defined in the same manner as in subclause QQ and Table 9-4. No motion
vector data is transmitted for intra macroblocks or 8x8 sub-partitions coded in intra mode.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 105

11.3.3 Intra prediction mode (Intra_pred_mode)

As present, Intra_pred_mode indicates which intra prediction mode is used. Intra_pred_mode is present when
MBintra4x4 prediction mode is indicated in the mb_mode or BlockIntra4x4 is indicated in block8x8_mode. The
code_number is the same as that described in the Intra_pred_mode entry of Table 9-4.

11.3.4 Reference picture parameters (ref_idx_fwd and ref_idx_bwd)

The ref_idx_fwd parameter indicates the position of the reference picture in the forward reference set to be used for
forward motion-compensated prediction of the current macroblock. The ref_idx_fwd parameter is transmitted for each
16x16, 16x8, 8x16 block, and each 8x8 sub-partition if forward or bi-predictive prediction is used and if multi-frame
forward prediction is in use. ref_idx_fwd is present only when num_ref_pic_active_fwd_minus1 is not zero (when the
use of multiple forward reference pictures is indicated). The code_number and interpretation for ref_idx_fwd differs for
picture_structure indicating field picture or frame picture and is described in subclause 8.6.3.

Similarly, ref_idx_bwd is the index into the backward reference set to determine which frame or field is used for
backward prediction when multi-frame backward prediction is in use. ref_idx_bwd is present only when
num_ref_pic_active_bwd_minus1 is not zero (when the use of multiple backward reference pictures is indicated).
ref_idx_bwd is used in the same manner as ref_idx_fwd, but is an index into the backward reference set rather than the
forward reference set, as described in subclause 8.6.3.

11.3.5 ABP coefficient index (abp_coeff_idx)

If the explicit B prediction block weighting is in use, abp_coeff_idx indicates the ABP coefficient index. If
number_of_abp_coeff_minus1 is 0, then abp_coeff_idx is not sent and regarded as 0. For the skipped macroblock, the
ABP coefficient corresponding to abp_coeff_idx=0 is used.

11.3.6 Motion vector data (mvd_fwd, mvd_bwd)

mvd_fwd is the motion vector data for the forward vector, if present. mvd_bwd is the motion vector data for the
backward vector, if present. If so indicated by mb_mode and/or 8x8 sub-partition mode, vector data for 1-16 blocks are
transmitted. The order of transmitted motion vector data is the same as that indicated in Figure 2. For the code_number
of motion vector data, please refer to Table 9-4.

11.4 Decoder Process for motion vector

11.4.1 Differential motion vectors

Motion vectors for forward, backward, or bi-predictively predicted blocks are differentially encoded. A prediction has to
be added to the bitstream motion vector differences in order to reconstruct motion vectors for the current macroblock. If
the two reference pictures used for the bi-prediction exist in the same direction (either forward or backward), the motion
vector (mvd_fwd or mvd_bwd) for the farthest reference picture is coded using the differential motion vectors from the
scaled motion vector for the nearest reference picture as described in 11.4.2. Otherwise, the predictions are formed in
way similar to that described in subclause 4.4.6. The only difference is that forward motion vectors are predicted only
from forward motion vectors in surrounding macroblocks, and backward motion vectors are predicted only from
backward motion vectors in surrounding macroblocks. # [Ed note: what does ‘surrounding’ mean ? Spatially and\or
temporally adjacent macroblocks ? Also, without a TR-like mechanism, the decoder does not know which of the two
DPCM motion vector coding rules to follow above. A simple replacement for TR is needed -- CF]

Reconstructed motion vectors in direct-mode predicted macroblocks shall be used as prediction for neighbouring
macroblocks the same as bi-predictive coded macroblocks. When the co-located macroblock is intra coded, the
macroblock is treated as having a different reference from the current block/macroblock.

If a neighbouring macroblock does not have a respective forward and/or backward motion vector candidate predictor for
the current block, the predictor is set to zero

11.4.2 Motion vector decoding with scaled MV

The motion vector decoding process is illustrated in figure x-x. First, the scaled motion vector (scaled mv) is calculated
from the coded motion vector for the nearest reference picture r1 (MV1). Then, the motion vector for the farthest
reference picture r2 (MV2) is calculated by adding the coded differential motion vector (DMV) to the scaled mv.

DMVstancepicture_diMV1stancepicture_diMV +⋅= 2_/_ 12

where picture_distance_1 and picture_distance_2 are motion vector scaling factors for the nearest reference picture (r1)
and the farthest reference picture (r2), respectively. picture_distance_1 and picture_distance_2 are sent in the picture
header.

DRAFT ISO/IEC 14496-10 : 2002 (E)

106 DRAFT ITU-T Rec. H.264 (2002 E)

r1r2

DMV

MV1

MV2

scaled mv

picture_distance_1

picture_distance 2

Figure 11-2 – Motion vector scaling and differential MV coding

11.4.3 Motion vectors in direct mode

In direct mode the same block structure as for the co-located macroblock in the picture with index 0 of the backward
reference set is used. For each of the sub-blocks the forward and backward motion vectors are computed as scaled
versions of the corresponding vector components of the co-located macroblock in the first picture (index0) of the
backward reference set as described below.

If the multiple reference frame prediction is used, the forward reference picture for the direct mode is the same as the one
used for the corresponding macroblock in the picture with index 0 of the backward reference set. Also note that if the
picture with index 0 of the backward reference set is an intra-coded picture or the reference macroblock is an intra-coded
block or it doesn’t use forward prediction, the motion vectors are set to zero. With possible adaptive switch of
frame/field coding at picture level, a B-picture can be coded in either frame structure or field structure.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 107

M V
1

Tim e

M V F

M V
B

............

current M B co-located M B

Future Ref. Fram eRef. Fram e C urrent B

Figure 11-3 – Motion vectors in direct mode

divisormvdirectMVbwdscalemvdirectMV

divisormvdirectMVfwdscalemvdirectMV

B

F

__/___

__/___

1

1

⋅=
⋅=

direct_mv_scale_fwd, direct_mv_scale_bwd and direct_mv_divisor are sent in picture_layer_rbsp().

11.5 Prediction signal generation procedure

11.5.1 Implicit B Prediction Block Weighting

Prediction signal generation procedure is specified in the following table. If display order of ref_fwd <= display order of
ref_bwd, ABP coefficient (1/2, 1/2, 0) is used. Otherwise, (2, -1, 0) is used.

If the reference picture is long-term picture, whose display order is regarded as earlier than all short-term pictures and the
picture having larger the default relative index value is regarded as earlier in display order. [Ed. Note: Bad grammar –
and what is it trying to say?]

Table 11-3 – Prediction signals for implicit bi-prediction weighting

ABP coefficient prediction signal

(1/2, 1/2, 0) (P1 + P2)/2

(2, -1, 0) clip1(2*P1 - P2)

11.5.2 Explicit B Prediction Block Weighting

Prediction signal is generated as the following form:

 +×+×= D

SWFPFWFP
clipP

LWD2
1 21

where

P = ABP prediction signal

DRAFT ISO/IEC 14496-10 : 2002 (E)

108 DRAFT ITU-T Rec. H.264 (2002 E)

 =−

=
otherwiseFWFM

FWFSifFWFM
FWF

,

0,

 =−

=
otherwiseSWFM

SWFSifSWFM
SWF

,

0,

 =−

=
otherwiseDM

DSifDM
D

,

0,

P1 = Reference signal corresponding to the reference index ref_idx1

P2 = Reference signal corresponding to the reference index ref_idx2

FWFM = first_weight_factor_magnitude[abp_coeff_idx]

FWFS = first_weight_factor_sign[abp_coeff_idx]

SWFM = second_weight_factor_magnitude[abp_coeff_idx]

SWFS = second_weight_factor_sign[abp_coeff_idx]

DM = constant_factor_magniture[abp_coeff_idx]

DS = constant_factor_sign[abp_coeff_idx]

LWD = logarithmic_weight_denominator[abp_coeff_idx]

To limit the calculation to 16-bit precision, the following conditions shall be met:

128 128

128 128

128 128

FWF

SWF

FWF SWF

− ≤ ≤
− ≤ ≤
− ≤ + ≤

12 S pictures

There are two types of S pictures, namely SP pictures and SI pictures. SP pictures make use of motion-compensated
predictive coding to exploit temporal redundancy in the sequence similar to P pictures and SI pictures make use of spatial
prediction similar to I pictures. Unlike P pictures, however, SP picture coding allows identical reconstruction of a frame
even when different reference frames are being used. SI picture, on the other hand, can identically reconstruct a
corresponding SP picture. These properties of S pictures provide functionalities for bitstream switching, splicing, random
access, VCR functionalities such as fast-forward and error resilience/recovery.

12.1 Syntax

The use of S pictures is indicated by the nal_unit_type. If nal_unit_type indicates an SP picture, the sp_for_switch flag is
used to indicate whether it is a switching SP picture or not. If nal_unit_type indicates an S picture, quantisation
parameter slice_qp_minus26 is followed by an additional quantisation parameter QQ_sp in the slice header, see
subclause QQ. The rest of the syntax elements for SP pictures are the same as those in P pictures. Similarly, the rest of
the syntax elements for SI pictures are the same as those in I pictures.

12.1.1 NAL unit type (nal_unit_type) and RUN

See subclause QQ for definition.

12.1.2 Macroblock type (mb_mode)

mb_mode indicates the prediction mode and the block size used to encode each macroblock. There are different MB
modes for SP and SI-pictures.

12.1.3 Macroblock modes for SI pictures

The MB modes for SI-pictures are similar to those of I pictures with an additional MB mode, called SIntra 4x4. Table
12-1 depicts the relationship between the code numbers and mb_mode for SI-pictures.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 109

SIntra 4x4 SI mode.

Intra 4x4 4x4 Intra coding.

