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1 Scope
This document is a description of a reference coding method to be used for the development of a new
video compression ITU-T Recommendation (H.26L) and ISO Standard (MPEG-4, Part 10). The basic
configuration of the algorithm is similar to H.263 and MPEG-4, Part 2.



File: JVT-B118r1.DOC Page: 9
Date Printed: 14.03.2002

2 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

AC coefficient: Any transform coefficient for which the frequency in one or both dimensions is non-
zero.

MH-field picture: A field structure MH-Picture.

MH-frame picture: A frame structure MH-Picture.

MH-picture: A predictive-coded picture: A picture that is coded using up to two motion
compensated prediction signals from past and/or future reference fields or frames.

backward
compatibility:

A newer coding standard is backward compatible with an older coding standard if
decoders designed to operate with the older coding standard are able to continue to
operate by decoding all or part of a bitstream produced according to the newer coding
standard.

backward motion
vector:

A motion vector that is used for motion compensation from a reference frame or
reference field at a later time in display order.

backward
prediction:

Prediction from the future reference frame (field).

bitstream (stream): An ordered series of bits that forms the coded representation of the data.

bitrate: The rate at which the coded bitstream is delivered from the storage medium to the
input of a decoder.

block: An N-row by M-column matrix of samples, or NxM transform coefficients (source,
quantised or dequantised).

bottom field: One of two fields that comprise a frame. Each line of a bottom field is spatially
located immediately below the corresponding line of the top field.

byte aligned: A bit in a coded bitstream is byte-aligned if its position is a multiple of 8-bits from
the first bit in the stream.

byte: Sequence of 8-bits.

channel: A digital medium that stores or transports a bitstream constructed according to this
specification.

chrominance
format:

Defines the number of chrominance blocks in a macroblock.

chrominance
component:

A matrix, block or single sample representing one of the two colour difference signals
related to the primary colours in the manner defined in the bitstream. The symbols
used for the chrominance signals are Cr and Cb.

coded MH-frame: A MH-frame picture or a pair of MH-field pictures.

coded frame: A coded frame is a coded I-frame, a coded P-frame or a coded MH-frame.

coded I-frame: An I-frame picture or a pair of field pictures, where the first field picture is an I-
picture and the second field picture is an I-picture or a P-picture.

coded P-frame: A P-frame picture or a pair of P-field pictures.

coded picture: A coded picture is made of a picture header, the optional extensions immediately
following it, and the following picture data. A coded picture may be a coded frame or
a coded field.

coded video
bitstream:

A coded representation of a series of one or more pictures as defined in this
specification.

coded order: The order in which the pictures are transmitted and decoded. This order is not
necessarily the same as the display order.

coded
representation:

A data element as represented in its encoded form.
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coding parameters: The set of user-definable parameters that characterise a coded video bitstream.
Bitstreams are characterised by coding parameters. Decoders are characterised by the
bitstreams that they are capable of decoding.

component: A matrix, block or single sample from one of the three matrices (luminance and two
chrominance) that make up a picture.

compression: Reduction in the number of bits used to represent an item of data.

constant bitrate
coded video:

A coded video bitstream with a constant average bitrate.

constant bitrate: Operation where the bitrate is constant from start to finish of the coded bitstream.

data element: An item of data as represented before encoding and after decoding.

data partitioning: A method for dividing a bitstream into two separate bitstreams for error resilience
purposes. The two bitstreams have to be recombined before decoding.

DC coefficient: The transform coefficient for which the frequency is zero in both dimensions.

transform
coefficient:

The amplitude of a specific basis function.

decoder input
buffer:

The first-in first-out (FIFO) buffer specified in the video buffering verifier. 2

decoder: An embodiment of a decoding process.

decoding (process): The process defined in this specification that reads an input coded bitstream and
produces decoded pictures or audio samples.

dequantisation: The process of rescaling the quantised transform coefficients after their representation
in the bitstream has been decoded and before they are presented to the inverse
transform.

digital storage
media (DSM):

A digital storage or transmission device or system.

transform: Either the transform or the inverse discrete cosine transform. The transform is an
invertible, discrete orthogonal transformation.

display aspect
ratio:

The ratio height/width (in SI units) of the intended display.

display order: The order in which the decoded pictures are displayed. Normally this is the same
order in which they were presented at the input of the encoder.

display process: The (non-normative) process by which reconstructed frames are displayed.

editing: The process by which one or more coded bitstreams are manipulated to produce a
new coded bitstream. Conforming edited bitstreams must meet the requirements
defined in this specification.

encoder: An embodiment of an encoding process.

encoding (process): A process, not specified in this specification, that reads a stream of input pictures or
audio samples and produces a valid coded bitstream as defined in this specification.

fast forward
playback:

The process of displaying a sequence, or parts of a sequence, of pictures in display-
order faster than real-time.

fast reverse
playback:

The process of displaying the picture sequence in the reverse of display order faster
than real-time.

field: For an interlaced video signal, a “field” is the assembly of alternate lines of a frame.
Therefore an interlaced frame is composed of two fields, a top field and a bottom
field.

field-based
prediction:

A prediction mode using only one field of the reference frame. The predicted block
size is 16x16 luminance samples. Field-based prediction is not used in progressive
frames.

field period: The reciprocal of twice the frame rate.



File: JVT-B118r1.DOC Page: 11
Date Printed: 14.03.2002

field (structure)
picture:

A field structure picture is a coded picture with picture_structure is equal to "Top
field" or "Bottom field".

flag: A variable which can take one of only the two values defined in this specification.

forbidden: The term "forbidden" when used in the clauses defining the coded bitstream indicates
that the value shall never be used. This is usually to avoid emulation of start codes.

forced updating: The process by which macroblocks are intra-coded from time-to-time to ensure that
mismatch errors between the inverse transform processes in encoders and decoders
cannot build up excessively.

forward
compatibility:

A newer coding standard is forward compatible with an older coding standard if
decoders designed to operate with the newer coding standard are able to decode
bitstreams of the older coding standard.

forward motion
vector:

A motion vector that is used for motion compensation from a reference frame or
reference field at an earlier time in display order.

forward prediction: Prediction from the past reference frame (field).

frame: A frame contains lines of spatial information of a video signal. For progressive video,
these lines contain samples starting from one time instant and continuing through
successive lines to the bottom of the frame. For interlaced video a frame consists of
two fields, a top field and a bottom field. One of these fields will commence one field
period later than the other.

frame-based
prediction:

A prediction mode using both fields of the reference frame.

frame period: The reciprocal of the frame rate.

frame (structure)
picture:

A frame structure picture is a coded picture with picture_structure is equal to
"Frame".

frame rate: The rate at which frames are be output from the decoding process.

future reference
frame (field):

A future reference frame(field) is a reference frame(field) that occurs at a later time
than the current picture in display order.

frame reordering: The process of reordering the reconstructed frames when the coded order is different
from the display order. Frame reordering occurs when MH-frames are present in a
bitstream. There is no frame reordering when decoding low delay bitstreams.

group of pictures: tbd (to be defined :o)

header: A block of data in the coded bitstream containing the coded representation of a
number of data elements pertaining to the coded data that follow the header in the
bitstream.

interlace: The property of conventional television frames where alternating lines of the frame
represent different instances in time. In an interlaced frame, one of the field is meant
to be displayed first. This field is called the first field. The first field can be the top
field or the bottom field of the frame.

I-field picture: A field structure I-Picture.

I-frame picture: A frame structure I-Picture.

I-picture, intra-
coded picture:

A picture coded using information only from itself.

intra coding: Coding of a macroblock or picture that uses information only from that macroblock
or picture.

level : A defined set of constraints on the values which may be taken by the parameters of
this specification within a particular profile. A profile may contain one or more
levels. In a different context, level is the absolute value of a non-zero coefficient (see
“run”).

luminance
component:

A matrix, block or single sample representing a monochrome representation of the
signal and related to the primary colours in the manner defined in the bitstream. The
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symbol used for luminance is Y.

Mbit: 1 000 000 bits

macroblock: The four 8 by 8 blocks of luminance data and the two (for 4:2:0 chrominance format),
four (for 4:2:2 chrominance format) or eight (for 4:4:4 chrominance format)
corresponding 8 by 8 blocks of chrominance data coming from a 16 by 16 section of
the luminance component of the picture. Macroblock is sometimes used to refer to the
sample data and sometimes to the coded representation of the sample values and
other data elements defined in the macroblock header of the syntax defined in this
part of this specification. The usage is clear from the context.

motion
compensation:

The use of motion vectors to improve the efficiency of the prediction of sample
values. The prediction uses motion vectors to provide offsets into the past and/or
future reference frames or reference fields containing previously decoded sample
values that are used to form the prediction error.

motion estimation: The process of estimating motion vectors during the encoding process.

motion vector: A two-dimensional vector used for motion compensation that provides an offset from
the coordinate position in the current picture or field to the coordinates in a reference
frame or reference field.

non-intra coding: Coding of a macroblock or picture that uses information both from itself and from
macroblocks and pictures occurring at other times.

opposite parity: The opposit parity of top is bottom, and vice versa.

P-field picture: A field structure P-Picture.

P-frame picture: A frame structure P-Picture.

P-picture,
predictive-coded
picture:

A picture that is coded using motion compensated prediction from past reference
fields or frame.

parameter: A variable within the syntax of this specification which may take one of a range of
values. A variable which can take one of only two values is called a flag.

parity (of field): The parity of a field can be top or bottom.

past reference
frame (field):

A past reference frame(field) is a reference frame(field) that occurs at an earlier time
than the current picture in display order.

picture: Source, coded or reconstructed image data. A source or reconstructed picture consists
of three rectangular matrices of 8-bit numbers representing the luminance and two
chrominance signals. A “coded picture” is defined in 3.21. For progressive video, a
picture is identical to a frame, while for interlaced video, a picture can refer to a
frame, or the top field or the bottom field of the frame depending on the context.

picture data: In the VBV operations, picture data is defined as all the bits of the coded picture, all
the header(s) and user data immediately preceding it if any (including any stuffing
between them) and all the stuffing following it, up to (but not including) the next start
code, except in the case where the next start code is an end of sequence code, in
which case it is included in the picture data.

prediction: The use of a predictor to provide an estimate of the sample value or data element
currently being decoded.

prediction error: The difference between the actual value of a sample or data element and its predictor.

predictor: A linear combination of previously decoded sample values or data elements.

profile: A defined subset of the syntax of this specification.

progressive: The property of film frames where all the samples of the frame represent the same
instances in time.

quantised
transform
coefficients:

transform coefficients before dequantisation. A variable length coded representation
of quantised transform coefficients is transmitted as part of the coded video bitstream.
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quantiser scale: A scale factor coded in the bitstream and used by the decoding process to scale the
dequantisation.

random access: The process of beginning to read and decode the coded bitstream at an arbitrary point.

reconstructed
frame:

A reconstructed frame consists of three rectangular matrices of 8- bit numbers
representing the luminance and two chrominance signals. A reconstructed frame is
obtained by decoding a coded frame.

reconstructed
picture:

A reconstructed picture is obtained by decoding a coded picture. A reconstructed
picture is either a reconstructed frame (when decoding a frame picture), or one field
of a reconstructed frame (when decoding a field picture). If the coded picture is a
field picture, then the reconstructed picture is the top field or the bottom field of the
reconstructed frame.

reference field: A reference field is one field of a reconstructed frame. Reference fields are used for
forward and backward prediction when P-pictures and MH-pictures are decoded.
Note that when field P-pictures are decoded, prediction of the second field P- picture
of a coded frame uses the first reconstructed field of the same coded frame as a
reference field.

reference frame: A reference frame is a reconstructed frame that was coded in the form of a coded I-
frame or a coded P-frame. Reference frames are used for forward and backward
prediction when P-pictures and MH-pictures are decoded.

reordering delay: A delay in the decoding process that is caused by frame reordering.

reserved: The term "reserved" when used in the clauses defining the coded bitstream indicates
that the value may be used in the future for JVT defined extensions.

sample aspect
ratio:

(abbreviated to SAR). This specifies the distance between samples. It is defined (for
the purposes of this specification) as the vertical displacement of the lines of
luminance samples in a frame divided by the horizontal displacement of the
luminance samples. Thus its units are (metres per line) ÷ (metres per sample)

side information: Information in the bitstream necessary for controlling the decoder. 16x8 prediction —
A prediction mode similar to field-based prediction but where the predicted block
size is 16x8 luminance samples.

run: The number of zero coefficients preceding a non-zero coefficient, in the scan order.
The absolute value of the non-zero coefficient is called “level”.

saturation: Limiting a value that exceeds a defined range by setting its value to the maximum or
minimum of the range as appropriate.

skipped
macroblock:

A macroblock for which no data is encoded.

slice: A series of macroblocks.