Imode, nc, AC.

See definition in subclause QQ. These modes refer to 16x16 intra coding.

Table 12-1 – MB Type for SI-Pictures

Code_number mb_mode
(SI-pictures)

0 SIntra 4x4

1 Intra 4x4

2 0,0,0

3 1,0,0

4 2,0,0

5 3,0,0

6 0,1,0

7 1,1,0

8 2,1,0

9 3,1,0

10 0,2,0

11 1,2,0

12 2,2,0

13 3,2,0

14 0,0,1

15 1,0,1

16 2,0,1

17 3,0,1

18 0,1,1

19 1,1,1

20 2,1,1

21 3,1,1

22 0,2,1

23 1,2,1

24 2,2,1

25 3,2,1

1 16x16 based intra mode. The 3 numbers refer to values for (Imode,AC,nc) - see QQ.

12.1.4 Macroblock modes for SP pictures

The MB modes for SP-pictures are identical to those of P-pictures, see subclause QQ and Table 9-4. However, all of the
inter mode macroblocks, i.e., Skip and NxM, in SP frames refer to SP mode.

DRAFT ISO/IEC 14496-10 : 2002 (E)

110 DRAFT ITU-T Rec. H.264 (2002 E)

12.1.5 Intra prediction mode (Intra_pred_mode)

Intra_pred_mode is present when Intra 4x4 or SIntra 4x4 prediction types are indicated by the mb_mode.
Intra_pred_mode indicates which intra prediction mode is used for a 4x4 block in the macroblock. The code_number for
SIntra 4x4 is the same as that described in the Intra_pred_mode entry of Table 9-4.

Coding of Intra 4x4 prediction modes

Coding of the intra prediction modes for SIntra 4x4 blocks in SI-pictures is identical to that in I-pictures, i.e., the intra
prediction modes of the neighbouring blocks are taken into account as described in subclause 3.4.3.1.1. Coding of the
intra prediction modes for Intra 4x4 blocks in SI-pictures differs from I-picture coding if the neighbouring block is coded
in SIntra 4x4 mode. In this case the prediction mode of the neighbouring Sintra 4x4 block is treated to be “mode 0:
DC_prediction”.

Lerr

predK

recL dderr crec rec

D
E

M
U

LT
IP

LE
X

IN
G

decoded
video

from
encoder

Inverse
Transform

frame
memory

Inverse
QuantisationQuantisation

Inverse
Quantisation

P (x,y)

motion information

R(x,y)MC
prediction

Transform

prediction
Intra

Intra prediction mode information

Loopfilter

Figure 12-1 – A generic block diagram of S-picture decoder

12.2 S picture decoding process

A video frame in SP-picture format consists of blocks indicated in either Intra mode (Intra 4x4, Intra 8x8 or Intra 16x16
Modes) or in SP mode (Skip or NxM). Similarly, SI-pictures consist of macroblocks indicated in either Intra mode or in
SI mode (SIntra 4x4). Intra macroblocks are decoded identically to those in I and P pictures. Figure 26 depicts a generic
S-picture decoding for SI and SP modes. In SP mode, the prediction P(x,y) for the current macroblock of the frame being
decoded is formed by the motion compensated prediction block in the identical way to that used in P-picture decoding. In
SI mode, the prediction P(x,y) is formed by intra prediction block in the identical way to that used in I-picture decoding.
After forming the predicted block P(x,y), the decoding of SI and SP-macroblocks follows the same steps.

First, the received prediction error coefficients denoted by wQERR are scaled using quantisation parameter QPY for luma or
QPC for chroma as specified in subclause 9.5.2.1 Equations 9-5 and 9-6, subclause 9.5.2.2 Equations 9-8 and 9-9, and
subclause 9.5.2.3 Equation 9-10. These results are added to the transform coefficients wPRED of predicted block which
are found by applying a transform [Ed. Note: Specify forward transform here (without divide operations)], to the
predicted block P(x,y). The resulting sum is quantised with a quantisation parameter QS. The value of QS to be used for
luma data, denoted QSY, is computed as

_minus26slice_qp_s26 +=YQS . (11-1)

The value of QS to be used for chroma data, denoted QSC, is obtained from QSY using the same relation specified in
Table 9-1.

The scaled coefficients, denoted by wij
QREC, are obtained by computing

)(QT
ij

QERR
ij

PRED
ij

PRIOR
ij Twww ⋅+= , (11-2)

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 111

where Tij
(QT) is given by,

)6%()6%(6/15)(/]2/2[QT
ij

QT
ij

QTQT
ij RRT += + , (11-3)

where Rij
(m) is defined in Equation 9-2 and QT is given by

=
=

=
0;tch_flagsp_for_swiif

1,tch_flagsp_for_swiif

QP

QS
QT (11-4)

and then computing quantized level values

3,...,0,)6/15(]}6/2)[abs(){sign(6/156% =+>>+⋅⋅= + jiQSRwwc QSQS
ij

PRIOR
ij

PRIOR
ij

QREC
ij . (11-5)

The quantized level values are then scaled using QS as given by

3,...,0,),6/(][)6%(=<<⋅= jiQSRcw QS
ij

QREC
ij

QREC
ij , (11-6)

and the transform and reconstruction processes are performed for these scaled levels, as defined in Equations 9-11
through 9-21. Finally, after the reconstruction of a macroblock, filtering of this macroblock takes place as described in
subclause 9.6.

12.2.1 Decoding of DC values of chroma

The decoding of chroma components for SP- and SI-macroblocks is similar to the decoding of luma components
described in subclause 8.2. AC coefficients of the chroma blocks are decoded following the steps described in the earlier
subclause 8.2 where the quantisation parameters QPY and QPSPY are replaced by QPC and QPSPC according to the
relation between the quantisation values of luma and chroma, as specified in subclause QQ. As described in subclause
QQ, the coding of DC coefficients of chroma components includes an additional 2x2 transform. Similarly, for SP and SI-
macroblocks, an additional 2x2 transform is applied to the DC coefficients of the predicted 4x4 chroma blocks and the
steps described in subclause 8.2 are applied to the 2x2 transform coefficients.

12.2.2 Deblocking filter

When applying deblocking filter for macroblocks in S-frames, all macroblocks are treated as Intra macroblocks as
described in subclause QQ.

13 Hypothetical reference decoder

13.1 Leaky bucket model

The hypothetical reference decoder (HRD) is a mathematical model for the decoder, its input buffer, and the channel.
The HRD is characterized by the channel’s peak rate R (in bits per second), the buffer size B (in bits), and the initial
decoder buffer fullness F (in bits). These parameters represent levels of resources (transmission capacity, buffer
capacity, and delay) used to decode a bitstream.

A closely related object is the leaky bucket (LB), which is a mathematical constraint on a bitstream. A leaky bucket is
characterized by the bucket’s leak rate R1 (in bits per second), the bucket size B1 (in bits), and the initial bucket fullness
B1

–F1 (in bits). A given bitstream may be constrained by any number of leaky buckets (R1,B1,F1),…,(RN,BN,FN), N≥1.
The LB parameters for a bitstream, which are indicated in the bitstream header, precisely describe the minimum levels of
the resources R, B, and F that are sufficient to guarantee that the bitstream can be decoded.

13.2 Operation of the HRD

The HRD input buffer has capacity B bits. Initially, the buffer begins empty. At time tstart it begins to receive bits, such
that it receives S(t) bits through time t. S(t) can be regarded as the integral of the instantaneous bit rate through time t.
The instant at which S(t) reaches the initial decoder buffer fullness F is identified as the decoding time t0 of the first
picture in the bitstream. Decoding times t1, t2, t3, …, for subsequent pictures (in bitstream order) are identified relative to
t0, per subclause 13.3. At each decoding time ti, the HRD instantaneously removes and decodes all di bits associated with

DRAFT ISO/IEC 14496-10 : 2002 (E)

112 DRAFT ITU-T Rec. H.264 (2002 E)

picture i, thereby reducing the decoder buffer fullness from bi bits to bi – di bits. Between time ti and ti+1, the decoder
buffer fullness increases from bi – di bits to bi – di + [S(ti+1) – S(ti)] bits. That is, for i ≥ 0,

b0 = F (13-1)

bi+1= bi – di + [S(ti+1) – S(ti)]. (13-2)

The channel connected to the HRD buffer has peak rate R. This means that unless the channel is idle (whereupon the
instantaneous rate is zero), the channel delivers bits into the HRD buffer at instantaneous rate R bits per second.

b0 = F (13-3)

bi+1= bi – di + [S(ti+1) – S(ti)]. (13-4)

13.3 Decoding time of a picture

The decoding time ti of picture i is equal to its presentation time τi, if there are no B pictures in the sequence. If there are
B pictures in the sequence, then ti = τi – mi, where mi = 0 if picture i is a B picture; otherwise mi equals τi – τi’, where τi’
is the presentation time of the Intra or Inter picture that immediately precedes picture i (in presentation order). If there is
no preceding Intra or Inter picture (i.e., if i = 0), then mi = m0 = t1 – t0. The presentation time of a picture is determinable
from its temporal reference and the picture clock frequency.

13.4 Schedule of a bitstream

The sequence (t0,d0), (t1,d1), (t2,d2), … is called the schedule of a bitstream. The schedule of a bitstream is intrinsic to the
bitstream, and completely characterizes the instantaneous coding rate of the bitstream over its lifetime. A bitstream may
be pre-indicated, stored to a file, and later transmitted over channels with different peak bit rates to decoders with
different buffer sizes. The schedule of the bitstream is invariant over such transmissions.

13.5 Containment in a leaky bucket

A leaky bucket with leak rate R1, bucket size B1, and initial bucket fullness B1–F1 is said to contain a bitstream with
schedule (t0,d0), (t1,d1), (t2,d2), … if the bucket does not overflow under the following conditions. At t0, d0 bits are
inserted into the leaky bucket on top of the B1–F1 bits already in the bucket, and the bucket begins to drain at rate R1 bits
per second. If the bucket empties, it remains empty until the next insertion. At time ti, i ≥ 1, di, bits are inserted into the
bucket, and the bucket continues to drain at rate R1 bits per second. In other words, for i ≥ 0, the state of the bucket just
prior to time ti is

b0 = B1–F1 (13-5)

bi+1 = max{0, bi + di – R1(ti+1–ti)}. (13-6)

The leaky bucket does not overflow if bi + di ≤ B1 for all i ≥ 0.

Equivalently, the leaky bucket contains the bitstream if the graph of the schedule of the bitstream lies between two
parallel lines with slope R1, separated vertically by B1 bits, possibly sheared horizontally, such that the upper line begins
at F1 at time t0, as illustrated in the Figure below. Note from the Figure that the same bitstream is containable in more
than one leaky bucket. Indeed, a bitstream is containable in an infinite number of leaky buckets.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 113

Figure 13-1 – Illustration of the leaky bucket concept

If a bitstream is contained in a leaky bucket with parameters (R1,B1,F1), then when it is communicated over a channel
with peak rate R1 to a hypothetical reference decoder with parameters R=R1, B=B1, and F=F1, then the HRD buffer does
not overflow or underflow.

13.6 Bitstream syntax

The header of each bitstream shall specify the parameters of a set of N ≥ 1 leaky buckets, (R1,B1,F1),…,(RN,BN,FN), each
of which contains the bitstream. In the current Test Model, these parameters are specified in the first 1+3N 32-bit
integers of the Interim File Format, in network (big-endian) byte order:

N, R1, B1, F1, …, RN, BN, FN . (13-7)

The Rn shall be in strictly increasing order, and both Bn and Fn shall be in strictly decreasing order.

These parameters shall not exceed the capability limits for the profile and level.

13.7 Minimum buffer size and minimum peak rate

If a bitstream is contained in a set of leaky buckets with parameters (R1,B1,F1), …, (RN,BN,FN), then when it is
communicated over a channel with peak rate R, it is decodable (i.e., the HRD buffer does not overflow or underflow)
provided B ≥ Bmin(R) and F ≥ Fmin(R), where for Rn ≤ R ≤ Rn+1,

Bmin(R) = αBn + (1 – α)Bn+1 (13-8)

Fmin(R) = αFn + (1 – α)Fn+1 (13-9)

α = (Rn+1 – R) / (Rn+1 – Rn). (13-10)

For R ≤ R1,

Bmin(R) = B1 + (R1 – R)T (13-11)

Fmin(R) = F1, (13-12)

where T = tL-1 – t0 is the duration of the bitstream (i.e., the difference between the decoding times for the first and last
pictures in the bitstream). And for R ≥ RN,

Bmin(R) = BN (13-13)

B1
B2

F2

B2

0

F1

B1

0

bitsbits

Q A B

DRAFT ISO/IEC 14496-10 : 2002 (E)

114 DRAFT ITU-T Rec. H.264 (2002 E)

Fmin(R) = FN . (13-14)

Thus, the leaky bucket parameters can be linearly interpolated and extrapolated.

Alternatively, when the bitstream is communicated to a decoder with buffer size B, it is decodable provided ≥ Rmin(B)
and F ≥ Fmin(B), where for Bn ≥ B ≥ Bn+1,

Rmin(B) = αRn + (1 – α)Rn+1 (13-15)

Fmin(B) = αFn + (1 – α)Fn+1 (13-16)

α = (B – Bn+1) / (Bn – Bn+1). (13-17)

For B ≥ B1,

Rmin(B) = R1 – (B – B1)/T (13-18)

Fmin(B) = F1. (13-19)

For B ≤ BN, the stream may not be decodable.

In summary, the bitstream is guaranteed to be decodable in the sense that the HRD buffer does not overflow or
underflow, provided that the point (R,B) lies on or above the lower convex hull of the set of points (0,B1+R1T), (R1,B1),
…, (RN,BN), as illustrated in Figure 13-12. The minimum start-up delay necessary to maintain this guarantee is Fmin(R) /
R.

BN

…

(R1,B1)

(R2,B2)

(R3, B3)

(RN-1,BN-1)

(RN,BN)

B
(bits)

B (bits)

TRRBB)(11 −+=

R (bits/sec)

Figure 13-2 – Illustration of the leaky bucket concept

A compliant decoder with buffer size B and initial decoder buffer fullness F that is served by a channel with peak rate R
shall perform the tests B ≥ Bmin(R) and F ≥ Fmin(R), as defined above, for any compliant bitstream with LB parameters
(R1,B1,F1),…,(RN,BN,FN), and shall decode the bitstream provided that B ≥ Bmin(R) and F ≥ Fmin(R).

13.8 Encoder considerations (informative)

The encoder can create a bitstream that is contained by some given N leaky buckets, or it can simply compute N sets of
leaky bucket parameters after the bitstream is generated, or a combination of these. In the former, the encoder enforces
the N leaky bucket constraints during rate control. Conventional rate control algorithms enforce only a single leaky

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 115

bucket constraint. A rate control algorithm that simultaneously enforces N leaky bucket constraints can be obtained by
running a conventional rate control algorithm for each of the N leaky bucket constraints, and using as the current
quantisation parameter (QP) the maximum of the QP’s recommended by the N rate control algorithms.

Additional sets of leaky bucket parameters can always be computed after the fact (whether rate controlled or not), from
the bitstream schedule for any given Rn, from the iteration specified in subclause 13.5.

13.9 Normative hypothetical decoder and buffering verifiers

The Hypothetical Reference Decoder represents a set of normative constraints on coded streams. These constraints must
be enforced by an encoder, and can be assumed to be true by a decoder or multiplexor. The following description should
not be interpreted as guidance for decoder implementers particularly with regard to decode and presentation timing.

The HRD can contain any or all of the following Buffering Verifiers, as shown in Figure 13.1:

• One or more VBR-VBV Buffers

• At most one CBR-VBV Buffer

• At most one TBV Buffer, if at least one VBV Buffer is present

VCL
CBR-VBV

BufferVCL Stream

Complete Multi-buffer Parallel Buffer Verifier Model

VCL
VBR-VBV

BufferVCL Stream

Coded

Pictures

TBV
Buffer

NAL/TEL

Headers

Post-decoder
Buffer

Coded

Pictures

Post-decoder
Buffer

Displayed

Pictures

Displayed

Pictures

Figure 13-3 – HRD Buffer Verifiers

All the arithmetic in this annex is done with real-values, so that no rounding errors can propagate. For example, the
number of bits in the VBV buffer just prior to or after a removal time is not necessarily an integer. Furthermore, while
compliance is guaranteed assuming that all frame-rates and clocks used to generate the Video Elementary Stream match
exactly the values signaled in the syntax, each of these may vary from the signaled or defined value according to
normative rules. Real systems responsible for multiplexing, editing, splicing, playing back, etc. these streams must
account for the deviation of actual values from the signaled or defined ones.

13.9.1 Operation of pre-decoder VBV

13.9.1.1 Timing of bitstream/packet arrival

This specification applies independently to each VBV Buffer signaled. The buffer is initially empty. If the VBV buffer
is not full, data enters the buffer at the bit-rate associated with that VBV buffer. If a VBR-VBV buffer becomes full after
filling at its associated data rate for some time, no more data enters the buffer until some data is removed from the buffer.

13.9.1.2 Timing of coded picture removal

In both low-delay and delay-tolerant modes, for the first picture and all pictures which are the first complete picture after
receiving a Buffering Period SEI Message, no data the coded data associated with the picture is is removed from the
VBV buffer during after a time period equal to the following:

rrts_xxx (13.1)

DRAFT ISO/IEC 14496-10 : 2002 (E)

116 DRAFT ITU-T Rec. H.264 (2002 E)

where rrts_xxx is the relative removal time stamp corresponding to the VBV buffer.

After the first picture is removed, the buffer is examined at subsequent points of time.

In the low-delay buffering mode, the following behaviour holds. The subsequent points of time are increments of the
field period. If at least one complete coded picture is in the buffer and if at least one picture memory buffer is free in the
post-decoder buffer, then all the data for the earliest complete picture in coding order is removed from buffer.

In the delay-tolerant mode, the following behaviour holds. All pictures must be coded. If T(n-1) represents the removal
time of the previous picture, then the following pseudocode defines T(n).

// field_period and frame_period have the expected meaning, and are
// defined in clause 3
if((pstruct= =1) | | (pstruct= =2)) { // Field picture

P = field_period
}
else // Frame picture
P = frame_period
T(n) = T(n-1) + P
if((film_state) && (film_mode= =A or film_mode= =C))
{
T(n) += P/2
}

In the low-delay buffering mode, if at least one complete coded picture is in the buffer and if at least one picture memory
buffer is free in the post-decoder buffer, then all the data for the earliest complete picture in coding order is removed
from buffer. At this time, the coded picture which has been in the buffer longest is removed from the VBV buffer at that
time.

13.9.1.3 Compliance constraints on coded bitstreams or packet streams

A transmitted or stored stream of coded data compliant with this Recommendation | International Standard fulfills either
the low-delay mode requirements or the delay-tolerant mode requirements.

Delay-tolerant Mode Requirements

• Each picture must be available in the VBV buffer at its computed removal time.

• If VBVI_CBR= =1, at no time shall the occupancy of the CBR VBV buffer exceed the buffer size.

Low-delay Mode Requirements

• After each removal, the time equivalent of the buffer occupancy (in ticks of a 90kHz clock) must be below
rrts_max.

13.9.2 Operation of the TBV

The TEL Buffering Verifier operates synchronously with the VBV Buffer which has the earliest removal time. (After
the initial delay at the start of sequence or after a Buffering Period SEI Message, the removal times of all VBV Buffers
increment with the same values; they simply have different initial times.)