Source (input): Term used to describe the video material or some of its attributes attributes before
encoding.

spatial prediction: prediction derived from the same decoded frame.

start codes [system
and video]:

32-bit codes embedded in that coded bitstream that are unique. They are used for
several purposes including identifying some of the structures in the coding syntax.

stuffing (bits,
bytes):

Code-words that may be inserted into the coded bitstream that are discarded in the
decoding process. Their purpose is to increase the bitrate of the stream which would
otherwise be lower than the desired bitrate.

temporal
prediction:

prediction derived from reference frames or fields other than those defined as spatial
prediction

top field: One of two fields that comprise a frame. Each line of a top field is spatially located
immediately above the corresponding line of the bottom field.

variable bitrate: Operation where the bitrate varies with time during the decoding of a coded
bitstream.
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variable length
coding (VLC):

A reversible procedure for coding that assigns shorter code-words to frequent events
and longer code-words to less frequent events.

video buffering
verifier (VBV):

A hypothetical decoder that is conceptually connected to the output of the encoder. Its
purpose is to provide a constraint on the variability of the data rate that an encoder or
editing process may produce.

video complexity
verifier (VCV):

Ok… just kidding.

video sequence: The highest syntactic structure of coded video bitstreams. It contains a series of one
or more coded frames.

XYZ profile
decoder:

decoder able to decode bitstreams conforming to the specifications of the XYZ
profile (with XYZ being any of the defined Profile names).

zig-zag scanning
order:

A specific sequential ordering of the transform coefficients from (approximately) the
lowest spatial frequency to the highest.
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3 Source Coder

3.1 Picture formats
The image width and height of the source data are restricted to be multiples of 16. At the moment only
colour sequences using 4:2:0 chrominance sub-sampling are supported.

This specification describes coding of video that contains either progressive or interlaced frames, which
may be mixed together in the same sequence.

A frame of video contains two fields, the top field and the bottom field, which are interleaved. The first
(i.e., top), third, fifth, etc. lines of a frame are the top field lines. The second, fourth, sixth, etc. lines of a
frame are the bottom field lines. A top field picture consists of only the top field lines of a frame. A
bottom field picture consists of only the bottom field lines of a frame.

The two fields of an interlaced frame are separated in time by a field period (which is half the time of a
frame period). They may be coded separately as two field pictures or together as a frame picture. A
progressive frame should always be coded as a single frame picture. However, a progressive frame is still
considered to consist of two fields (at the same instant in time) so that other field pictures may reference
the sub-fields of the frame.

The vertical and temporal sampling positions of samples in interlaced frames are shown in Figure 1. The
vertical sampling positions of the chrominance samples in a top field of an interlaced frame are specified
as shifted up by 1/4 luminance sample height relative to the field-sampling grid in order for these samples
to align vertically to the usual position relative to the full-frame sampling grid. The vertical sampling
positions of the chrominance samples in a bottom field of an interlaced frame are specified as shifted
down by 1/4 luminance sample height relative to the field-sampling grid in order for these samples to
align vertically to the usual position relative to the full-frame sampling grid. The horizontal sampling
positions of the chrominance samples are specified as unaffected by the application of interlaced field
coding.

Time

Top
Field

Bottom
Field

Top
Field

= Luminance Sample

= Chrominance Sample

FIGURE 1

Vertical and temporal sampling positions of samples in interlaced frames
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3.2 Subdivision of a picture into macroblocks
Pictures (both frame and field) are divided into macroblocks of 16x16 pixels. For instance, a QCIF picture
is divided into 99 macroblocks as indicated in FIGURE 1. A number of consecutive macroblocks in
coding order (see FIGURE 1) can be organized in slices. Slices represent independent coding units in a
way that they can be decoded without referencing other slices of the same frame.

QCIF Image

9

11

FIGURE 1

Subdivision of a QCIF picture into 16x16 macroblocks

3.3 Order of the bitstream within a macroblock
FIGURE 2 and FIGURE 3 indicate how a macroblock or 8x8 sub-block is divided and the order of the
different syntax elements resulting from coding a macroblock.

0 0 1
0 1

2 3

16x16 16x8 8x16 8x8

8x8 8x4 4x8

0 0 1

1

0

0 1

2 3

4x4

1

0

MB-Modes

8x8-Modes

FIGURE 2

Numbering of the vectors for the different blocks depending on the inter mode. For each block the
horizontal component comes first followed by the vertical component



File: JVT-B118r1.DOC Page: 17
Date Printed: 14.03.2002

CBPY 8x8 block order

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Luma residual coding 4x4 block order

18 19

20 21

22 23

24 25

16 17

VU
2x2 DC

AC

Chroma residual coding 4x4 block order

0 1

32

FIGURE 3

Ordering of blocks for CBPY and residual coding of 4x4 blocks



File: JVT-B118r1.DOC Page: 18
Date Printed: 14.03.2002

4 Syntax and Semantics

4.1 Organization of syntax elements (NAL concept)
The Video Coding Layer (VCL) is defined to efficiently represent the content of the video data, and the
Network Adaptation Layer (NAL) is defined to format that data and provide header information in a
manner appropriate for conveyance by the higher level system. The data is organized into data packets,
each of which contains an integer number of bytes. These data packets are then transmitted in a manner
defined by the NAL.

Any sequence of bits to be carried by an NAL can be formatted into a sequence of bytes in a manner
defined as a Raw Byte Sequence Payload (RBSP), and any RBSP can be encapsulated in a manner that
prevents emulation of byte stream start code prefixes in a manner defined defined as an encapsulated byte
sequence payload (EBSP). These two formats are described below in this section.

4.1.1 Raw Byte Sequence Payload (RBSP)
A raw byte sequence payload (RBSP) is defined as an ordered sequence of bytes that contains a string of
data bits (SODB). A SODB is defined as an ordered sequence of bits, in which the left-most bit is
considered to be the first and most significant bit (MSB) and the right-most bit is considered to be the last
and least significant bit (LSB). The RBSP contains the SODB in the following form:

1. If the SODB is null, the RBSP is also null.
2. Otherwise, the RBSP shall contain the SODB in the following form:

a. The first byte of the RBSP shall contain the (most significant, left-most) eight bits of the
SODB; the next byte of the RBSP shall contain the next eight bits of the SODB, etc.;
until fewer than eight bits of the SODB remain.

b. The final byte of the RBSP shall have the following form:
i. The first (most significant, left-most) bits of the final RBSP byte shall contain the

remaining bits of the SODB, if any,
ii. The next bit of the final RBSP byte shall consist of a single packet stop bit (PSB)

having the value one ('1'), and
iii. Any remaining bits of the final RBSP byte, if any, shall consist of byte-alignment

stuffing bits (BASB’s) having the value zero ('0').
Note that the last byte of a RBSP can never have the zero (0x00).

If the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by
concatenating the bits of the bytes of the RBSP and discarding the last (least significant, right-most) bit
having the value one ('1') and any following (less significant, farther to the right) bits that follow it having
the value zero ('0').

The means for determining the boundaries of the RBSP depend on the NAL.

4.1.2 Encapsulated Byte Sequence Payload (EBSP)
A encapsulated byte sequence payload (EBSP) is defined as an ordered sequence of bytes that contains
the raw byte sequence payload (RBSP) in the following form:

1. If the RBSP contains fewer than three bytes, the EBSP shall be the same as the RBSP.
2. Otherwise, the EBSP shall contain the RBSP in the following form:

a. The first byte of the EBSP shall contain the first byte of the RBSP,
b. The second byte of the EBSP shall contain the second byte of the RBSP,
c. Corresponding to each subsequent byte of the RBSP, the EBSP shall contain one or two

subsequent bytes as follows:
i. If the last two previous bytes of the EBSP are both equal to zero (0x00) and if the

next byte of the RBSP is either equal to one (0x01) or equal to 255 (0xFF), the
EBSP shall contain two bytes of data that correspond to the next byte of the
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RBSP. The first of these two bytes shall be an emulation prevention byte (EPB)
equal to 255 (0xFF), and the second of these two bytes shall be equal to the next
byte of the RBSP.

ii. Otherwise, the EBSP shall contain one next byte of data corresponding to the
next byte of the RBSP. This byte shall be equal to the next byte of the RBSP.

The format of the EBSP prevents the three-byte start code prefix (SCP) equal to 0x00, 0x00, 0x01 from
occurring within an EBSP. A decoder shall extract the RBSP from the EBSP by removing and discarding
each byte having the value 255 (0xFF) which follows two bytes having the value zero (0x00) within an
EBSP. The means for determining the boundaries of an EBSP is specified by the NAL.

Note that the effect of concatenating two or more RBSP’s and then encapsulating them into an EBSP is
the same as first encapsulating each individual RBPS and then concatenating the result (because the last
byte of an RBSP is never zero). This allows the association of individual EBSP’s to video data packets to
depend on the NAL without affecting the content of the EBSP. For example, high-level header data can
be placed in its own EBSP and this same EBSP content can be carried in several alternative ways,
depending on the particular NAL design in use, including the possibilities of:

• Sending it within a low-level video packet with associated lower-level data for independent
packet decoding, or

• Sending it in a separate higher-level header packet, or
• Sending it in an external “out-of-band” reliable channel.

4.1.3 Payload Type Indicator Byte (PTIB)
The type of data carried in a data packet is indicated by a payload type indicator byte (PTIB). The table
below contains the values defined for the PTIB.

PTIB Value Meaning
0x01 Sequence Data: Payload contains configuration

information for sequence
0x02 Sequence SEI: Payload contains SEI for sequence
0x03 Random Access Point Data: Payload TBD
0x04 Random Access Point SEI: Payload contains SEI

for random access point
0x05 Picture Data: Null payload
0x06 Picture SEI: Payload contains SEI for picture
0x07 Non-Partitioned Slice Data: Payload is one EBSP

containing slice header data and non-data-
partitioned video data for the slice

0x05 Slice Mode and MV Data: Payload is one EBSP
containing slice header data and all other non-
coefficient data for the slice

0x06 Slice Intra Coefficient Data: Payload is one EBSP
containing slice header data and all intra
coefficients for the slice

0x07 Slice Inter Coefficient Data: Payload is one EBSP
containing slice header data and all non-intra
coefficients for the slice

0x08 End of Sequence Data: Null payload
0x09 End of Sequence SEI: Payload contains SEI for end

of sequence

[Ed. Note: Further work needed to finalize format of PTIB and define the types of data to follow.]
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4.1.4 Slice Mode
Tbd.

4.1.5 Data Partitioning Mode
Data Partitioning re-arranges the symbols in a way that all symbols of one data type (e.g. DC coefficients,
macroblock headers, motion vectors) that belong to a single slice are collected in one VLC coded
bitstream that starts byte aligned. Decoders can process such a partitioned data streams by fetching
symbols from the correct partition. The partition to fetch from is determined through the decoder’s state
machine, according to the syntax diagram discussed in section 4.4.

Data Partitioning is implemented by concatenating all VLC coded symbols of one data type and one slice
(or full picture if slices are not used). At the moment, for a few partitions as indicated below contain data
of more than one data type that are so closely related that a finer diversion seems to be fruitless. The
following data types are currently defined:

0 TYPE_HEADER Picture or Slice Headers (Note 1)

1 TYPE_MBHEADER Macroblock header information (Note 2)

2 TYPE_MVD Motion Vector Data

3 TYPE_CBP Coded Block Patterm

4 TYPE_2x2DC 2x2 DC Coefficients

5 TYPE_COEFF_Y Luminance AC Coefficients

6 TYPE_COEFF_C Chrominance AC Coefficients

7 TYPE_EOS End-of-Stream Symbol

Note 1: TYPE_HEADER encompasses all Picture/Slice header information

Note 2: TYPE_MBHEADER encompasses The MB-Type, Intra-Prediction mode and Reference Frame
ID.

4.2 Syntax diagrams
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MB_Type

Intra_pred_mode

Ref_frame

MVD

CBP

Tcoeff_luma

Tcoeff_chroma_DC

Tcoeff_chroma_AC

Loop

OmitRUN

Dquant

8x8 sub-partition type

FIGURE 4

Syntax diagram for all the elements in the macroblock layer

4.3 Slice Layer

Editor: The slice layer needs a significant amount of work together with the NAL concept. The 

Picture sync and picture type codewords are present to ease the VCL development. 
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The information on the slice layer is coded depending on the NAL type. The coding, the order 

and even the presence of some fields may differ between the different NALs. 

 

4.3.1 Slicesync
A slice sync may be inserted as the first codeword if it is needed by the NAL. If UVLC codes are used
for the transmission of the slice level it should be a 31 bit long (L = 31) codeword with the INFO part set
to zero.

4.3.2 Temporal reference (TRType/TR)
Two codewords. Temporal reference type (TRType) indicates how TR is transmitted

TRType = 0 Absoltue TR

TRType <> 0 Error

The value of TR is formed by incrementing its value in the temporally-previous reference picture header
by one plus the number of skipped or non-reference pictures at the picture clock frequency since the
previously transmitted one.

4.3.3 Picture type (Ptype)
Code_number =0: Inter picture with prediction from the most recent decoded picture only.

Code_number =1: Inter picture with possibility of prediction from more than one previous decoded
picture. For this mode information reference picture for prediction must be signalled
for each macroblock.

Code_number =2: Intra picture.

Code_number =3: B picture with prediction from the most recent previous decoded and subsequent
decoded pictures only.

Code_number =4: B picture with possibility of prediction from more than one previous decoded picture
and subsequent decoded picture. When using this mode, information reference frame
for prediction must be signalled for each macroblock.

4.3.4 Picture structure (PSTRUCT)
Code_number =0: Progressive frame picture.

Code_number =1: Top field picture.

Code_number =2: Bottom field picture.

Code_number =3: Interlaced frame picture, whose top field precedes its bottom field in time.

Code_number =4: Interlaced frame picture, whose bottom field precedes its top field in time.

Note that when top field and bottom field pictures are coded for a frame, the one that is decoded first is
the one that occurs first in time.

4.3.5 Size information
A series of up to three codewords. The first codeword indicates a size change. If set to zero the size is
unchaged otherwise (if set to one) it is followed by two codewords containing the new width and height.

4.3.6 Reference Picture ID

4.3.7 First MB in slice
The number of the first macroblock contained in this slice.
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4.3.8 Slice QP (SQP)
Information about the quantizer QUANT to be used for luminance for the picture. (See under
Quantization concerning QUANT for chrominance). The 6-bit representation is the natural binary
representation of the value of QP+12, which range from 0 to 47 (QP ranges from -12 to +39). QP+12 is a
pointer to the actual quantization parameter QUANT to be used. (See below under quantization). The
range of quantization value is still about the same as for H.263, 1-31. An approximate relation between
the QUANT in H.263 and QP is: QUANTH.263(QP) ≈ QP0(QP) = 2QP/6 . QP0() will be used later for
scaling purposes when selecting prediction modes. Negative values of QP correspond to even smaller step
sizes, as described below under quantization.

4.3.9 SP Slice QP
For SP frames the SP slice QP is transmitted, using the same scale described above.

4.3.10 Number of macroblocks in slice
For CABAC entropy coding the number of macroblocks contained in the slice is transmitted.

4.3.11 Picture Number (PN)
PN shall be incremented by 1 for each coded and transmitted picture, in modulo MAX_PN operation,
relative to the PN of the previous stored picture. For non-stored pictures, PN shall be incremented from
the value in the most temporally recent stored picture, which precedes the non-stored picture in bitstream
order.

The PN serves as a unique ID for each picture stored in the multi-picture buffer within MAX_PN coded
and stored pictures. Therefore, a picture cannot be kept in the buffer after more than MAX_PN-1
subsequent coded and stored pictures unless it has been assigned a long-term picture index as specified
below. The encoder shall ensure that the bitstream shall not specify retaining any short-term picture after
more than MAX_PN-1 subsequent stored pictures. A decoder which encounters a picture number on a
current picture having a value equal to the picture number of some other short-term stored picture in the
multi-picture buffer should treat this condition as an error.

4.3.12 Reference Picture Selection Layer (RPSL)
RPSL can be signaled with the following values:

Code number 0: The RPS layer is not sent,

Code number 1: The RPS layer is sent.

If RPSL is not sent, the default buffer indexing order presented in the next subsection shall be applied.
RPS layer information sent at the slice level does not affect the decoding process of any other slice.

If RPSL is sent, the buffer indexing used to decode the current slice and to manage the contents of the
picture buffer is sent using the following code words.

4.3.13 Re-Mapping of Picture Numbers Indicator (RMPNI)
RMPNI is present in the RPS layer if the picture is a P or B picture. RMPNI indicates whether any
default picture indices are to be re-mapped for motion compensation of the current slice – and how the re-
mapping of the relative indices into the multi-picture buffer is to be specified if indicated. If RMPNI
indicates the presence of an ADPN or LPIR field, an additional RMPNI field immediately follows the
ADPN or LPIR field.

A picture reference parameter is a relative index into the ordered set of pictures. The RMPNI, ADPN,
and LPIR fields allow the order of that relative indexing into the multi-picture buffer to be temporarily
altered from the default index order for the decoding of a particular slice. The default index order is for
the short-term pictures (i.e., pictures which have not been given a long-term index) to precede the long-
term pictures in the reference indexing order. Within the set of short-term pictures, the default order is for
the pictures to be ordered starting with the most recent buffered reference picture and proceeding through
to the oldest reference picture (i.e., in decreasing order of picture number in the absence of wrapping of
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the ten-bit picture number field). Within the set of long-term pictures, the default order is for the pictures
to be ordered starting with the picture with the smallest long-term index and proceeding up to the picture
with long-term index equal to the most recent value of MLIP1−1.

For example, if the buffer contains three short-term pictures with short-term picture numbers 300, 302,
and 303 (which were transmitted in increasing picture-number order) and two long-term pictures with
long-term picture indices 0 and 3, the default index order is:

default relative index 0 refers to the short-term picture with picture number 303,

default relative index 1 refers to the short-term picture with picture number 302,

default relative index 2 refers to the short-term picture with picture number 300,

default relative index 3 refers to the long-term picture with long-term picture index 0, and

default relative index 4 refers to the long-term picture with long-term picture index 3.

The first ADPN or LPIR field that is received (if any) moves a specified picture out of the default order to
the relative index of zero. The second such field moves a specified picture to the relative index of one,
etc. The set of remaining pictures not moved to the front of the relative indexing order in this manner
shall retain their default order amongst themselves and shall follow the pictures that have been moved to
the front of the buffer in relative indexing order.

If there is not more than one reference picture used, no more than one ADPN or LPIR field shall be
present in the same RPS layer unless the current picture is a B picture. If the current picture is a B picture
and more than one reference picture is used, no more than two ADPN or LPIR fields shall be present in
the same RPS layer.

Any re-mapping of picture numbers specified for some slice shall not affect the decoding process for any
other slice.

In a P picture an RMPNI “end loop” indication is followed by RPBT.

Within one RPS layer, RMPNI shall not specify the placement of any individual reference picture into
more than one re-mapped position in relative index order.

TABLE 1

RMPNI operations for re-mapping of reference pictures

Code Number Re-mapping Specified

0 ADPN field is present and corresponds to a negative difference
to add to a picture number prediction value

1 ADPN field is present and corresponds to a positive difference
to add to a picture number prediction value

2 LPIR field is present and specifies the long-term index for a reference
picture

3 End loop for re-mapping of picture relative indexing default order

4.3.13.1 Absolute Difference of Picture Numbers (ADPN)
ADPN is present only if indicated by RMPNI. ADPN follows RMPNI when present. The code number of
the UVLC corresponds to ADPN – 1. ADPN represents the absolute difference between the picture
number of the currently re-mapped picture and the prediction value for that picture number. If no previous
ADPN fields have been sent within the current RPS layer, the prediction value shall be the picture number
of the current picture. If some previous ADPN field has been sent, the prediction value shall be the picture
number of the last picture that was re-mapped using ADPN.

If the picture number prediction is denoted PNP, and the picture number in question is denoted PNQ, the
decoder shall determine PNQ from PNP and ADPN in a manner mathematically equivalent to the
following:
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if (RMPNI == '1') { // a negative difference
if (PNP – ADPN < 0)
PNQ = PNP – ADPN + MAX_PN;

else
PNQ = PNP – ADPN;

}else{ // a positive difference
if (PNP + ADPN > MAX_PN-1)
PNQ = PNP + ADPN – MAX_PN;

else
PNQ = PNP + ADPN;

}

The encoder shall control RMPNI and ADPN such that the decoded value of ADPN shall not be greater
than or equal to MAX_PN.

As an example implementation, the encoder may use the following process to determine values of ADPN
and RMPNI to specify a re-mapped picture number in question, PNQ:
DELTA = PNQ – PNP;
if (DELTA < 0) {
if (DELTA < –MAX_PN/2-1)
MDELTA = DELTA + MAX_PN;

else
MDELTA = DELTA;

}else{
if(DELTA > MAX_PN/2)
MDELTA = DELTA – MAX_PN;

else
MDELTA = DELTA;

}

ADPN = abs(MDELTA);

where abs() indicates an absolute value operation. Note that the code number of the UVLC corresponds
to the value of ADPN – 1, rather than the value of ADPN itself.

RMPNI would then be determined by the sign of MDELTA.

4.3.13.2 Long-term Picture Index for Re-Mapping (LPIR)
LPIR is present only if indicated by RMPNI. LPIR follows RMPNI when present. LPIR is transmitted
using UVLC codewords. It represents the long-term picture index to be re-mapped. The prediction value
used by any subsequent ADPN re-mappings is not affected by LPIR.

4.3.14 Reference Picture Buffering Type (RPBT)
RPBT specifies the buffering type of the currently decoded picture. It follows an RMPNI “end loop”
indication when the picture is not an I picture. It is the first element of the RPS layer if the picture is an I
picture. The values for RPBT are defined as follows:

Code number 0: Sliding Window,

Code number 1: Adaptive Memory Control.

In the “Sliding Window” buffering type, the current decoded picture shall be added to the buffer with
default relative index 0, and any marking of pictures as “unused” in the buffer is performed automatically
in a first-in-first-out fashion among the set of short-term pictures. In this case, if the buffer has sufficient
“unused” capacity to store the current picture, no additional pictures shall be marked as “unused” in the
buffer. If the buffer does not have sufficient “unused” capacity to store the current picture, the picture
with the largest default relative index among the short-term pictures in the buffer shall be marked as
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“unused”. In the sliding window buffering type, no additional information is transmitted to control the
buffer contents.

In the "Adaptive Memory Control" buffering type, the encoder explicitly specifies any addition to the
buffer or marking of data as “unused” in the buffer, and may also assign long-term indices to short-term
pictures. The current picture and other pictures may be explicitly marked as “unused” in the buffer, as
specified by the encoder. This buffering type requires further information that is controlled by memory
management control operation (MMCO) parameters.

4.3.14.1 Memory Management Control Operation (MMCO)
MMCO is present only when RPBT indicates “Adaptive Memory Control”, and may occur multiple times
if present. It specifies a control operation to be applied to manage the multi-picture buffer memory. The
MMCO parameter is followed by data necessary for the operation specified by the value of MMCO, and
then an additional MMCO parameter follows – until the MMCO value indicates the end of the list of such
operations. MMCO commands do not affect the buffer contents or the decoding process for the decoding
of the current picture – rather, they specify the necessary buffer status for the decoding of subsequent
pictures in the bitstream. The values and control operations associated with MMCO are defined in
TABLE 2.

If MMCO is Reset, all pictures in the multi-picture buffer (but not the current picture unless specified
separately) shall be marked “unused” (including both short-term and long-term pictures).

The picture height and width shall not change within the bitstream except within a picture containing a
Reset MMCO command.

A “stored picture” does not contain an MMCO command in its RPS layer which marks that (entire)
picture as “unused”. If the current picture is not a stored picture, its RPS layer shall not contain any of the
following types of MMCO commands:

• An Reset MMCO command,

• Any MMCO command which marks any other picture (other than the current picture) as
“unused” that has not also been marked as “unused” in the ERPS layer of a prior stored picture,
or

• Any MMCO command which assigns a long-term index to a picture that has not also been
assigned the same long-term index in the ERPS layer of a prior stored picture

TABLE 2

Memory Management Control Operation (MMCO) Values

Code Number Memory Management Control Operation Associated Data Fields Following

0 End MMCO Loop None (end of ERPS layer)

1 Mark a Short-Term Picture as “Unused” DPN

2 Mark a Long-Term Picture as “Unused” LPIN

3 Assign a Long-Term Index to a Picture DPN and LPIN

4 Specify the Maximum Long-Term Picture Index MLIP1

5 Reset None

4.3.14.2 Difference of Picture Numbers (DPN)
DPN is present when indicated by MMCO. DPN follows MMCO if present. DPN is transmitted using
UVLC codewords and is used to calculate the PN of a picture for a memory control operation. It is used
in order to assign a long-term index to a picture, mark a short-term picture as “unused”. If the current
decoded picture number is PNC and the decoded UVLC code number is DPN, an operation
mathematically equivalent to the following equations shall be used for calculation of PNQ, the specified
picture number in question:
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if (PNC – DPN < 0)
PNQ = PNC – DPN + MAX_PN;

else
PNQ = PNC – DPN;

Similarly, the encoder may compute the DPN value to encode using the following relation:
if (PNC – PNQ < 0)
DPN = PNC – PNQ + MAX_PN;

else
DPN = PNC – PNQ;

For example, if the decoded value of DPN is zero and MMCO indicates marking a short-term picture as
“unused”, the current decoded picture shall be marked as “unused” (thus indicating that the current
picture is not a stored picture).

4.3.14.3 Long-term Picture Index (LPIN)
LPIN is present when indicated by MMCO. LPIN specifies the long-term picture index of a picture. It
follows DPN if the operation is to assign a long-term index to a picture. It follows MMCO if the
operation is to mark a long-term picture as “unused”.

4.3.14.4 Maximum Long-Term Picture Index Plus 1 (MLIP1)
MLIP1 is present if indicated by MMCO. MLIP1 follows MMCO if present. If present, MLIP1 is used
to determine the maximum index allowed for long-term reference pictures (until receipt of another value
of MLIP1). The decoder shall initially assume MLIP1 is "0" until some other value has been received.
Upon receiving an MLIP1 parameter, the decoder shall consider all long-term pictures having indices
greater than the decoded value of MLIP1 – 1 as “unused” for referencing by the decoding process for
subsequent pictures. For all other pictures in the multi-picture buffer, no change of status shall be
indicated by MLIP1.