13.9.2.1 TBV arrival timing

All TEL bits preceding a given picture enter the TBV instantaneously when the first VCL byte associated with that
picture enters the earliest VBV Buffer.

13.9.2.2 TBV removal timing

All TEL bits preceding a given picture are removed from the TBV when the corresponding picture is removed from the
earliest VBV Buffer.

13.9.2.3 TBV compliance constraints

• TEL data associated with each picture must be available in the TBV buffer at its computed removal time.

• If TBVI =1, at no time shall the occupancy of the TBV buffer exceed the buffer size.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 117

13.9.3 Operation of the post-decoder buffer verifier

13.9.3.1 Arrival timing

A reconstructed picture is added to the post-decoder buffer at the same time when the corresponding coded picture is
removed from the pre-decoder buffer.

13.9.3.2 Removal timing

Data is not removed from the post-decoder buffer during a period called the initial post-decoder buffering period. The
period starts when the first picture is added to the post-decoder buffer.

When the initial post-decoder buffering period has expired, the playback timer is started from the earliest display time of
the pictures residing in the post-decoder buffer at that time.

A picture is virtually displayed when the playback timer reaches the scheduled presentation time of the picture.

A picture memory is marked unused in the post-decoder buffer when it is virtually displayed and when it is no longer
needed as a reference picture.

13.9.3.3 Compliance constraints

The occupancy of the post-decoder buffer shall not exceed the default or signaled buffer size.

Each picture shall be available in the post-decoder buffer before or on its presentation time.

14. Adaptive block size transforms

14.1 Introduction

The concept of variable block size transform coding is described. The scheme is called Adaptive Block size Transforms
(ABT) indicating the adaptation of the transform block size to the block size used for motion compensation. For Intra
coding, the transform block size is adapted to the properties of the intra prediction signal. Hence, for both inter and intra
coding, the maximum feasible signal length can be exploited by the transform. With ABT, the block transform as
commonly used in the former image and video coding standards is generalized from a fixed-size transform to a signal
adaptive tool for increased overall coding performance.

ABT is applied to frame macroblocks if frame motion compensation is used. ABT is applied to field macroblocks if field
motion compensation is used. Therewith, inter ABT is always used on the blocks used for motion compensation.

First, the syntax changes necessary for ABT coding are given. Only for ABT intra coding, a new symbol is introduced
into the macroblock layer syntax. For encoding of the transform coefficients, the existing syntax is used. The necessary
modifications are described below. The syntax is given in tabular form. Then, the ABT decoding process is described.

DRAFT ISO/IEC 14496-10 : 2002 (E)

118 DRAFT ITU-T Rec. H.264 (2002 E)

14.2 ABT Syntax Elements

14.2.1 Slice Header Syntax
slice_header() { Category Descriptor

qq
}

14.2.2 Prediction data for 8x8 modes
prediction8x8(mb_mode) { Category Descriptor

block8x8_mode 4 e(v)
if(block8x8_mode = = BlockIntra4x4) {

if(useABT > 1)
intra_block_modeABT /* determines num_ipred */ 4 e(v)

for(i4x4=0; i4x4< num_ipred; i4x4++)
intra_pred_mode 4 e(v)

} else {
….

14.2.3 Prediction data for 16x16 modes
prediction16x16(mb_mode) { Category Descriptor

if(mb_mode = = MBintra4x4)

if(useABT > 1)

intra_block_modeABT /* determines num_ipred */ 4 e(v)

for(i4x4=0; i4x4< num_ipred; i4x4++)

intra_pred_mode 4 e(v)

else if(mb_mode != MBintra16x16) {

…

14.2.4 Residual Data Syntax
residual(mb_mode) { Category Descriptor

if(mb_mode = = MBintra16x16)
do

luma_dc_zigzag_token 5 | 6 e(v)
while (lum_dc_zigzag_token != EOB)

for(i8x8=0; i8x8<4; i8x8++) /* each luma 8x8 block */
/* ABT number of sub-blocks num_blks depends on block mode

non-ABT: num_blks=4 */
for(i4x4=0; i4x4< num_blks; i4x4++) /* each sub-block of block */

if(cbp & (1<< i8x8)
if(double_scan()) {

do
luma_dblscan0_token 5 | 6 e(v)

while (luma_dblscan0_token != EOB)
do

luma_dblscan1_token 5 | 6 e(v)
while (luma_dblscan1_token != EOB)

} else
do

luma_zigzag_token 5 | 6 e(v)
while (luma_zigzag_token != EOB)

if(cbp & 0x30) { /* chroma DC residual coded */
…

14.3 ABT Decoding process

14.3.1 Luma intra coding

If useABT = = 2, ABT intra coding is used. ABT intra coding is very similar to 4x4 intra coding in subclause QQ. The
block size used for prediction is 4x4, 8x4, 4x8, or 8x8 samples. The transform block size is chosen according to
intra_block_modeABT. The DC prediction and the directional prediction mode defined in subclause QQ are used for
ABT intra blocks. MBintra16x16 is not used with ABT intra.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 119

14.3.1.1 Prefiltered prediction

Before employed for prediction, the edge samples of (available) neighbouring blocks are gathered in a prediction vector
EP.

Let P denote the predicted block of N samples in M lines. P[m,n] is the sample at vertical position m, 0<=m<M, and
horizontal position n, 0<=n<N. The samples used for prediction shall be identified by R[m,n], with n=-1 & -1<=m and –
1<n & m=-1. Only decoded samples of the same slice are valid for prediction.

The prediction vector EP contains the reconstructed luma at valid positions of R. EP is constructed according to the
following pseudo code:

offset = 0;
valid_left_down = valid(R[M:M+N-1,-1]);
valid_left = valid(R[0:M-1,-1]);
valid_up = valid(R[-1,0:N-1]);
valid_up_right = valid(R[-1,N:N+M-1]);

if valid_left_down
{

offset += N;
for(k=0; k<N; k++)

EP'[offset-k] = R[k,-1];
}

if valid_left
{

offset += M;
for(k=0; k<M; k++)

EP'[offset-k] = R[k,-1];
EP'[offset+1] = R[0,-1];

}

offset+=1;
if valid_up
{

for(k=0; k<N; k++)
EP'[offset+k+1] = R[-1,k];

EP'[offset] = R[-1,0];
}

if valid_up_right
{

for(k=N; k<N+M; k++)
EP'[offset+k+1] = R[-1,k];

}

if(valid_left & valid_up)
EP'[offset] = R[-1,-1];

To enhance prediction quality, EP' is filtered prior to prediction the following way:

EP[k] = (EP'[k-1] + 2*EP'[k] + EP'[k+1] + 2) >> 2, (14-1)

with constant extension at the boundaries.

14.3.1.2 Prediction Modes

14.3.1.2.1 Mode 0: DC-Prediction

All positions of P are predicted by sum(EP), i.e. the sum of all elements of EP. If there are no valid edge samples, the
block is predicted by P[m,n]=128, 0<=n,m<N,M.

14.3.1.2.2 Mode 1: Vertical Prediction

if(valid_up)
for(y=0;y<M;y++)

DRAFT ISO/IEC 14496-10 : 2002 (E)

120 DRAFT ITU-T Rec. H.264 (2002 E)

for(x=0;x<N;x++)
P[y,x]=EP[offset+1+x];

14.3.1.2.3 Mode 2: Horizontal Prediction

if(valid_left)
for(y=0;y<M;y++)

for(x=0;x<N;x++)
P[y,x]=EP[offset-1-y];

14.3.1.2.4 Mode 3: Down-Right Prediction

if(valid_left&&valid_up)
for(y=0;y<M;y++)

for(x=0;x<N;x++)
P[y,x]=EP[offset+x-y];

14.3.1.2.5 Mode 4: Up-Right Prediction (Bidirectional)

if(valid_left&&valid_up)
for(y=0;y<M;y++)

for(x=0;x<N;x++)
P[y,x]=(EP[offset+2+x+y]+EP[offset-2-(x+y)])>>1;

14.3.1.2.6 Mode 5: Down-Right-Down Prediction

if(valid_left&&valid_up)
{

for(y=0;y<M;y+=2)//even lines
for(x=0;x<N;x++)

if((i=x-(y>>1)) >= 0)
P[y,x]=(EP[offset+i]+EP[offset+1+i])>>1;

else
P[y,x]=EP[offset+1+2*x-y];

for(y=1;y<M;y+=2)//odd lines
for(x=0;x<N;x++)

if((i=x-(y>>1)) >= 0)
P[y,x]=EP[offset+i];

else
P[y,x]=EP[offset+1+2*x-y];

}

14.3.1.2.7 Mode 6: Down-Left-Down Prediction

if(valid_left&&valid_up)
{

for(y=0;y<M;y+=2)//even lines
for(x=0;x<N;x++)

P[y,x]=(EP[offset+1+x+(y>>1)]+EP[offset+2+x+(y>>1)])>>1;
for(y=1;y<M;y+=2)//odd lines

for(x=0;x<N;x++)
P[y,x]=EP[offset+2+x+(y>>1)];

}

14.3.1.2.8 Mode 7: Right-Up-Right Prediction

if(valid_left&&valid_up)
{

for(y=0;y<M;y++)//even columns
for(x=0;x<N;x+=2)

P[y,x]=(EP[offset+-1-(y+(x>>1))]+EP[offset+-2-(y+(x>>1))])>>1;
for(y=0;y<M;y++)//odd columns

for(x=1;x<N;x+=2)
P[y,x]=EP[offset+-2-(y+(x>>1))];

}

14.3.1.2.9 Mode 8: Right-Down-Right Prediction

if(valid_left&&valid_up)
{

for(y=0;y<M;y++)//even columns
for(x=0;x<N;x+=2)

if((i=-y+(x>>1)) <= 0)

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 121

P[y,x]=(EP[offset+i]+EP[offset+i-1])>>1;
else

P[y,x]=EP[offset-1-2*y+x];
for(y=0;y<M;y++)//odd columns

for(x=1;x<N;x+=2)
if((i=-y+(x>>1)) <= 0)

P[y,x]=EP[offset+i];
else

P[y,x]=EP[offset-1-2*y+x];
}

14.3.1.3 Coding of ABT intra prediction modes

For encoding, the ABT intra prediction modes of the blocks of a macroblock are grouped in pairs. Since Intra blocks of
variable block size might be indicated in one macroblock, a rule has to be defined for grouping the prediction modes:
The prediction modes are grouped left to right, top to bottom.

Figure 14-1 – Macroblock in 8x8 Mode with 4 ABT intra subblocks

If the number of intra coded blocks is odd, the prediction mode of the last intra subblock is grouped with a '0' for
encoding. For example, in Figure 14-1, a macroblock in 8x8 mode containing blocks with block modes 8x8, 8x8, 8x8,
8x4, is given. The 8x8 prediction modes of blocks 1 and 2 are grouped together for encoding. The prediction mode of
block 3 is grouped with prediction mode of block 4. The prediction mode of block 5 is grouped with a prediction mode
'0' for encoding. For encoding of the intra prediction modes, the base line encoding method (subclause QQ) is used.

14.3.2 ABT Transform Coefficient Decoding

Two transforms are used. One transform is used for signals of length 8 and the other transform is used for signals of
length 4. In the following, matrix notation is used to describe the transform process. The 4x4 transform is used if
useABT = = 0. The 4x4 transform has different norms in the even and odd basis functions, resulting in a set of 3 different
norms for a 2-dimensional transform. The 8x8 transform used for ABT is given as a matrix. In the following, applying
this transform to a block is expressed as a matrix multipication. It has one norm for all basis functions. The 8x8
transform T8 is given below.

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

391519191593

717177717177

151939931915

1313131313131313

931915151939

177717177717

191593391519

1313131313131313

8T (14.2)

14.3.2.1 Scanning method

ABT transform coefficients are indicated using the (Run,Level) model. For each transform block size, a distinct
coefficient scan is defined. Two general scans methods are used, one for progressive and one for interlaced material.

1 2

3
4
5

DRAFT ISO/IEC 14496-10 : 2002 (E)

122 DRAFT ITU-T Rec. H.264 (2002 E)

14.3.2.1.1 Progressive Scan

Figure 14-2 – Progressive scan for 4x4, 4x8, 8x4, and 8x8 blocks

14.3.2.1.2 Interlaced Scan

1 3 9 13

2 6 10 14

4 7 11 15

5 8 12 16

Figure 14-3 – 4x4 interlaced scan

1 5 13 21

2 6 14 22

3 7 15 23

4 12 20 28

8 16 24 29

9 17 25 30

10 18 26 31

11 19 27 32

Figure 14-4 – 4x8 interlaced scan

4x4

4x8 8x8

8x4

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 123

1 3 7 11 15 19 23 27

2 6 10 14 18 22 26 30

4 8 12 16 20 24 28 31

5 9 13 17 21 25 29 32

Figure 14-5 – 8x4 interlaced scan

1 4 9 16 23 31 39 53

2 5 15 22 30 38 46 54

3 8 17 24 32 40 47 59

6 10 21 29 37 45 52 60

7 14 25 33 41 48 55 61

11 18 26 34 42 49 56 62

12 19 27 35 43 50 57 63

13 20 28 36 44 51 58 64

Figure 14-6 – 8x8 interlaced scan

14.3.2.2 Scaling and transform

The scaling of the ABT transform coefficients for each mode uses the scaling values given in the Table 14-1 below. The
design is given for quantization parameters QP=0,…,51.

The coefficient R(k,i,j) used in the following is mode dependent and chosen from the table below. Additionally, a bit
shift parameter is defined.

Table 14-1 – ABT dequantization mantissa values

k S8x8 S8x4,4x8 S4x4

0 15 9 11 40 64 51

1 17 10 12 45 72 57

2 19 11 14 50 81 64

3 22 12 16 57 91 72

4 24 14 17 63 102 80

5 27 15 20 71 114 90

Mode 8x8:

R[k][i][j] = S8x8[k] for all i,j
Bshift = 7;

Mode 8x4:

R[k][i][j] = S8x4,4x8[k][0] for all even j
R[k][i][j] = S8x4,4x8[k][1] for all odd j
Bshift = 2;

Mode 4x8:

R[k][i][j] = S8x4,4x8[k][0] for all even I
R[k][i][j] = S8x4,4x8[k][1] for all odd I
Bshift = 2;

DRAFT ISO/IEC 14496-10 : 2002 (E)

124 DRAFT ITU-T Rec. H.264 (2002 E)

Mode 4x4:

R[k][i][j] = S4,4[k][0] for(i,j) = {(0,0),(0,2),(2,0),(2,2)},
R[k][i][j] = S4,4[k][1] for(i,j) = {(1,1),(1,3),(3,1),(3,3)},
R[k][i][j] = S4,4[k][2] otherwise;
Bshift = 0;

The reconstructed coefficients are multiplied with the scaling value R

YD(i,j) = (YQ(i,j) * R(QP%6,i,j)) << (QP/6); i=0,..,N; j=0,...,M (14-3)

The resulting block YD of size MxN is then transformed horizontally. If N=4, the one-dimensional transform is
performed according to the subclause QQ. If N=8, a matrix multiply is performed and the result is rounded,

Z = (YD * TN)>>Bshift, (14-4)

where (YD * TN) denotes the appropriate horizontal transform operation. The notation (YD * TN)>>Bshift means that
the resulting value for each element Z(i,j) is down-shifted by Bshift bits with proper rounding.

Z(i,j) = sign(Z'(i,j))*[abs(Z'(i,j)) + 2Bshift-1]>>Bshift. (14-5)

This operation is performed to stay within 16 bit precision. After the vertical transform step the result is finally rounded

X' = (TMT* Z), (14-6)

X''(i,j) = [X'(i,j) + 25] >> 6. (14-7)

Here, (TMT* Z) denotes the appropriate vertical transform. Finally, the reconstructed sample residual values X''(i,j) are
added to the prediction values P(i,j) from motion compensation or spatial prediction and clipped to the range of 0 to 255
to form the final decoded sample result:

S'(i,j) = clip1(P(i,j) + X''(i,j)). (14-8)

14.3.3 Deblocking Filter

Deblocking is employed on block and macroblock boundaries. No modifications are introduced to the deblocking
filtering process besides a modification of the determination of the threshold parameters α and β, see subclause QQ. No
filtering is performed at 4x4 block boundaries inside transform blocks.

According to subclause QQ, the threshold parameters α and β are driven by the quantization parameter QP. For ABT
blocks, the index to the threshold table is increased by IQP. IQP depends on the depth and the width of the neighboring
blocks. The depth is the distance to the next block boundary on each side, while the width of the block is the number of
samples at the current boundary.

IQP=0;
if(depth(Block p)= =8)

IQP++;
if(depth(Block q)= =8)

IQP++;
if(width(Block p)= =8)

IQP++;
if(width(Block q)= =8)

IQP++;
clip3(0,3, IQP);

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 125

14.3.4 Entropy Coding

For entropy coding of the ABT coefficients a VLC mode and a CABAC mode are defined.

14.3.4.1 VLC

In VLC mode, all coefficients are indicated as (Level,Run) symbols. Inter blocks use the EOB symbol. For Intra coding,
a Coeff_Count symbol is indicated.

Golomb codes of several degrees are employed for encoding of the symbols. The Golomb-0 code is used for encoding of
all non-luma symbols as described in subclause QQ. For ABT, additional Golomb-1, 2, and 3 codes are employed. The
general structure of these codes is depicted in the Table 14-3.

Table 14-3 – Golomb Codes used for encoding ABT symbols

Layer Golomb-0 Golomb-1 Golomb-2 Golomb-3

0

1

2

3

…

1

01x

001xx

0001xxx

…

1x

01xx

001xxx

0001xxxx

…

1xx

01xxx

001xxxx

0001xxxxx

…

1xxx

01xxxx

001xxxxx

0001xxxxxx

…

Generally, a Golomb codeword consists of a sync word 0…01 and an info word x0x1…xn. For ABT coding, a finite
number of symbols is indicated using Golomb codes. Symbols that are not in the finite set are indicated using an Escape
symbol and separate coding of Level and Run. The Escape symbol is 59 for all used codes. Since finite alphabets are
indicated, the ‘1’-bit of the sync word is omitted in the layer containing the Escape symbol.

14.3.4.1.1 Intra coding using Coeff_Count

For encoding intra symbols, the EOB symbol is omitted and the Coeff_Count symbol is used. Since EOB is the first
symbol in all (inter-) tables, the table entries for encoding intra (Level,Run) symbols are shifted down by one. Intra
Coeff_Count is indicated using the Golomb-2 code:

Table 14-4 – Golomb Codes used for encoding ABT Coeff_Count symbols

Coeff_Count Golomb-2 symbol

0 100

1 101

2 110

3 111

4 01000

… …

14.3.4.1.2 2D (Level,Run) Symbols

The Golomb code used for encoding the (Level,Run) symbols is block mode dependent. The degree of the Golomb code
and the number of layers being used is given in Table I-5. For all modes, the first 60 code words of these codes are used,
with code word 59 beeing the Escape symbol. In the highest layer, the terminating sync bit is omitted.