4.3.15 Supplemental Enhancement Information
Supplemental enhancement information (SEI) is encapsulated into chunks of data separate from coded
slices, for example. It is up to the network adaptation layer to specify the means to transport SEI chunks.
Each SEI chunck may contain one or more SEI messages. Each SEI message shall consist of a SEI header
and SEI payload. The SEI header starts at a byte-aligned position from the first byte of a SEI chunk or
from the first byte after the previous SEI message. The SEI header consists of two codewords, both of
which consist of one or more bytes. The first codeword indicates the SEI payload type. Values from 00 to
FE shall be reserved for particular payload types, whereas value FF is an escape code to extend the value
range to yet another byte as follows:
payload_type = 0;
for (;;) {
payload_type += *byte_ptr_to_sei;
if (*byte_ptr_to_sei < 0xFF)
break;

byte_ptr_to_sei++;
}

The second codeword of the SEI header indicates the SEI payload size in bytes. SEI payload size shall be
coded similarly to the SEI payload type.

The SEI payload may have a SEI payload header. For example, a payload header may indicate to which
picture the particular data belongs. The payload header shall be defined for each
payload type separately.

4.4 Macroblock layer
Following the syntax diagram for the macroblock elements, the various elements are described.
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4.4.1 Number of Skipped Macroblocks (RUN)
A macroblock is called skipped if no information is sent. In that case the reconstruction of an inter
macroblock is made by copying the collocated picture material from the last decoded frame.

If PSTRUCT indicates a frame, then the skipped macroblock is formed by copying the collocated picture
material from the last decoded frame, which either was decoded from a frame picture or is the union of
two decoded field pictures. If PSTRUCT indicates a field, then the skipped macroblock is formed by
copying the collocated material from the last decoded field of the same parity (top or bottom), which was
either decoded from a field picture or is part of the most recently decoded frame picture.

[Editor: this needs alignment with the RPS.] 

For a B macroblock skip means direct mode without coefficients. RUN indicates the number of skipped
macroblocks in an inter- or B-picture before a coded macroblock. If a picture or slice ends with one or
more skipped macroblocks, they are represented by an additional RUN which counts the number of
skipped macroblocks.

4.4.2 Macro block type (MB_Type)
Refer to TABLE 7. There are different MB-Type tables for Intra and Inter frames.

4.4.2.1 Intra Macroblock modes
Intra 4x4 Intra coding as defined in sections Error! Reference source not found. to Error!

Reference source not found..
Imode, nc, AC See definition in section 0. These modes refer to 16x16 intra coding.

4.4.2.2 Inter Macroblock Modes
Skip No further information about the macroblock is transmitted. A copy of the colocated

macroblock in the most recent decoded picture is used as reconstruction for the present
macroblock.

NxM (eg. 16x8) The macroblock is predicted from a past picture with block size NxM. For the
macroblock modes 16x16, 16x8, and 8x16, a motion vector is provided for each NxM
block. If N=M=8, for each 8x8 sub-partition an additional codeword is transmitted
which indicates in which mode the corresponding sub-partition is coded (see section
4.4.3). 8x8 sub-partitions can also be coded in intra 4x4 mode. Depending on N,M and
the 8x8 sub-partition modes there may be 1 to 16 sets of motion vector data for a
macroblock.

Intra 4x4 4x4 intra coding.

Code numbers from 6 and upwards represent 16x16 intra coding.

4.4.3 8x8 sub-partition modes
NxM (eg. 8x4) The corresponding 8x8 sub-partition is predicted from a past picture with block size

NxM. A motion vector is transmitted for each NxM block. Depending on N and M, up
to 4 motion vectors are coded for an 8x8 sub-partition, and thus up to 16 motion
vectors are transmitted for a macroblock.

Intra The 8x8 sub-partition is coded in intra 4x4 mode.

4.4.4 Intra Prediction Mode (Intra_pred_mode)
Even in Intra mode, prediction is always used for each sub block in a macroblock. A 4x4 block is to be
coded (pixels labeled a to p below). The pixels A to Q from neighboring blocks may already be decoded
and may be used for prediction. When pixels E-H are not available, whether because they have not yet
been decoded, are outside the picture or outside the current independent slice, the pixel value of D is
substituted for pixels E-H. When pixels M-P are not available, the pixel value of L is substituted for
pixels M-P.
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FIGURE 5

Syntax diagram for the Picture header.

4.4.4.1.1 Prediction for Intra-4x4 mode for luminance blocks

For the luminance signal, there are 9 intra prediction modes labeled 0 to 8. Mode 0 is ‘DC-prediction’
(see below). The other modes represent directions of predictions as indicated below.

FIGURE 6

Syntax diagram for the Picture header.

Mode 0: DC prediction

Generally all pixels are predicted by (A+B+C+D+I+J+K+L)//8. If four of the pixels are outside the
picture, the average of the remaining four is used for prediction. If all 8 pixels are outside the picture the
prediction for all pixels in the block is 128. A block may therefore always be predicted in this mode.

Mode 1: Vertical Prediction

If A,B,C,D are inside the picture, a,e,i,m are predicted by A, b,f,j,n by B etc.

Mode 2: Horizontal prediction

If E,F,G,H are inside the picture, a,b,c,d are predicted by E, e,f,g,h by F etc.

Mode 3: Diagonal Down/Right prediction

This mode is used only if all A,B,C,D,I,J,K,L,Q are inside the picture. This is a 'diagonal' prediction.

m is predicted by: (J + 2K + L + 2)/4

i,n are predicted by (I + 2J + K + 2)/4

e,j,o are predicted by (Q + 2I + J + 2)/4

a,f,k,p are predicted by (A + 2Q + I + 2)/4

b,g,l are predicted by (Q + 2A + B + 2)/4

c,h are predicted by (A + 2B + C + 2)/4

d is predicted by (B + 2C + D + 2)/4

Mode 4: Diagonal Down/Left prediction
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This mode is used only if all A,B,C,D,I,J,K,L,Q are inside the picture. This is a 'diagonal' prediction.

a is predicted by (A + 2B + C + I + 2J + K + 4) / 8;
b, e are predicted by (B + 2C + D + J + 2K + L + 4) / 8;
c, f, i are predicted by (C + 2D + E + K + 2L + M + 4) / 8;
d, g, j, m are predicted by (D + 2E + F + L + 2M + N + 4) / 8;
h, k, n are predicted by (E + 2F + G + M + 2N + O + 4) / 8;
l, o are predicted by (F + 2G + H + N + 2O + P + 4) / 8;
p is predicted by (G + H + O + P + 2) / 4;
Mode 5: Vertical-Left prediction

This mode is used only if all A,B,C,D,I,J,K,L,Q are inside the picture. This is a 'diagonal' prediction.

a, j are predicted by (Q + A + 1) / 2;
b, k are predicted by (A + B + 1) / 2;
c, l are predicted by (B + C + 1) / 2;
d is predicted by (C + D + 1) / 2;
e, n are predicted by (I + 2Q + A + 2) / 4;
f, o are predicted by (Q + 2A + B + 2) / 4;
g, p are predicted by (A + 2B + C + 2) / 4;
h is predicted by (B + 2C + D + 2) / 4;
i is predicted by (Q + 2I + J + 2) / 4;
m is predicted by (I + 2J + K + 2) / 4;
Mode 6: Vertical-Right prediction

This mode is used only if all A,B,C,D,I,J,K,L,Q are inside the picture. This is a 'diagonal' prediction.

a is predicted by (2A + 2B + J + 2K + L + 4) / 8;
b, i are predicted by (B + C + 1) / 2;
c, j are predicted by (C + D + 1) / 2;
d, k are predicted by (D + E + 1) / 2;
l is predicted by (E + F + 1) / 2;
e is predicted by (A + 2B + C + K + 2L + M + 4) / 8;
f, m are predicted by (B + 2C + D + 2) / 4;
g, n are predicted by (C + 2D + E + 2) / 4;
h, o are predicted by (D + 2E + F + 2) / 4;
p is predicted by (E + 2F + G + 2) / 4;
Mode 7: Horizontal-Up prediction

This mode is used only if all A,B,C,D,I,J,K,L,Q are inside the picture. This is a 'diagonal' prediction.

a is predicted by (B + 2C + D + 2I + 2J + 4) / 8;
b is predicted by (C + 2D + E + I + 2J + K + 4) / 8;
c, e are predicted by (D + 2E + F + 2J + 2K + 4) / 8;
d, f are predicted by (E + 2F + G + J + 2K + L + 4) / 8;
g, i are predicted by (F + 2G + H + 2K + 2L + 4) / 8;
h, j are predicted by (G + 3H + K + 3L + 4) / 8;
l, n are predicted by (L + 2M + N + 2) / 4;
k, m are predicted by (G + H + L + M + 2) / 4;
o is predicted by (M + N + 1) / 2;
p is predicted by (M + 2N + O + 2) / 4;
Mode 8: Horizontal-Down prediction

This mode is used only if all A,B,C,D,I,J,K,L,Q are inside the picture. This is a 'diagonal' prediction.

a, g are predicted by (Q + I + 1) / 2;
b, h are predicted by (I + 2Q + A+ 2) / 4;
c is predicted by (Q + 2A + B+ 2) / 4;
d is predicted by (A + 2B + C+ 2) / 4;
e, k are predicted by (I + J + 1) / 2;
f, l are predicted by (X + 2I + J+ 2) / 4;
I, o are predicted by (J + K + 1) / 2;
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j, p are predicted by (I + 2J + K+ 2) / 4;
m is predicted by (K + L + 1) / 2;
n is predicted by (J + 2K + L + 2) / 4;

Coding of Intra 4x4 prediction modes

Since each of the 4x4 luminance blocks shall be assigned a prediction mode, this will require a
considerable number of bits if coded directly. We have therefore tried to find more efficient ways of
coding mode information. First of all we observe that the chosen prediction of a block is highly
correlated with the prediction modes of adjacent blocks. This is illustrated in Error! Reference source
not found.a. When the prediction modes of A and B are known (including the case that A or B or both
are outside the picture) an ordering of the most probable, next most probable etc. of C is given. . When
an adjacent block is coded by 16x16 intra mode, prediction mode is “mode 0: DC_prediction”; when it is
coded in inter mode, prediction mode is “mode 0: DC_prediction” in the usual case and “outside” in the
case of constrained intra update. This ordering is listed in Error! Reference source not found..
For each prediction mode of A and B a list of 9 numbers is given. Example: Prediction mode for A and B
is 2. The string 2 8 7 1 0 6 4 3 5 indicates that mode 2 is also the most probable mode for block C. Mode
8 is the next most probable one etc. In the bitstream there will for instance be information that Prob0 = 1
(see Error! Reference source not found.) indicating that the next most probable mode shall be used for
block C. In our example this means Intra prediction mode 8. Use of '–' in the table indicates that this
instance cannot occur because A or B or both are outside the picture.

For more efficient coding, information on intra prediction of two 4x4 luminance blocks are coded in one
codeword (Prob0 and Prob1 in Error! Reference source not found.). The order of the resulting 8
codewords is indicated in Error! Reference source not found.b.
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FIGURE 7

a) Prediction mode of block C shall be established. A and B are adjacent blocks. b) order of intra
prediction information in the bitstream

TABLE 3

Prediction mode as a function of ordering signaled in the bitstream (see text)

B/A Outside 0 1 2 3

Outside 0-------- 01------- 10------- --------- ---------
0 02------- 021648573 125630487 021876543 021358647

1 --------- 102654387 162530487 120657483 102536487

2 20------- 280174365 217683504 287106435 281035764

3 --------- 201385476 125368470 208137546 325814670
4 --------- 201467835 162045873 204178635 420615837

5 --------- 015263847 152638407 201584673 531286407

6 --------- 016247583 160245738 206147853 160245837

7 --------- 270148635 217608543 278105463 270154863
8 --------- 280173456 127834560 287104365 283510764
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B/A 4 5 6 7 8

Outside --------- --------- --------- --------- ---------

0 206147583 512368047 162054378 204761853 208134657

1 162045378 156320487 165423078 612047583 120685734
2 287640153 215368740 216748530 278016435 287103654

3 421068357 531268470 216584307 240831765 832510476

4 426015783 162458037 641205783 427061853 204851763
5 125063478 513620847 165230487 210856743 210853647

6 640127538 165204378 614027538 264170583 216084573

7 274601853 271650834 274615083 274086153 278406153

8 287461350 251368407 216847350 287410365 283074165

4.4.4.1.2 Prediction for Intra-16x16 mode for luminance

Assume that the block to be predicted has pixel locations 0 to 15 horizontally and 0 to 15 vertically. We
use the notation P(i,j) where i,j = 0..15. P(i,-1), i=0..15 are the neighboring pixels above the block and P(-
1,j), j=0..15 are the neighboring pixels to the left of the block. Pred(i,j) i,j = 0..15 is the prediction for the
whole Luminance macroblock. We have 4 different prediction modes:

Mode 0 (vertical)

Pred(i,j) = P(i,-1), i,j=0..15

Mode 1 (horizontal)

Pred(i,j) = P(-1,j), i,j=0..15

Mode 2 (DC prediction)

Pred(i,j) = 32/)))1,(),1(((
15

0
∑

=

−+−
i

iPiP i,j=0..15,

where only the average of 16 pixels are used when the other 16 pixels are outside the picture or slice. If
all 32 pixels are outside the picture, the prediction for all pixels in the block is 128.