Table 14-5 – Connection of ABT modes and Golomb code degrees and the number of layers

Inter Intra

Block Mode Degree Layers Degree Layers

8x8 0 6 2 4

8x4,4x8 1 5 2 4

8x8 2 4 2 4

14.3.4.1.3 Code Tables

Four codeword tables are used to adapt the VLC code to the symbol statistics. These tables are given in Table 14-7. The
intra tables are chosen QP-dependent. The tables contain the (odd) codeword numbers for Level>0. Level<0 is indicated

DRAFT ISO/IEC 14496-10 : 2002 (E)

126 DRAFT ITU-T Rec. H.264 (2002 E)

using the even numbers. EOB is indicated as code word 0. In case of Intra coding, no EOB symbol is indicated and the
symbols are shifted down by one in the table.

Symbols that are not in the table are indicated using the Escape Symbol 59 first and then Level using Golomb-3 and Run
using Golomb-2. Here, no finite alphabet is assumed. The Levels are arranged as given in Table 14-6.

Table 14-6 – Codeword numbers for Level symbols after escape code

Level Code word

1 0

-1 1

2 2

-2 3

3 4

-3 5

4 6

… …

Table 14-7 – Inter and Intra (Level,Run) code word table. Cells marked ‘*’ are not valid.

Level (Inter) → abs(Level)-1 (Intra, QP<26) → abs(Level)-1 (Intra, 26<=QP<34)
→

abs(Level)-1 (Intra, QP≥34) →

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 1 5 13 21 31 39 47 0 1 3 7 9 13 19 21 0 1 3 9 13 19 23 31 0 1 5 13 21 33 43 57

1 * 3 15 33 51 * * * * 5 15 25 31 39 45 49 * 5 15 27 37 49 57 * * 3 17 31 49 * * *

2 * 7 25 53 * * * * * 11 29 41 51 * * * * 7 25 43 * * * * * 7 25 47 * * * *

3 * 9 35 * * * * * * 17 35 55 * * * * * 11 35 * * * * * * 9 35 * * * * *

4 * 11 45 * * * * * * 23 43 * * * * * * 17 45 * * * * * * 11 41 * * * * *

5 * 17 55 * * * * * * 27 57 * * * * * * 21 51 * * * * * * 15 51 * * * * *

6 * 19 * * * * * * * 33 * * * * * * * 29 * * * * * * * 19 * * * * * *

7 * 23 * * * * * * * 37 * * * * * * * 33 * * * * * * * 23 * * * * * *

8 * 27 * * * * * * * 47 * * * * * * * 39 * * * * * * * 27 * * * * * *

9 * 29 * * * * * * * 53 * * * * * * * 41 * * * * * * * 29 * * * * * *

10 * 37 * * * * * * * * * * * * * * * 47 * * * * * * * 37 * * * * * *

11 * 41 * * * * * * * * * * * * * * * 53 * * * * * * * 39 * * * * * *

12 * 43 * * * * * * * * * * * * * * * 55 * * * * * * * 45 * * * * * *

13 * 49 * 53 * * * * * *

14 * 57 * 55 * * * * * *

Run

↓

15 *

14.3.4.2 CABAC

Level and Run are separated for CABAC. Coeff_Count is indicated instead of a EOB symbol. The ABT Levels are
indicated as defined in subclause QQ. For encoding of Coeff_Count and the Run values of 4x8, 8x4, and 8x8 blocks, an
additional binarization is introduced. For both, a separate set of contexts is defined. 4x4 Coeff_Count and Run are
indicated as described in subclause QQ.

14.3.4.2.1 Binarization for 4x8, 8x4, and 8x8 block Coeff_Count and Run Values

Coeff_Count and Run are denoted ‘Symbol’ in the following. Unary binarization is applied for Symbol<16. For Symbol
>=16, the trailing sync bit is omitted and a fixed length binary representations of (Coeff_Count-16) is attached. The bits
of the representation are indicated from low to high, i.e. 20, 21,… . The binarization is shown in Table 14-2.

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 127

Table 14-8 – Binarization for ABT Coeff_Count and Run values

n Binarization

0 1

1 0 1

2 0 0 1

3 0 0 0 1

4 0 0 0 0 1

… …

16 0 0 0 0 0 … 000

17 0 0 0 0 0 … 100

18 0 0 0 0 0 … 010

… …

Ctx 0 1 2 3 4

14.3.4.2.2 Truncated Binarization

Both, Coeff_Count and Run values are always bound by a maximum value, see subclause QQ. The maximum value
max_value is use to truncate the binarization displayed in Table 14-8. If Symbol < 16, the terminating ‘1’ of the
binarization is omitted. For Symbols >= 16, the maximum value determines the number of bits nf used for the fixed
length binarization,

nf = ceil (log2(max_value)); (E-9)

where ceil(×) denotes up-rounding to the next integer.

14.3.4.2.3 Context Models for ABT Coeff_Count

The enumeration of the contexts is according to Table I-2. Four contexts models are used for the first context. The model
is determined by

ctx_coeff_count(C) = ((CC(A)= =0) ? 0 : 1) + 2*((CC(B)= =0)?0:1); (E-10)

where CC(X) , X=A,B, is Coeff_Count of the left and top neighbouring decoded blocks A and B. One model is assigned
to each of the remaining contexts.

14.3.4.2.4 Context Models for ABT Run Values

The enumeration of the contexts is according to Table 14-8. Run is indicated exploiting the information of Coeff_Count
and the previously coded Runs. The binarization of Coeff_Count is used for Runs as well. Here, only one context is used
for the first bin. The remaining contexts are defined as with Coeff_Count. Two sets of Run contexts can be chosen,
depending on the activity of the block, which is measured by Coeff_Count

ctx_run = ((COEFF_COUNT) >= 4) ? 1 : 0. (E-11)

Annex A

Profile and level definitions
(This annex forms an integral part of this Recommendation | International Standard)

A.1 General

Profiles and Levels are used to summarize the capability of decoders, and to indicate interoperability points between
individual decoder implementations. This Recommendation | International Standard does not include individually
selectable “options” at the decoder, as this would increase interoperability difficulties.

DRAFT ISO/IEC 14496-10 : 2002 (E)

128 DRAFT ITU-T Rec. H.264 (2002 E)

Each Profile defines a set of algorithmic features which shall be supported by all decoders compliant with that Profile.
Note that encoders are not required to make use of any particular set of features supported in a Profile.

Each Level defines a set of limits on the values which may be taken by the parameters of this Recommendation |
International Standard. The same set of Level definitions is used with all Profiles, but individual implementations may
support a different Level for each supported Profile. For any given Profile, Levels generally correspond to decoder
processing and memory capability, in units based on video decoding, rather than on specific implementation platforms.

All video decoders compliant with this Recommendation | International Standard shall support the Baseline Profile. The
support of other Profiles is optional.

A.2 Requirements on video decoder capability

All video decoders compliant with this Recommendation | International Standard shall express their capability to decode
video in the format of a list of one or more Profiles from this Annex. For each such Profile, the Level supported for that
Profile shall also be expressed. Such expression may be in the form of coded values equivalent to a specific Profile and
specific Level from this Annex.

All video decoders compliant with this Recommendation | International Standard shall support the Baseline Profile. The
Level supported for the Baseline Profile shall not be less than the Level supported for any higher Profile. The support of
higher Profiles (those which contain features in addition to those of the Baseline Profile) is optional.

A.3 Baseline profile

All video decoders compliant with this Recommendation | International Standard shall support the Baseline Profile.

The Baseline Profile consists of the following features:

a) I and P picture types
b) In-loop deblocking filter
c) Progressive pictures
d) Interlaced pictures (only for decoders supporting Level 2.1 and above)
e) 1/4-sample motion compensation
f) Tree-structured motion segmentation down to 4x4 block size
g) VLC-based entropy coding
h) Flexible macroblock ordering (maximum 8 slice groups)
i) Motion Vectors in the range of
j) Chrominance format 4:2:0

A.4 Main profile

Video decoders may optionally support the Main Profile.

The Main Profile consists of the following features:

a) All features included in the Baseline Profile
b) B pictures
c) CABAC
d) Adaptive block-size transforms
e) Motion Vectors in the range of

NOT in either Baseline or Main Profile:
• 1/8-sample motion compensation
• Mixing intra and inter coding modes within a macroblock
• Data partitioning
• SP & SI “switching” pictures
• All TBD features

Remaining open issues for Main Profile:
• Whether to allow smaller than 8x8 bi-predictive motion in B pictures
• Whether to include adaptive B picture interpolation coefficients

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 129

A.5 Level definitions

A.5.1 General

Level limits are expressed in units of whole luminance macroblocks. If a particular picture sample height or width is not
an exact multiple of a whole macroblock, that dimension shall be considered as rounded up to the next whole
macroblock for the purposes of compliance with this subclause.

The definition of support for a given Level is that any picture size/frame rate combination shall be decoded where the:

a) Sample processing rate (in whole macroblocks/second) is <= the Level limit given, and,

b) Picture size (Height * Width, in whole macroblocks) is <= the Level limit given, and,

c) Both picture Height and picture Width (in whole macroblocks) are <= sqrt(LevelLimitMaxPictureSize * 8), and,

d) Maximum bit rate of the video bitstream is <= the Level limit given.

Regardless of the ratio of sample processing rate to picture size, decoders are not required to decode frame rates greater
than 172 Hz. Note that in most cases the sample processing rate limit will impose a much lower maximum frame rate.

The definitions of each Level include the requirements of all lower numbered Levels. Decoders supporting a given
Level shall also be capable of decoding bitstreams using all lower numbered Levels.

Note that display of decoded video is outside the scope of this Recommendation | International Standard; some decoder
implementations may not include displays at all, and display limitations do not necessarily cause interoperability failures.

“Picture size” means the total number of macroblocks in the complete picture (both even and odd fields if interlaced).

A.5.2 Level limits

Table A-1 below gives the parameter limits for each Level.

Table A-1 – Level Limits

Level
Number

Maximum
Picture Size

(macroblocks)

Maximum Processing
Rate

(macroblocks/second)

Reference
Frames

Supported

Maximum
Video

Bitrate

Maximum
HRD/VBV
Buffer Size

1 99 1,485 3 TBD TBD
1.1 396 2,970 5 TBD TBD
1.2 396 5,940 5 TBD TBD
2 396 11,880 5 TBD TBD

2.1 792 19,800 5 TBD TBD
2.2 1,620 20,250 4 TBD TBD
3 1,620 40,500 4 TBD TBD

3.1 3,600 108,000 4 TBD TBD
3.2 5,120 216,000 3 TBD TBD
4 9,660 245,760 3 TBD TBD
5 19,200 491,520 3 TBD TBD

“Reference Frames Supported” means the number of frames of the maximum picture size supported by the Level. Note
that P pictures require one reference frame, and B pictures require two reference frames; any remaining reference frames
may be used as multiple reference frames.

Levels with non-integer Level numbers are called “intermediate Levels”. All Levels have the same status, but note that
some applications may choose to use only the integer-numbered Levels.

Non-normative subclause A.6 shows the effect of these limits on frame rates for several example picture formats.

A.5.3 Number of reference frames supported

For frames of the maximum picture size for each Level, decoders shall support the number of reference frames given in
the Level limits above.

For smaller frames, the number of reference frames supported shall be (units are whole macroblocks):

Number of reference frames = min(floor(Level Limit Value * (Maximum Picture Size / Actual Picture Size)), 15)

DRAFT ISO/IEC 14496-10 : 2002 (E)

130 DRAFT ITU-T Rec. H.264 (2002 E)

A.6 Effect of level limits on frame rate (non-normative)

This subclause does not form an integral part of this Recommendation | International Standard.

Level number: 1 1.1 1.2 2 2.1 2.2 3 3.1 3.2 4 5
Max picture size (macroblocks): 99 396 396 396 792 1,620 1,620 3,600 5,120 9,660 19,200
Max macroblocks/second: 1,485 2,970 5,940 11,880 19,800 20,250 40,500 108,000 216,000 245,760 491,520

Max picture size (samples): 25,344 101,376 101,376 101,376 202,752 414,720 414,720 921,600 1,310,720 2,472,960 4,915,200
Max samples/second (1000s): 380 760 1,521 3,041 5,069 5,184 10,368 27,648 55,296 62,915 125,829

Sample MB MB
Format Width Height Wide High
SQCIF 128 96 8 6 30.9 61.9 123.8 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0
QCIF 176 144 11 9 15.0 30.0 60.0 120.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0
QVGA 320 240 20 15 - 9.9 19.8 39.6 66.0 67.5 135.0 172.0 172.0 172.0 172.0
SIF 352 240 22 15 - 9.0 18.0 36.0 60.0 61.4 122.7 172.0 172.0 172.0 172.0
CIF 352 288 22 18 - 7.5 15.0 30.0 50.0 51.1 102.3 172.0 172.0 172.0 172.0
2SIF 352 480 22 30 - - - - 30.0 30.7 61.4 163.6 172.0 172.0 172.0
HHR 352 576 22 36 - - - - 25.0 25.6 51.1 136.4 172.0 172.0 172.0
VGA 640 480 40 30 - - - - - 16.9 33.8 90.0 172.0 172.0 172.0
4SIF 704 480 44 30 - - - - - 15.3 30.7 81.8 163.6 172.0 172.0
NTSC SD 720 480 45 30 - - - - - 15.0 30.0 80.0 160.0 172.0 172.0
4CIF 704 576 44 36 - - - - - 12.8 25.6 68.2 136.4 155.2 172.0
PAL SD 720 576 45 36 - - - - - 12.5 25.0 66.7 133.3 151.7 172.0
SVGA 800 600 50 38 - - - - - - - 56.8 113.7 129.3 172.0
XGA 1024 768 64 48 - - - - - - - 35.2 70.3 80.0 160.0
720p 1280 720 80 45 - - - - - - - 30.0 60.0 68.3 136.5
4VGA 1280 960 80 60 - - - - - - - - 45.0 51.2 102.4
SXGA 1280 1024 80 64 - - - - - - - - 42.2 48.0 96.0
16SIF 1408 960 88 60 - - - - - - - - - 46.5 93.1
16CIF 1408 1152 88 72 - - - - - - - - - 38.8 77.6
4SVGA 1600 1200 100 75 - - - - - - - - - 32.8 65.5
1080i 1920 1080 120 68 - - - - - - - - - 30.1 60.2
2Kx1K 2048 1024 128 64 - - - - - - - - - 30.0 60.0
4XGA 2048 1536 128 96 - - - - - - - - - - 40.0
16VGA 2560 1920 160 120 - - - - - - - - - - 25.6

Note 1 This is a variable-picture-size specification. The specific picture sizes in this table are illustrative examples only.

Note 2 XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, HHR aka 2CIF aka 1/2 D1, aka
1/2 CCIR 601.

Note 3 Frame rates given are correct for progressive scan modes, and for interlaced if "MB High" column value is even.

Annex B
Byte stream format

(This annex forms an integral part of this Recommendation | International Standard)

B.1 Introduction

This annex defines a byte stream format specified for use by systems that transmit the video content primarily as an
ordered stream of bytes or bits, in which the locations of synchronization boundaries need to be identifiable from patterns
in the data, such as ITU-T Rec. H.222.0 | ISO/IEC 13818-1 systems or ITU-T Rec. H.320 systems. For bit-oriented
transmission, the network bit order for the byte stream format is defined to start with the MSB of the first byte and
proceeds to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte_stream_unit() structures. Each byte_stream_unit() contains one
start code prefix (SCP) and one nal_unit(). Optionally, at the discretion of the encoder if not prohibited by a system-
level specification, the byte_stream_unit() may also contain additional "stuffing" zero-valued bytes.

There are two types of start code prefixes:

– A short SCP, consisting of one byte having the value zero (0x00) followed by one byte having the value
one (0x01), and

– A long SCP, consisting of two bytes having the value zero (0x00) followed by one byte having the value
one (0x01).

The long SCP provides a mechanism for decoder byte-alignment recovery in the event of loss of decoder
synchronization. Use of the long SCP is required for nal_units().

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 131

B.2 Byte stream NAL unit syntax

byte_stream_unit() { Category Mnemonic

while (next_bits() != 0x0001 && next_bits() != 0x000001)

zero_byte f(8) = 0x00

if(next_bits() = = 0x000001)

zero_byte f(8) = 0x00

zero_byte f(8) = 0x00

one_byte f(8) = 0x01

nal_unit()

}

B.3 Byte stream NAL unit semantics

zero_byte is a single byte (8 bits) having the value zero (0x00). Optionally, at the discretion of the encoder if not
prohibited by a system-level specification, the beginning of a byte_stream_unit() may contain more zero_byte syntax
elements than required in this subclause.

The minimum required number of zero_byte syntax elements depends on the value of the PNUT of the nal_unit_type as
defined in Table 8-1, in order to ensure the use of the long SCP for certain nal_unit_type values. At least two zero_byte
syntax elements shall be present in each byte_stream_unit() when (PNUT – picture_header_flag) is less than 3. This
ensures use of the long SCP in the byte_stream_unit() for these nal_unit() strucutres. The use of the long SCP for
nal_unit() structures with other values of nal_unit_type is optional.

one_byte is a single byte (8 bits) having the value one (0x01). A sequence of two zero_byte syntax elements followed
by a one_byte is a long SCP, and one zero_byte followed by a one_byte is a short SCP.

B.4 Example encoder procedure (non-normative)

The encoder can produce an EBSP from an RBSP by the following procedure:

The RBSP data is searched for byte-aligned bits of the following binary patterns:

'00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10 or 11),

and a byte having the value three (0x03) is inserted to replace these bit patterns with the patterns

'00000000 00000011 000000xx'

This process can allow any RBSP data to be sent in an EBSP while ensuring that no long SCP and no byte-aligned short
SCP is emulated in the EBSP.

Note that the effect of concatenating two or more RBSP’s and then encapsulating them into an EBSP is the same as first
encapsulating each individual RBSP and then concatenating the result (because the last byte of an RBSP is never zero).
This allows the association of individual EBSP’s to nal_units() to be altered without affecting the content of the EBSP.

B.5 Decoder byte-alignment recovery (non-normative)

If the decoder does not have byte alignment with the encoder’s byte stream, the decoder can examine the incoming bit
stream for the binary pattern '00000000 00000000 00000001' (23 consecutive zero-valued bits followed by a non-zero
bit). The bit immediately following this pattern is the first bit of a whole byte. Upon detecting this pattern, the decoder
will be byte aligned with the encoder.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for the byte sequences 0x00
0x01 and 0x00 0x03.

If the byte sequence 0x00 0x01 is detected, this represents a SCP. If the previous byte was 0x00, the SCP is a long SCP.
Otherwise, it is a short SCP.

If the byte sequence 0x00 0x03 is detected, the decoder discards the byte 0x03 as shown in the rbsp_extraction() syntax
diagram.

Note: The use of the byte sequence 0x00 0x02 is reserved for further study.

DRAFT ISO/IEC 14496-10 : 2002 (E)

132 DRAFT ITU-T Rec. H.264 (2002 E)

Note: Many systems are inherently byte aligned, and thus have no need for the bit-oriented byte alignment detection
procedure described in this sub-clause.

Note: The byte alignment detection procedure described in this sub-clause is equivalent to searching a byte sequence for
0x00 0x00, starting at any alignment position. Detecting this pattern indicates that the next non-zero byte contains the
end of a SCP, and the first non-zero bit in that next non-zero byte is the last bit of an aligned byte.