Mode 3 (Plane prediction)

Pred(i,j) = max(0, min(255, (a + bx(i-7) + cx(j-7) +16)/32 ) ),

where:

a = 16x(P(-1,15) + P(15,-1))

b = 5x(H/4)/16

c = 5x(V/4)/16
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Residual coding

The residual coding is based on 4x4 transform. But similar to coding of chrominance coefficients,
another 4x4 transform to the 16 DC coefficients in the macroblock are added. In that way we end up with
an overall DC for the whole MB which works well in flat areas.

Since we use the same integer transform to DC coefficients, we have to perform additional normalization
to those coefficients, which implies a division by 676. To avoid the division we performed normalization
by 49/215 on the encoder side and 48/215 on the decoder side, which gives sufficient accuracy.

Only single scan is used for 16x16 intra coding.

To produce the bitstream, we first scan through the 16 ‘DC transform’ coefficients. There is no ‘CBP’
information to indicate no coefficients on this level. If AC = 1 (see below) ac coefficients of the 16 4x4
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blocks are scanned. There are 15 coefficients in each block since the DC coefficients are included in the
level above.

Coding of mode information for Intra-16x16 mode

See TABLE 7. Three parameters have to be signaled. They are all included in MB-type.

Imode: 0,1,2,3

AC: 0 means there are no ac coefficients in the 16x16 block. 1 means that there is at least
one ac coefficient and all 16 blocks are scanned.

nc: CBP for chrominance (see 4.4.7)

4.4.4.1.3 Prediction in intra coding of chrominance blocks

For chrominance prediction there is only one mode. No information is therefore needed to be transmitted.
The prediction is indicated in the figure below. The 8x8 chrominance block consists of 4 4x4 blocks
A,B,C,D. S0,1,2,3 are the sums of 4 neighbouring pixels.

If S0, S1, S2, S3 are all inside the frame:

A = (S0 + S2 + 4)/8

B = (S1 + 2)/4

C = (S3 + 2)/4

D = (S1 + S3 + 4)/8

If only S0 and S1 are inside the frame:

A = (S0 + 2)/4

B = (S1 + 2)/4

C = (S0 + 2)/4

D = (S1 + 2)/4

If only S2 and S3 are inside the frame:

A = (S2 + 2)/4

B = (S2 + 2)/4

C = (S3 + 2)/4

D = (S3 + 2)/4

If S0, S1, S2, S3 are all outside the frame: A = B = C = D = 128

(Note: This prediction should be considered changed)

A B

C D

S1S0

S2

S3

FIGURE 8

Prediction of Chrominance blocks.

4.4.5 Reference picture (Ref_picture)
If PTYPE indicates possibility of prediction from more than one previous decoded picture, the exact
picture to be used must be signalled. This is done according to the following tables. If PSTRUCT
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indicates that the current picture is a frame picture, then the reference picture is a previous frame in the
reference buffer that was either encoded as a single frame picture or a frame that was encoded as two field
pictures and have been re-constructed as a frame. Thus for frames the following table gives the reference
frame:

Code_number Reference frame

0 The last decoded previous frame (1 frame back)

1 2 frames back

2 3 frames back

.. ..

The reference parameter is transmitted for each 16x16, 16x8, or 8x16 block. If the macroblock is coded in
8x8 mode, the reference frame parameter is coded once for each 8x8 sub-partition unless the 8x8 sub-
partition is transmitted in intra mode. If the UVLC is used for entropy coding and the macroblock type is
indicated by codeword 4 (8x8, ref=0), no reference frame parameters are transmitted for the whole
macroblock.

If PSTRUCT indicates that the current picture is a field picture, then the reference picture is either a
previous field in the reference buffer that was separately encoded as a field picture or a previous field that
is half of a frame that was encoded as a frame picture. Note that for a P field picture, forward prediction
from field 1 to field 2 in the same frame is allowed. For the purpose of determining REF_picture, a
unique reference field number is assigned to each reference field in the reference field (frame) buffer
according to its distance from the current field, as shown in Figures 3a and 3b, modified by the fact that
smaller code numbers are given to the fields of the same field parity as the current field. Thus for fields
the following table gives the reference field:

Code_number Reference field

0 the last decoded previous field of the same parity (2 fields back)

1 the last decoded previous field of the opposite parity (1 field back)

2 same parity field 4 fields back

3 opposite parity field 3 fields back

.. ..

current field0 12 34 5

Ref. Frame (field) Buf.

Ref. Field No.

......

f1 f2f1 f2f1 f2f1 f2f1 f2f1 f2 f1 f2

6 78 910 11

FIGURE 3a

Reference picture number assignment when the current picture is the first field coded in a frame.
Solid-line is for frames and dotted-line for fields. f1 stands for field 1 and f2 for field 2.
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current field0 12 34 5

Ref. Frame (field) Buf.

Ref. Field No.

......

f1 f2f1 f2f1 f2f1 f2f1 f2f1 f2 f1 f2

6 78 910 11

FIGURE 3b

Reference picture number assignment when the current picture is the second field coded in a frame.
Solid-line is for frames and dotted-line for fields. f1 stands for field 1 and f2 for field 2.

4.4.6 Motion Vector Data (MVD)
If so indicated by MB_type, vector data for 1-16 blocks are transmitted. For every block a prediction is
formed for the horizontal and vertical components of the motion vector. MVD signals the difference
between the vector component to be used and this prediction. The order in which vector data is sent is
indicated in FIGURE 2. Motion vectors are allowed to point to pixels outside the reference frame. If a
pixel outside the reference frame is referred to in the prediction process, the nearest pixel belonging to the
frame (an edge or corner pixel) shall be used. All fractional pixel positions shall be interpolated as
described below. If a pixel referred in the interpolation process (necessarily integer accuracy) is outside of
the reference frame it shall be replaced by the nearest pixel belonging to the frame (an edge or corner
pixel). Reconstructed motion vectors shall be clipped to +-19 integer pixels outside of the frame.

4.4.6.1 Prediction of vector components
With exception of the 16x8 and 8x16 block shapes, "median prediction" (see 4.4.6.1.1) is used. In case
the macroblock may be classified to have directional segmentation the prediction is defined in 4.4.6.1.2.

4.4.6.1.1 Median prediction

In the figure below the vector component E of the indicated block shall be predicted. The prediction is
normally formed as the median of A, B and C. However, the prediction may be modified as described
below. Notice that it is still referred to as "median prediction"

A The component applying to the pixel to the left of the upper left pixel in E

B The component applying to the pixel just above the upper left pixel in E

C The component applying to the pixel above and to the right of the upper right pixel in E

D The component applying to the pixel above and to the left of the upper left pixel in E

D B C
A

E

FIGURE 9

Median prediction of motion vectors.

A, B, C, D and E may represent motion vectors from different reference pictures. As an example we may
be seeking prediction for a motion vector for E from the last decoded picture. A, B, C and D may
represent vectors from 2, 3, 4 and 5 pictures back. The following substitutions may be made prior to
median filtering.
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• If A and D are outside the picture, their values are assumed to be zero and they are considered to
have "different reference picture than E".

• If D, B, C are outside the picture, the prediction is equal to A (equivalent to replacing B and C
with A before median filtering).

• If C is outside the picture or still not available due to the order of vector data (see FIGURE 2), C
is replaced by D.

If any of the blocks A, B, C, D are intra coded they count as having "different reference frame. If one and
only one of the vector components used in the median calculation (A, B, C) refer to the same reference
picture as the vector component E, this one vector component is used to predict E.

4.4.6.1.2 Directional segmentation prediction

If the macroblock where the block to be predicted is coded in 16x8 or 8x16 mode, the prediction is
generated as follows (refer to figure below and the definitions of A, B, C, E above):

Vector block size 8x16:

Left block: A is used as prediction if it has the same reference picture as E,

otherwise "Median prediction" is used

Right block: C is used as prediction if it has the same reference picture as E,

otherwise "Median prediction" is used

Vector block size 16x8:

Upper block: B is used as prediction if it has the same reference picture as E,

otherwise "Median prediction" is used

Lower block: A is used as prediction if it has the same reference picture as E,

otherwise "Median prediction" is used

If the indicated prediction block is outside the picture, the same substitution rules are applied as in the
case of median prediction.

16x88x16

FIGURE 10

Directional segmentation prediction

4.4.6.2 Chrominance vectors
Chrominance vectors are derived from the Luminance vectors. Since chrominance has half resolution
compared to luminance, the chrominance vectors are obtained by a division of two:

Croma_vector = Luma_vector/2 - which means that the chrominance vectors have a resolution of 1/8
pixel.

Due to the half resolution, a chrominance vector applies to 1/4 as many pixels as the Luminance vector.
For example if the Luminance vector applies to 8x16 Luminance pixels, the corresponding chrominance
vector applies to 4x8 chrominance pixels and if the Luminance vector applies to 4x4 Luminance pixels,
the corresponding chrominance vector applies to 2x2 chrominance pixel.

For fractional pixel interpolation for chrominance prediction, bilinear interpolation is used. The result is
rounded to the nearest integer.
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4.4.7 Coded Block Pattern (CBP)
The CBP contains information of which 8x8 blocks - Luminance and chrominance - contain transform
coefficients. Notice that an 8x8 block contains 4 4x4 blocks meaning that the statement '8x8 block
contains coefficients' means that 'one or more of the 4 4x4 blocks contain coefficients'. The 4 least
significant bits of CBP contain information on which of 4 8x8 luminance blocks in a macroblock contains
nonzero coefficients. Let us call these 4 bits CBPY. The ordering of 8x8 blocks is indicated in FIGURE
3. A 0 in position n of CBP (binary representation) means that the corresponding 8x8 block has no
coefficients whereas a 1 means that the 8x8 block has one or more non-zero coefficients.

For chrominance we define 3 possibilities:

nc=0: no chrominance coefficients at all.

nc=1 There are nonzero 2x2 transform coefficients. All chrominance AC coefficients = 0.
Therefore we do not send any EOB for chrominance AC coefficients.

nc=2 There may be 2x2 nonzero coefficients and there is at least one nonzero chrominance
AC coefficient present. In this case we need to send 10 EOBs (2 for DC coefficients
and 2x4=8 for the 8 4x4 blocks) for chrominance in a macroblock.

The total CBP for a macroblock is: CBP = CBPY + 16xnc
The CBP is signalled with a different codeword for Inter macroblocks and Intra macroblocks since the
statistics of CBP values are different in the two cases.

4.4.8 Change of Quantizer Value (Dquant)
Dquant contains the possibility of changing QUANT on the macroblock level. It does not need to be
present for macroblocks without nonzero transform coefficients. More specifically Dquant is present for
non-skipped macroblocks:

• If CBP indicates that there are nonzero transform coefficients in the MB or

• If the MB is 16x16 based intra coded

The value of Dquant may range from -26 to +26, which enables the QP to be changed to any value in the
range [-12..39].

QUANTnew = -12 + modulo52(QUANTold + Dquant + 64) (also known as "arithmetic wrap")
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5 Decoding Process

5.1 Slice Decoding

5.1.1 Multi-Picture Decoder Process
The decoder stores the reference pictures for inter-picture decoding in a multi-picture buffer. The decoder
replicates the multi-picture buffer of the encoder according to the reference picture buffering type and any
memory management control operations specified in the bitstream. The buffering scheme may also be
operated when partially erroneous pictures are decoded.

Each transmitted and stored picture is assigned a Picture Number (PN) which is stored with the picture in
the multi-picture buffer. PN represents a sequential picture counting identifier for stored pictures. PN is
constrained, using modulo MAX_PN arithmetic operation. For the first transmitted picture, PN should be
"0". For each and every other transmitted and stored picture, PN shall be increased by 1. If the difference
(modulo MAX_PN) of the PNs of two consecutively received and stored pictures is not 1, the decoder
should infer a loss of pictures or corruption of data. In such a case, a back-channel message indicating the
loss of pictures may be sent to the encoder.

Besides the PN, each picture stored in the multi-picture buffer has an associated index, called the default
relative index. When a picture is first added to the multi-picture buffer it is given default relative index 0
– unless it is assigned to a long-term index. The default relative indices of pictures in the multi-picture
buffer are modified when pictures are added to or removed from the multi-picture buffer, or when short-
term pictures are assigned to long-term indices.

The pictures stored in the multi-picture buffers can also be divided into two categories: long-term pictures
and short-term pictures. A long-term picture can stay in the multi-picture buffer for a long time (more
than MAX_PN-1 coded and stored picture intervals). The current picture is initially considered a short-
term picture. Any short-term picture can be changed to a long-term picture by assigning it a long-term
index according to information in the bitstream. The PN is the unique ID for all short-term pictures in the
multi-picture buffer. When a short-term picture is changed to a long-term picture, it is also assigned a
long-term picture index (LPIN). A long-term picture index is assigned to a picture by associating its PN
to an LPIN. Once a long-term picture index has been assigned to a picture, the only potential subsequent
use of the long-term picture’s PN within the bitstream shall be in a repetition of the long-term index
assignment. The PNs of the long-term pictures are unique within MAX_PN transmitted and stored
pictures. Therefore, the PN of a long-term picture cannot be used for assignment of a long-term index
after MAX_PN-1 transmitted subsequent stored pictures. LPIN becomes the unique ID for the life of a
long-term picture.