Annex C
Supplemental enhancement information

(This annex forms an integral part of this Recommendation | International Standard)

C.1 Introduction

This annex defines supplemental enhancement information that provides a data delivery mechanism that is synchronous
with the video data content. Each sei_message() defines PayloadType and PayloadSize parameters

C.2 SEI payload syntax

sei_payload(PayloadType, PayloadSize) { Category Descriptor

if(PayloadType = = 1)

temporal_reference(PayloadSize) 7

else if(PayloadType = = 2)

clock_timestamp(PayloadSize) 7

else if(PayloadType = = 3)

panscan_rect(PayloadSize) 7

else

reserved reserved variable

if(!byte_aligned()) {

bit_equal_to_one f(1)

while(!byte_aligned())

bit_equal_to_zero f(1)

}

}

C.2.1 Temporal reference syntax

temporal_reference(PayloadType, PayloadSize) { Category Descriptor

progressive_scan 7 u(1)

bottom_field_indicator /* zero if progressive_scan is 1 */ 7 u(1)

six_reserved_one_bits 7 f(6)

temporal_reference_value 7 u(v)

}

C.2.2 Clock timestamp syntax

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 133

clock_timestamp(PayloadType, PayloadSize) { Category Descriptor

progressive_scan 7 u(1)

bottom_field_indicator /* zero if progressive_scan is 1 */ 7 u(1)

six_reserved_one_bits 7 f(6)

counting_type 7 u(5)

full_timestamp_flag 7 u(1)

discontinuity_flag 7 u(1)

count_dropped 7 u(1)

nframes 7 u(8)

if(full_timestamp_flag) {

seconds_value /* 0,…,59 */ 7 u(6)

minutes_value /* 0,…,59 */ 7 u(6)

hours_value /* 0,…,23 */ 7 u(5)

bit_count = 41

} else {

seconds_flag 7 u(1)

bit_count = 25

if(seconds_flag) {

seconds_value /* range 0,…,59 */ 7 u(6)

minutes_flag 7 u(1)

bit_count += 7

if(minutes_flag) {

minutes_value /* 0,…,59 */ 7 u(6)

hours_flag 7 u(1)

bit_count += 7

if(hours_flag) {

hours_value /* 0,…,23 */ 7 u(5)

bit_count += 5

}

}

}

while(!byte_aligned()) {

bit_equal_to_one 7 f(1)

bit_count++

}

if(PayloadSize–(bit_count>>3) > 0)

time_offset 7 i(v)

}

C.2.3 Pan-scan rectangle syntax

DRAFT ISO/IEC 14496-10 : 2002 (E)

134 DRAFT ITU-T Rec. H.264 (2002 E)

pan_scan_rect (PayloadType, PayloadSize) { Category Descriptor

pan_scan_rect_identifier 7 e(v)

pan_scan_rect_left_offset 7 e(v)

pan_scan_rect_right_offset 7 e(v)

pan_scan_rect_top_offset 7 e(v)

pan_scan_rect_bottom_offset 7 e(v)

}

C.3 SEI payload semantics

reserved: This syntax element is reserved for future use by ITU-T | ISO/IEC. It shall not be present in a bitstream
conforming to this Recommendation | International Standard. If this syntax element is encountered by a decoder, it may
be skipped (removed and discarded).

C.3.1 Temporal reference semantics

progressive_scan: This parameter indicates whether the current picture is in progressive or interlaced scan format.

bottom_field_indicator: When progressive_scan is 0, this parameter indicates whether the temporal reference is for the
top (0) or bottom (1) field. Shall be 0 if progressive_scan is 1.

six_reserved_one_bits: Reserved for future use by ITU-T | ISO/IEC. Shall be equal to the binary string '111111'. A
decoder conforming to this Recommendation | International Standard shall ignore the value of these bits.

temporal_reference_value: This parameter indicates a number of clock ticks as a multiplier of num_units_in_tick for
the current time_scale. It is used for conveying local relative timing information.

The number of bytes used by temporal_reference_value shall remain constant for the video stream and shall be equal to
PayloadSize – 1 bytes. For a temporal_reference_value encoded using n bytes, the temporal_reference contains the
remainder of a clock tick counter modulo 256n.

C.3.2 Clock timestamp semantics

The contents of the clock timestamp SEI message specify a time_offset which indicates the display or capture time
computed as

equivalent_timestamp = ((HH * 60 + MM) * 60 + SS) * time_scale + NF * num_units_in_tick + TO, (C-1)

in units of ticks of a clock with clock frequency equal to time_scale Hz.

progressive_scan: This parameter indicates whether the current picture is in progressive or interlaced scan format.

bottom_field_indicator: When progressive_scan is 0, this parameter indicates whether the temporal reference is for the
top (0) or bottom (1) field. Shall be 0 if progressive_scan is 1.

six_reserved_one_bits: Reserved for future use by ITU-T | ISO/IEC. Shall be equal to the binary string '111111'. A
decoder conforming to this Recommendation | International Standard shall ignore the value of these bits.

counting_type: A 5-bit parameter that specifies the method of dropping values of the nframes parameter as defined in
Table A-1.

Table A-1 – Definition of counting_type values

Value (binary) Interpretation

00000 no dropping of nframes count values and no use of
time_offset

00001 no dropping of nframes count values

00010 dropping of individual zero values of nframes count

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) 135

00011 dropping of individual max_pps values of npictures
count

00100 dropping of the two lowest (value 0 and 1) nframes
counts when seconds_value is zero and minutes_value is
not an integer multiple of ten

00101 dropping of unspecified individual nframes count values

00110 dropping of unspecified numbers of unspecified nframes
count values

00111 - 11111 reserved

full_timestamp_flag indicates whether the nframes parameter is followed by seconds_value or seconds_flag.

discontinuity_flag indicates whether the time difference between the current value of equivalent_timestamp and the
value of equivalent_timestamp computed from the last previously-transmitted clock timestamp can be interpreted as a
true time difference. A value of 0 indicates that the difference represents a true time difference.

count_dropped indicates the skipping of a count using the counting method specified by counting_type.

nframes indicates the value of NF used to compute the equivalent_timestamp. Shall be less than

max_fps = ceil(time_scale ÷ num_units_in_tick) , (C-2)

where ceil(x) indicates the smallest integer greater than or equal to x.

If counting_type is '00010' and count_dropped is 1, nframes shall be 1 and the value of nframes for the last previous
picture in display order shall not be equal to 0 unless discontinuity_flag is equal to 1.

If counting_type is '00011' and count_dropped is 1, nframes shall be 0 and the value of nframes for the last previous
picture in display order shall not be equal to max_fps – 1 unless discontinuity_flag is equal to 1.

If counting_type is '00100' and count_dropped is 1, nframes shall be 2 and the indicated value of SS shall be zero and the
indicated value of MM shall not be an integer multiple of ten and nframes for the last previous picture in display order
shall not be equal to 0 or 1 unless discontinuity_flag is equal to 1.

If counting_type is '00101' or '110' and count_dropped is 1, nframes shall not be equal to one plus the value of nframes
for the last previous picture in display order modulo max_fps unless discontinuity_flag is equal to 1.

seconds_flag indicates whether seconds_value is present when full_timestamp_flag is 0.

seconds_value indicates the value of SS used to compute the equivalent_timestamp. Shall not exceed 59. If not present,
the last previously-transmitted seconds_value shall be used as SS to compute the equivalent_timestamp.

minutes_flag indicates whether seconds_value is present when full_timestamp_flag is 0 and seconds_flag is 1.

minutes_value indicates the value of MM used to compute the equivalent_timestamp. Shall not exceed 59. If not
present, the last previously-transmitted minutes_value shall be used as MM to compute the equivalent_timestamp.

hours_flag indicates whether seconds_value is present when full_timestamp_flag is 0 and seconds_flag is 1 and
minutes_flag is 1.

hours_value indicates the value of HH used to compute the equivalent_timestamp. Shall not exceed 23. If not present,
the last previously-transmitted hours_value shall be used as HH to compute the equivalent_timestamp.

bit_equal_to_one is a single bit which shall be equal to 1.

time_offset indicates the value of TO used to compute the equivalent_timestamp. The number of bytes used to represent
time_offset shall be equal to PayloadSize – (bit_count >> 3), where bit_count is computed as specified in subclause
C.2.2. If time_offset is not present, the value 0 shall be used as TO to compute the equivalent_timestamp.

DRAFT ISO/IEC 14496-10 : 2002 (E)

136 DRAFT ITU-T Rec. H.264 (2002 E)

C.3.3 Pan-scan rectangle semantics

The pan-scan rectangle SEI message parameters define the coordinates of a rectangle relative to the sequence-level
parameter set cropping rectangle. Each coordinate of this rectangle is defined in units of 1/16th sample spacing relative
to the luma sampling grid.

pan_scan_rect_identifier contains an identifying number which may be used as specified externally to identify the
purpose of the pan-scan rectangle (for example, to identify the rectangle as the area to be shown on a particular display
device or as the area that contains a particular actor in the scene).

pan_scan_rect_left_offset, pan_scan_rect_right_offset, pan_scan_rect_top_offset, and
pan_scan_rect_bottom_offset specify, as signed integer quantities in units of 1/16th sample spacing relative to the luma
sampling grid, the location of the pan-scan rectangle.

The pan-scan rectangle is defined, in units of 1/16th sample spacing relative to the luma sampling grid, as the area of the
rectangle with horizontal coordinates from 16 * cropping_rect_left + pan_scan_rect_left_offset to 16 * [16 *
(picture_width_in_MBs_minus1 + 1) – cropping_rect_right] + pan_scan_rect_right_offset – 1 and with vertical
coordinates from 16 * cropping_rect_top + pan_scan_rect_top_offset to 16 * [16 * (picture_height_in_MBs_minus1 + 1)
– cropping_rect_bottom] + pan_scan_rect_bottom_offset – 1, inclusive. If this rectangular area includes samples outside
of the cropping rectangle, the region outside of the cropping rectangle may be filled with synthesized content (such as
black video content or neutral grey video content) for display.