PN (for a short-term picture) or LPIN (for a long-term picture) can be used to re-map the pictures into re-
mapped relative indices for efficient reference picture addressing.

5.1.1.1 Decoder Process for Short/Long-term Picture Management
The decoder may have both long-term pictures and short-term pictures in its multi-picture buffer. The
MLIP1 field is used to indicate the maximum long-term picture index allowed in the buffer. If no prior
value of MLIP1 has been sent, no long-term pictures shall be in use, i.e. MLIP1 shall initially have an
implied value of "0". Upon receiving an MLIP1 parameter, a new MLIP1 shall take effect until another
value of MLIP1 is received. Upon receiving a new MLIP1 parameter in the bitstream, all long-term
pictures with associated long-term indices greater than or equal to MLIP1 shall be considered marked
“unused”. The frequency of transmitting MLIP1 is out of the scope of this Recommendation. However,
the encoder should send an MLIP1 parameter upon receiving an error message, such as an Intra request
message.

A short-term picture can be changed to a long-term picture by using an MMCO command with an
associated DPN and LPIN. The short-term picture number is derived from DPN and the long-term picture
index is LPIN. Upon receiving such an MMCO command, the decoder shall change the short-term picture
with PN indicated by DPN to a long-term picture and shall assign it to the long-term index indicated by
LPIN. If a long-term picture with the same long-term index already exists in the buffer, the previously-
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existing long-term picture shall be marked “unused”. An encoder shall not assign a long-term index
greater than MLIP1–1 to any picture. If LPIN is greater than MLIP1–1, this condition should be treated
by the decoder as an error. For error resilience, the encoder may send the same long-term index
assignment operation or MLIP1 specification message repeatedly. If the picture specified in a long-term
assignment operation is already associated with the required LPIN, no action shall be taken by the
decoder. An encoder shall not assign the same picture to more than one long term index value. If the
picture specified in a long-term index assignment operation is already associated with a different long-
term index, this condition should be treated as an error. An encoder shall only change a short-term picture
to a long-term picture within MAX_PN transmitted consecutive stored pictures. In other words, a short-
term picture shall not stay in the short-term buffer after more than MAX_PN-1 subsequent stored pictures
have been transmitted. An encoder shall not assign a long-term index to a short-term picture that has been
marked as “unused” by the decoding process prior to the first such assignment message in the bitstream.
An encoder shall not assign a long-term index to a picture number that has not been sent.

5.1.1.2 Decoder Process for Reference Picture Buffer Mapping
The decoder employs indices when referencing a picture for motion compensation on the macroblock
layer. In pictures other than B pictures, these indices are the default relative indices of pictures in the
multi-picture buffer when the fields ADPN and LPIR are not present in the current slice layer as
applicable, and are re-mapped relative indices when these fields are present. In B pictures, the first one or
two pictures (depending on BTPSM) in relative index order are used for backward prediction, and the
forward picture reference parameters specify a relative index into the remaining pictures for use in
forward prediction. (needs to be changed)

The indices of pictures in the multi-picture buffer can be re-mapped onto newly specified indices by
transmitting the RMPNI, ADPN, and LPIR fields. RMPNI indicates whether ADPN or LPIR is present.
If ADPN is present, RMPNI specifies the sign of the difference to be added to a picture number
prediction value. The ADPN value corresponds to the absolute difference between the PN of the picture
to be re-mapped and a prediction of that PN value. The first transmitted ADPN is computed as the
absolute difference between the PN of the current picture and the PN of the picture to be re-mapped. The
next transmitted ADPN field represents the difference between the PN of the previous picture that was re-
mapped using ADPN and that of another picture to be re-mapped. The process continues until all
necessary re-mapping is complete. The presence of re-mappings specified using LPIR does not affect the
prediction value for subsequent re-mappings using ADPN. If RMPNI indicates the presence of an LPIR
field, the re-mapped picture corresponds to a long-term picture with a long-term index of LPIR. If any
pictures are not re-mapped to a specific order by RMPNI, these remaining pictures shall follow after any
pictures having a re-mapped order in the indexing scheme, following the default order amongst these non-
re-mapped pictures.

If the indicated parameter set in the latest received slice or data partition signals the required picture
number update behavior, the decoder shall operate as follows. The default picture index order shall be
updated as if pictures corresponding to missing picture numbers were inserted to the multi-picture buffer
using the “Sliding Window” buffering type. An index corresponding to a missing picture number is called
an “invalid” index. The decoder should infer an unintentional picture loss if any “invalid” index is
referred to in motion compensation or if an “invalid” index is re-mapped.

If the indicated parameter set in the latest received slice or data partition does not signal the required
picture number update behavior, the decoder should infer an unintentional picture loss if one or several
picture numbers are missing or if a picture not stored in the multi-picture buffer is indicated in a
transmitted ADPN or LPIR.

In case of an unintentional picture loss, the decoder may invoke some concealment process. If the
required picture number update behavior was indicated, the decoder may replace the picture
corresponding to an “invalid” index with an error-concealed one and remove the “invalid” indication. If
the required picture number update behavior was not indicated, the decoder may insert an error-concealed
picture into the multi-picture buffer assuming the “Sliding Window” buffering type. Concealment may be
conducted by copying the closest temporally preceding picture that is available in the multi-picture buffer
into the position of the missing picture. The temporal order of the short-term pictures in the multi-picture
buffer can be inferred from their default relative index order and PN fields. In addition or instead, the
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decoder may send a forced INTRA update signal to the encoder by external means (for example,
Recommendation H.245), or the decoder may use external means or back-channel messages (for example,
Recommendation H.245) to indicate the loss of pictures to the encoder.

5.1.1.3 Decoder Process for Multi-Picture Motion Compensation
Multi-picture motion compensation is applied if the use of more than one reference picture is indicated.
For multi-picture motion compensation, the decoder chooses a reference picture as indicated using the
reference frame fields on the macroblock layer. Once, the reference picture is specified, the decoding
process for motion compensation proceeds.

5.1.1.4 Decoder Process for Reference Picture Buffering
The buffering of the currently decoded picture can be specified using the reference picture buffering type
(RPBT). The buffering may follow a first-in, first-out ("Sliding Window") mode. Alternatively, the
buffering may follow a customized adaptive buffering ("Adaptive Memory Control") operation that is
specified by the encoder in the forward channel.

The "Sliding Window" buffering type operates as follows. First, the decoder determines whether the
picture can be stored into “unused” buffer capacity. If there is insufficient “unused” buffer capacity, the
short-term picture with the largest default relative index (i.e. the oldest short-term picture in the buffer)
shall be marked as “unused”. The current picture is stored in the buffer and assigned a default relative
index of zero. The default relative index of all other short-term pictures is incremented by one. The
default relative indices of all long-term pictures are incremented by one minus the number of short-term
pictures removed.

In the "Adaptive Memory Control" buffering type, specified pictures may be removed from the multi-
picture buffer explicitly. The currently decoded picture, which is initially considered a short-term picture,
may be inserted into the buffer with default relative index 0, may be assigned to a long-term index, or
may be marked as “unused” by the encoder. Other short-term pictures may also be assigned to long-term
indices. The buffering process shall operate in a manner functionally equivalent to the following: First,
the current picture is added to the multi-picture buffer with default relative index 0, and the default
relative indices of all other pictures are incremented by one. Then, the MMCO commands are processed:

If MMCO indicates a reset of the buffer contents , all pictures in the buffer are marked as “unused” except
the current picture (which will be the picture with default relative index 0).

If MMCO indicates a maximum long-term index using MLIP1, all long-term pictures having long-term
indices greater than or equal to MLIP1 are marked as “unused” and the default relative index order of the
remaining pictures are not affected.

If MMCO indicates that a picture is to be marked as “unused” in the multi-picture buffer and if that
picture has not already been marked as “unused”, the specified picture is marked as “unused” in the multi-
picture buffer and the default relative indices of all subsequent pictures in default order are decremented
by one.

If MMCO indicates the assignment of a long-term index to a specified short-term picture and if the
specified long-term index has not already been assigned to the specified short-term picture, the specified
short-term picture is marked in the buffer as a long-term picture with the specified long-term index. If
another picture is already present in the buffer with the same long-term index as the specified long-term
index, the other picture is marked as “unused”. All short-term pictures that were subsequent to the
specified short-term picture in default relative index order and all long-term pictures having a long-term
index less than the specified long-term index have their associated default relative indices decremented by
one. The specified picture is assigned to a default relative index of one plus the highest of the incremented
default relative indices, or zero if there are no such incremented indices.
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5.2 Motion Compensation

5.2.1 Fractional pixel accuracy
Note that when PSTRUCT indicates a field picture, then all of the interplations for sub-pel motion are
based solely on pixels from just the reference field indicated by REF_picture; the pixels from the other
field of the containing frame play no role at all.

5.2.1.1 1/4 luminance sample interpolation
The pixels labeled as 'A' represent original pixels at integer positions and other symbols represent the
pixels to be interpolated
A d b d A
e h f h
b g c g b
e h f i
A b A

The interpolation proceeds as follows

1 The 1/2 sample positions labeled as ‘b’ are obtained by first applying 6-tap filter (1,-5,20,20,-5,1)
to nearest pixels at integer locations in horizontal or vertical direction. The resulting intermediate
value b is divided by 32, rounded to the nearest integer and clipped to lie in the range [0, 255].

2 The 1/2 sample position labeled as ‘c’ is obtained using 6-tap filtering (1,-5,20,20,-5,1) of
intermediate the values b of the closest 1/2 sample positions in vertical or horizontal direction. The
obtained value is divided by 1024, rounded to the nearest integer and clipped to lie in the range [0,
255].

3 The 1/4 sample positions labeled as ‘d’, ‘g’, ‘e’ and ‘f’ are obtained by averaging (with truncation
to the nearest integer) the two nearest samples at integer or 1/2 sample position using d=(A+b)/2,
g=(b+c)/2, e=(A+b)/2, f=(b+c)/2.

4 The 1/4 sample positions labeled as 'h' are obtained by averaging (with truncation to nearest
integer) the two nearest pixels ‘b’ in diagonal direction.

5 The pixel labeled 'i' (the "funny" position) is computed as (A1+A2+A3+A4+2)/4 using the four
nearest original pixels.

5.2.1.2 1/8 Pel Luminance Samples Interpolation
The pixels labeled as 'A' represent original pixels at integer positions and other symbols represent 1/2, 1/4
and 1/8 pixels to be interpolated.
A d b1 d b2 d b3 d A
d e d f d f d e
b1 d c11 d c12 d c13 d
d f d g d g d f
b2 d c21 d c22 d c23 d
d f d g d g d e
b3 d c31 d c32 d c33 d
d e d f d f d e
A A

The interpolation proceeds as follows

1 The 1/2 and 1/4 sample positions labeled as 'b' are obtained by first calculating intermediate values
‘b’ using 8 tap filtering of nearest pixels at integer locations in horizontal or vertical direction. The
final value of 'b' is calculated as (b+128)/256 and clipped to lie in the range [0, 255]. The 1/2 and
1/4 sample positions labeled as 'c’ are obtained by 8 tap filtering of intermediate values b in
horizontal or vertical direction, dividing the result of filtering by 65536, rounding it to the nearest
integer and clipping it to lie in the range [0, 255]. The filter tap values depend on pixel position and
are listed below:
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‘b’, ‘c’ position filter tabs

1/4 (-3, 12, -37, 229, 71, -21, 6, -1)

2/4 (-3, 12, -39, 158, 158, -39, 12, -3)

3/4 (-1, 6, -21, 71, 229, -37, 12, -3)

2 The 1/8 sample positions labeled as ‘d’ are calculated as the average (with truncation to the nearest
integer) of the two closest ‘A’, ‘b’ or ‘c’ values in the horizontal or vertical direction.

3 The 1/8 sample positions labeled as ‘e’ are calculated by averaging with truncation of two 1/4

pixels labeled as ‘b1’, which are the closest in the diagonal direction [Editor: what about the e-

position column 8, row 6 ?]. The 1/8 sample positions labeled as ‘g’ are calculated via

(A+3c22+2)/4 and the 1/8 sample positions marked as ‘f’ are calculated via (3b1+ b1+2)/4 (pixel 'b2'
closer to ‘f’ is multiplied by 3).

Integer position pixels

1/8 pixels

1/2 and 1/4 pixels

FIGURE 11

Diagonal interpolation for 1/8 pel interpolation.

5.3 Transform Coefficient Decoding
This section defines all elements related to transform coding and decoding. It is therefore relevant to all
the syntax elements 'Tcoeff' in the syntax diagram.

5.3.1 Transform for Blocks of Size 4x4 Samples
Instead of a discrete cosine transform (DCT), an integer transform with a similar coding gain as a 4x4
DCT is used. The transformation of input pixels X={x00 … x33} to output coefficients Y is defined by:

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1 1 1 1 1 2 1 1

2 1 1 2 1 1 1 2

1 1 1 1 1 1 1 2

1 2 2 1 1 2 1 1

    
    − − − −    =
    − − − −
    − − − −        

x x x x

x x x x
Y

x x x x

x x x x

Multiplication by two can be performed either through additions or through left shifts, so that no actual
multiplication operations are necessary. Thus, we say that the transform is multiplier-free.

For input pixels with 9-bit dynamic range (because they are residuals from 8-bit pixel data), the transform
coefficients are guaranteed to fit within 16 bits, even when the second transform for DC coefficients is
used. Thus, all transform operations can be computed in 16-bit arithmetic. In fact, the maximum dynamic
range of the transforms coefficients fills a range of only 15.2 bits; this small headroom can be used to
support a variety of different quantization strategies (which are outside the scope of this specification).

The inverse transformation of normalized coefficients Y’={y’00 … y’33} to output pixels X’ is defined by:



File: JVT-B118r1.DOC Page: 43
Date Printed: 14.03.2002

1
2 00 01 02 03

1 11
2 210 11 12 132

1
20 21 22 232

1 11 30 31 32 33 2 22

1 1 1 1 1 1 1' ' ' '
1 11 1 1 ' ' ' '

'
' ' ' ' 1 1 1 11 1 1

' ' ' ' 1 11 1 1

         − −− −    =      − −− −      − −    − −    

y y y y

y y y y
X

y y y y

y y y y

Multiplications by ½ are actually performed via right shifts, so that the inverse transform is also
multiplier-free. The small errors introduced by the right shifts are compensated by a larger dynamic range
for the data at the input of the inverse transform.

The transform and inverse transform matrices above have orthogonal basis functions. Unlike the DCT,
though, the basis functions don’t have the same norm. Therefore, for the inverse transform to recover the
original pixels, appropriate normalization factors must be applied to the transform coefficients before
quantization and after dequantization. Such factors are absorbed by the quantization and dequantization
scaling factors described below.

By the above exact definition of the inverse transform, the same operations will be performed on coder
and decoder side. Thus we avoid the usual problem of “inverse transform mismatch”.

5.3.1.1 Transform for Blocks of Size 4x4 Samples Containing DC vales for Luminance
To minimize the dynamic range expansion due to transformations (and thus minimize rounding errors in
the quantization scale factors), a simple scaled Hadamard transform is used. The direct transform is
defined by:

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
// 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

     
     − − − −     =      − − − −
      − − − −         

D D D D

D D D D
D

D D D D

D D D D

x x x x

x x x x
Y

x x x x

x x x x

where the symbol // denotes division with rounding to the nearest integer:

( )1// 2 sign( ) abs( ) 2 − = × + >> 
b ba a a b

The inverse transform for the 4x4 luminance DC coefficients is defined by:

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

        − − − −    =     − − − −     − − − −       

QD QD QD QD

QD QD QD QD
QD

QD QD QD QD

QD QD QD QD

y y y y

y y y y
X

y y y y

y y y y

5.3.2 Transform for Blocks of Size 2x2 Samples (DC vales for Chrominance)
With the low resolution of chrominance it seems to be preferable to have larger blocksize than 4x4.
Specifically the 8x8 DC coefficient seems very useful for better definition of low resolution chrominance.
The 2 dimensional 2x2 transform procedure is illustrated below. DC0,1,2,3 are the DC coefficients of
2x2 chrominance blocks.

DC0 DC1 Two dimensional 2x2 transform ⇒ DDC(0,0) DDC(1,0)

DC2 DC3 DDC(0,1) DDC(1,1)

Definition of transform:

DCC(0,0) = (DC0+DC1+DC2+DC3)

DCC(1,0) = (DC0-DC1+DC2-DC3)

DCC(0,1) = (DC0+DC1-DC2-DC3)

DCC(1,1) = (DC0-DC1-DC2+DC3)
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Definition of inverse transform:

DC0 = (DCC(0,0)+ DCC(1,0)+ DCC(0,1)+ DCC(1,1))

DC1 = (DCC(0,0)- DCC(1,0)+ DCC(0,1)- DCC(1,1))

DC2 = (DCC(0,0)+ DCC(1,0)- DCC(0,1)- DCC(1,1))

DC3 = (DCC(0,0)- DCC(1,0)- DCC(0,1)+ DCC(1,1))

5.3.3 Zig-zag Scanning and Quantization

5.3.3.1 Simple Zig-Zag Scan
Except for Intra coding of luminance with QP<24, simple scan is used. This is basically zig-zag scanning
similar to the one used in H.263. The scanning pattern is:

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

FIGURE 12

Simple zig-zag scan.

5.3.3.2 Double Zig-Zag Scan
When using the VLC defined above, we use a one bit code for EOB. For Inter blocks and Intra with high
QP the probability of EOB is typically 50%, which is well matched with the VLC. In other words this
means that we on average have one non-zero coefficient per 4x4 block in addition to the EOB code
(remember that a lot of 4x4 blocks only have EOB). On the other hand, for Intra coding we typically
have more than one non-zero coefficient per 4x4 block. This means that the 1 bit EOB becomes
inefficient. To improve on this the 4x4 block is subdivided into two parts that are scanned separately and
with one EOB each. The two scanning parts are shown below – one of them in bold.

0 1 2 5

0 2 3 6

1 3 4 7

4 5 6 7

FIGURE 13

Double zig-zag scan.

5.3.3.3 Quantization
The quantization and dequantization processes shall perform usual quantization and dequantization, as
well as take care of the necessary normalization of transform coefficients. As specified in sub-subsection
4.4.8, 52 different QP values are used, from -12 to +39. The quantization and dequantization equations
are defined such that the equivalent step size doubles for every increment of 6 in QP. Thus, there is an
increase in step size of about 12% from one QP to the next. There is no “dead zone” in the quantization
process. For the QP in the range [0…31] the corresponding step size range is about the same as that for
H.263. With the range [-12…39], the smallest step size is about four times smaller than in H.263,
allowing for very high fidelity reconstruction, and the largest is about 60% larger than in H.263, allowing
for more rate control flexibility.
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The QP signaled in the bitstream applies for luminance quantization/dequantization. This could be called
QPluma. For chrominance quantization/dequantization a different value - QPchroma - is used. The
relation between the two is:

QPluma: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

QPchroma: 17 17 18 19 20 20 21 22 22 23 23 24 24 25 25 25 26 26 26 27 27 27 27

with QPchroma = QPluma if QPluma < 17.

5.3.3.3.1 Quantization of 4x4 luminance or chrominance coefficients

Since the step size doubles for every increment of 6 in QP, a periodic quantization table is used. Thus, our
indices into quantization coefficient tables depend only on (QP+12)%6 = QP%6 (where the % symbol
means the modulus operator), and the quantization and de-quantization formulas depend both on QP%6
and (QP+12)/6. In that way, the table size is minimized.

Quantization is performed according to the following equation:

( ) ( ) ( ) 15 ( 12) / 6, , ( 12)%6, , / 2 , , = 0, ,3QP
QY i j Y i j Q QP i j f i j+ +=  ⋅ + +   …

where Y are the transformed coefficients, YQ are the corresponding quantized values, Q(m,i,j) are the
quantization coefficients listed below, and |f| is in the range 0 to 214+(QP+12)/6/2, with f having the same sign
as the coefficient that is being quantized. Recall that QP+12 is the value signaled to the decoder, as
discussed in Subsection Error! Reference source not found.. Note that while the intermediate value
inside square brackets in the equation above has a 32-bit range, the final value YQ is guaranteed to fit in
16 bits.

5.3.3.3.2 Dequantization of 4x4 luminance or chrominance coefficients

Dequantization is performed according to the following equation:

( ) ( ) ( ) ( )' , , ( 12)%6, , 12 / 6, , = 0, ,3QY i j Y i j R QP i j QP i j= ⋅ + << + …

where the R(m,i,j) are the dequantization coefficients listed below. After dequantization, the inverse
transform specified above is applied. Then the final results are normalized by:

( ) ( )( )5, ' , 2 6= + >>X i j X i j

The dequantization formula can be performed in 16-bit arithmetic, because the coefficients R(m,i,j) are
small enough. Furthermore, the de-quantized coefficients have the maximum dynamic range that still
allows for the inverse transform to be performed in 16-bit arithmetic. Thus, the decoder needs only 16-bit
arithmetic for dequantization and inverse transform.

5.3.3.3.3 Quantization of 4x4 luminance DC coefficients

Quantization is performed according to the following equation:

( ) ( ) ( ) 16 ( 12) / 6, , ( 12)%6, , / 2 , , = 0, ,3QP
QY i j Y i j Q QP i j f i j+ +=  ⋅ + +   …

5.3.3.3.4 Dequantization of 4x4 luminance DC coefficients

The order of inverse transform and de-quantization of DC coefficients is changed, that is, the inverse
transform is performed first, then dequantization. This achieves the best possible dynamic range during
inverse transform computations.

After the inverse transform, dequantization is performed according to the following equation:

( ) ( ) ( ) 4 ( 12) / 6, , ( 12)%6,0,0 / 2 , , = 0, ,3QP
D QDX i j X i j R QP i j− + = ⋅ +  …

5.3.3.3.5 Quantization of 2x2 chrominance DC coefficients

Quantization is performed according to the following equation:

( ) ( ) ( ) 16 ( 12) / 6, , ( 12)%6, , 2 / 2 , , = 0, ,3QP
QY i j Y i j Q QP i j f i j+ +=  ⋅ + +   …
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5.3.3.3.6 Dequantization of 2x2 chrominance DC coefficients

Again the order of inverse transform and de-quantization of DC coefficients is changed, that is, the
inverse transform is performed first, then dequantization. This achieves the best possible dynamic range
during inverse transform computations.

After the inverse transform, dequantization is performed according to the following equation:

( ) ( ) ( ) 3 ( 12) / 6, , ( 12)%6,0,0 / 2 , , = 0, ,3QP
D QDX i j X i j R QP i j− + = ⋅ +  …

5.3.3.3.7 Quantization and dequantization coefficient tables

The coefficients Q(m,i,j) and R(m,i,j), used in the formulas above, are defined in pseudo code by:
Q[m][i][j] = quantMat[m][0] for (i,j) = {(0,0),(0,2),(2,0),(2,2)},

Q[m][i][j] = quantMat[m][1] for (i,j) = {(1,1),(1,3),(3,1),(3,3)},

Q[m][i][j] = quantMat[m][2] otherwise.

R[m][i][j] = dequantMat[m][0] for (i,j) = {(0,0),(0,2),(2,0),(2,2)},

R[m][i][j] = dequantMat[m][1] for (i,j) = {(1,1),(1,3),(3,1),(3,3)},

R[m][i][j] = dequantMat[m][2] otherwise.

quantMat[6][3] = {{13107, 5243, 8066}, {11916, 4660, 7490}, {10082, 4194, 6554},
{9362, 3647, 5825}, {8192, 3355, 5243}, {7282, 2893 , 4559}};

dequantMat[6][3] = {{10, 16, 13}, {11, 18, 14}, {13, 20, 16}, {14, 23, 18}, {16, 25,
20}, {18, 29, 23}};

5.3.3.4 Scanning and Quantization of 2x2 chrominance DC coefficients
DDC() is quantized (and dequantized) separately resulting in LEVEL, RUN and EOB. The scanning
order is: DCC(0,0), DCC(1,0), DCC(0,1), DCC(1,1). Inverse 2x2 transform as defined above is then
performed after dequantization resulting in dequantized 4x4 DC coefficients: DC0’ DC1’ DC2’ DC3’.

Chrominance AC coefficients (4x4 based) are then quantized similarly to before. Notice that there are
only 15 AC coefficients. The maximum size of RUN is therefore 14. However, for simplicity we use the
same relation between LEVEL, RUN and Code no. as defined for ‘Simple scan’ in TABLE 7.

5.3.4 Use of 2-dimensional model for coefficient coding.
In the 3D model for coefficient coding (see H.263) there is no good use of a short codeword of 1 bit. On
the other hand, with the use of 2D VLC plus End Of Block (EOB) (as used in H.261, H.262) and with the
small block size, 1 bit for EOB is usually well matched to the VLC.

Furthermore, with the fewer non-zero coefficients per block, the advantage of using 3D VLC is reduced.

As a result we use a 2D model plus End Of Block (EOB) in the present model. This means that an event
to be coded (RUN, LEVEL) consists of:

RUN which is the number of zero coefficients since the last nonzero coefficient.

LEVEL the size of the nonzero coefficient

EOB signals that there are no more nonzero coefficients in the block

5.4 Deblocking Filter
After the reconstruction of a macroblock a conditional filtering of this macroblock is taking place, that
effects the boundaries of the 4x4 block structure. Filtering is done on a macroblock level. In a first step
the 16 pel of the 4 vertical edges (horizontal filtering) of the 4x4 raster are filtered. After that, the 4
horizontal edges (vertical filtering) follow. This process also affects the boundaries of the already
reconstructed macroblocks above and to the right of the current macroblock. Frame edges are not filtered.
Note, that intra prediction of the current macro block takes place on the unfiltered content of the already
decoded neighbouring macroblocks. Depending on the implementation, these values have to be stored
before filtering.
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Note that when PSTRUCT indicates a field picture, then all calculations for the deblocking filter are
based solely on pixels from just the current field; the pixels from the other field of the containing frame
play no role at all.

5.4.1 Content Dependent thresholds
For the purpose of filtering each 4x4 block edge in a reconstructed macroblock a filtering Boundary
Strength Bs is assigned for luma:

Block boundary
between blocks j and k

Block j or k

Bs = 3

in block

NO

R(j)≠R(k) or
|V(j,x)-V(k,x)|≥1 pixel or
|V(j,y)-V(k,y)|≥1 pixel?

Bs = 1

YES

Bs = 0
(Skip)

Block boundary
between blocks j and k

Block j or k

Intra coded?

Bs = 4

YES

Coefficients coded

in block j or k?

NO

Bs = 2

R(j)≠R(k) or
|V(j,x)-V(k,x)|≥1 pixel or
|V(j,y)-V(k,y)|≥1 pixel?

Bs = 1

YES

NO

Bs = 0
(Skip)

NO

Bs = 3Bs = 3

YESBlock boundary is
also macroblock
boundary

Bs = 4

FIGURE 14

Flow chart for determining boundary strength (Bs), for the block boundary between two
neighbouring blocks j and k.

Block boundaries of chroma blocks always correspond to a block boundary of luma blocks. Therefore the
corresponding Bs for luma is also used for chroma boundaries.

The set of eight pixels across a 4x4 block horizontal or vertical boundary is denoted as

p4,p3,p2,p1 | q1,q2,q3,q4

with the actual boundary between p1 and q1. In the default mode up to two pixels can be updated as a
result of the filtering process on both sides of the boundary (that is at most p2, p1, q1, q2). Filtering
across a certain 4x4 block boundary is skipped all together if the corresponding Bs is equal to zero. Sets
of pixels across this edge are only filtered if the condition

Bs ≠ 0 AND |p1 – q1| < α AND |p2 - p1| < β AND |q2 - q1| < β
is true. The QP dependant thresholds α and β can be found in table 5.

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

α 3 3 3 3 3 3 3 3 3 3 4 4 5 6 8 10 13 17 21 26 30 35 43 48 55 64 77 96 128 128 192 192

β 0 0 0 0 0 0 0 0 4 4 4 5 5 5 7 7 7 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15

TABLE 4

QP dependent threshold parameters αααα and ββββ.
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5.4.2 The Filtering Process
Two sorts of filter are defined. In the default case the following filter will be used for p1 and q1

∆ = Clip( -C, C, ((q1 – p1) << 2 + (p2 – q2) + 4) >> 3 )

P1 = Clip( 0, 255, (p1+∆) )

Q1 = Clip( 0, 255, (q1- ∆) )

The two intermediate threshold variables

ap = |p3 – p1|
aq = |q3 – q1|
are used to decide whether p2 and q2 are filtered. These pixels are only processed for luminance.

If (Luma && ap < β ) p2 is filtered by:

P2 = p2 + Clip( -C0, C0, (p3+P1 - p2<<1) >> 1)

If (Luma && aq < β ) q2 is filtered by:

Q2 = q2 + Clip(-C0, C0, (q3+Q1 - q2<<1) >> 1)

where Clip() denotes a clipping function with the parameters Clip( Min, Max, Value) and the clipping
thesholds:

C0 = ClipTable[ QP, Bs ] (see TABLE 5)

C is set to C0 and than incremented by one if p2 will be filtered and again by one if q2 will be filtered.

TABLE 5

QP and Bs dependent Clipping thresholds

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ClipTable[QP,1] 0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4

ClipTable[QP,2] 0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 6 6

ClipTable[QP,3] 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6 6 6 8 8 9 10

ClipTable[QP,4] 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6 6 6 8 8 9 10

5.4.3 Stronger filtering for intra coded blocks
In case of intra coding and areas in the picture with little texture the subjective quality can be improved
by stronger filtering across block boundaries (that is: not 4x4 block boundaries). This stronger filtering is
performed if:

(Bs == 4) AND ( ap < β) AND (aq < β) AND (1 < |p1-q1| < QP / 4)

In this case filtering is performed with the equations shown below.

P1 = ( p3 + 2*p2 + 2*p1 + 2*q1 + q2 + 4) / 8

P2 = ( p4 + 2*p3 + 2*p2 + 2*p1 + q1 + 4) / 8

Q1 = ( p2 + 2*p1 + 2*q1 + 2*q2 + q3 + 4) / 8

Q2 = ( p1 + 2*q1 + 2*q2 + 2*q3 + q4 + 4) / 8

Only for luma p3 and q3 are filtered:

P3 = ( 2*p4 + 3*p3 + 2*p2 + p1 + 4) / 8

Q3 = ( 2*q4 + 3*q3 + 2*q2 + q1 + 4) / 8

5.5 Entropy Coding
In the default entropy coding mode, a universal VLC is used to code all syntax. The table of codewords
are written in the following compressed form.

1
0 1 x0

0 0 1 x1 x0
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0 0 0 1 x2 x1 x0
0 0 0 0 1 x3 x2 x1 x0
.................

where xn take values 0 or 1. We will sometimes refer to a codeword with its length in bits (L = 2n-1) and
INFO = xn,…x1, x0. Notice that the number of bits in INFO is n-1 bits. The codewords are numbered
from 0 and upwards. The definition of the numbering is:

Code_number = 2^L/2 + INFO -1 (L/2 use division with truncation. INFO = 0 when L = 1) Some of
the first code numbers and codewords are written explicitly in the table below. As an example, for the
code number 5, L = 5 and INFO = 10 (binary) = 2 (decimal)

TABLE 6

Code number and Codewords in explicit form

Code_number Code word
0 1
1 0 1 0
2 0 1 1
3 0 0 1 0 0
4 0 0 1 0 1
5 0 0 1 1 0
6 0 0 1 1 1
7 0 0 0 1 0 0 0
8 0 0 0 1 0 0 1
9 0 0 0 1 0 1 0
10 0 0 0 1 0 1 1

...... . . . . . . .

When L (L = 2N-1) and INFO is known, the regular structure of the table makes it easy to create a
codeword. Similarly, a decoder may easily decode a codeword by reading in N bit prefix followed by N-
1 INFO. L and INFO is then readily available. For each parameter to be coded, there is a conversion rule
from the parameter value to the code number (or L and INFO). TABLE 7 lists the connection between
code number and most of the parameters used in the present coding method.
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TABLE 7

Connection between codeword number and parameter values.

Code_
number

RUN MB_Type 8x8
mode

Intra_pred_mode1 MVD
D-

QUANT

CBP Tcoeff_chroma_
DC2

Tcoeff_chroma
_AC2

Tcoeff_luma2

Simple scan

Tcoeff_luma2

Double scan

Intra Inter Prob0 Prob1 Intr
a

Inter Level Run Leve
l

Run Leve
l

Run

0 0 Intra4x4 16x16 8x8 0 0 0 47 0 EOB - EOB - EOB -
1 1 0,0,03 16x8 8x4 1 0 1 31 16 1 0 1 0 1 0
2 2 1,0,0 8x16 4x8 0 1 -1 15 1 -1 0 -1 0 -1 0
3 3 2,0,0 8x8 4x4 0 2 2 0 2 2 0 1 1 1 1
4 4 3,0,0 8x8

(ref=0)
Intra 1 1 -2 23 4 -2 0 -1 1 -1 1

5 5 0,1,0 Intra4x4 2 0 3 27 8 1 1 1 2 2 0
6 6 1,1,0 0,0,03 3 0 -3 29 32 -1 1 -1 2 -2 0
7 7 2,1,0 1,0,0 2 1 4 30 3 3 0 2 0 1 2
8 8 3,1,0 2,0,0 1 2 -4 7 5 -3 0 -2 0 -1 2
9 9 0,2,0 3,0,0 0 3 5 11 10 2 1 1 3 3 0

10 10 1,2,0 0,1,0 0 4 -5 13 12 -2 1 -1 3 -3 0
11 11 2,2,0 1,1,0 1 3 6 14 15 1 2 1 4 4 0
12 12 3,2,0 2,1,0 2 2 -6 39 47 -1 2 -1 4 -4 0
13 13 0,0,1 3,1,0 3 1 7 43 7 1 3 1 5 5 0
14 14 1,0,1 0,2,0 4 0 -7 45 11 -1 3 -1 5 -5 0
15 15 2,0,1 1,2,0 5 0 8 46 13 4 0 3 0 1 3
16 16 3,0,1 2,2,0 4 1 -8 16 14 -4 0 -3 0 -1 3
17 17 0,1,1 3,2,0 3 2 9 3 6 3 1 2 1 1 4
18 18 1,1,1 0,0,1 2 3 -9 5 9 -3 1 -2 1 -1 4
19 19 2,1,1 1,0,1 1 4 10 10 31 2 2 2 2 2 1
20 20 3,1,1 2,0,1 0 5 -10 12 35 -2 2 -2 2 -2 1
21 21 0,2,1 3,0,1 1 5 11 19 37 2 3 1 6 3 1
22 22 1,2,1 0,1,1 2 4 -11 21 42 -2 3 -1 6 -3 1
23 23 2,2,1 1,1,1 3 3 12 26 44 5 0 1 7 6 0
24 24 3,2,1 2,1,1 4 2 -12 28 33 -5 0 -1 7 -6 0
25 25 3,1,1 5 1 13 35 34 4 1 1 8 7 0
26 26 0,2,1 5 2 -13 37 36 -4 1 -1 8 -7 0
27 27 1,2,1 4 3 14 42 40 3 2 1 9 8 0
28 28 2,2,1 3 4 -14 44 39 -3 2 -1 9 -8 0
29 29 3,2,1 2 5 15 1 43 3 3 4 0 9 0
30 30 3 5 -15 2 45 -3 3 -4 0 -9 0
31 31 4 4 16 4 46 6 0 5 0 10 0
32 32 5 3 -16 8 17 -6 0 -5 0 -10 0
33 33 5 4 17 17 18 5 1 3 1 4 1
34 34 4 5 -17 18 20 -5 1 -3 1 -4 1
35 35 5 5 18 20 24 4 2 3 2 2 2
36 36 -18 24 19 -4 2 -3 2 -2 2
37 37 19 6 21 4 3 2 3 2 3
38 38 -19 9 26 -4 3 -2 3 -2 3
39 39 20 22 28 7 0 2 4 2 4
40 40 -20 25 23 -7 0 -2 4 -2 4
41 41 21 32 27 6 1 2 5 2 5
42 42 -21 33 29 -6 1 -2 5 -2 5
43 43 22 34 30 5 2 2 6 2 6
44 44 -22 36 22 -5 2 -2 6 -2 6
45 45 23 40 25 5 3 2 7 2 7
46 46 -23 38 38 -5 3 -2 7 -2 7
47 47 24 41 41 8 0 2 8 11 0

.. .. .. .. .. .. .. ..

1 Prob0 and Prob1 defines the Intra prediction modes of two blocks relative to the prediction of prediction
modes (see details in the section for Intra coding).
2 For the entries above the horizontal line, the table is needed for relation between code number and
Level/Run/EOB. For the remaining Level/Run combination there is a simple rule. The Level/Run
combinations are assigned a code number according to the following priority: 1) sign of Level (+ -) 2)
Run (ascending) 3) absolute value of Level (ascending).
3 16x16 based intra mode. The 3 numbers refer to values for (Imode,AC,nc) - see 0.
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6 Context-based Adaptive Binary Arithmetic Coding (CABAC)

6.1 Overview
The entropy coding method of context-based adaptive binary arithmetic coding (CABAC) has three
distinct elements compared to the default entropy coding method using a fixed, universal table of variable
length codes (UVLC):

• Context modeling provides estimates of conditional probabilities of the coding symbols. Utilizing
suitable context models, given inter-symbol redundancy can be exploited by switching between
different probability models according to already coded symbols in the neighborhood of the
current symbol to encode.

• Arithmetic codes permit non-integer number of bits to be assigned to each symbol of the alphabet.
Thus the symbols can be coded almost at their entropy rate. This is extremely beneficial for
symbol probabilities much greater than 0.5, which often occur with efficient context modeling. In
this case, a variable length code has to spend at least one bit in contrast to arithmetic codes, which
may use a fraction of one bit.

• Adaptive arithmetic codes permit the entropy coder to adapt itself to non-stationary symbol
statistics. For instance, the statistics of motion vector magnitudes vary over space and time as
well as for different sequences and bit-rates. Hence, an adaptive model taking into account the
cumulative probabilities of already coded motion vectors leads to a better fit of the arithmetic
codes to the current symbol statistics.

FIGURE 15

Generic block diagram of CABAC entropy coding scheme

Next we give a short overview of the main coding elements of the CABAC entropy coding scheme as
depicted in FIGURE 15. Suppose a symbol related to an arbitrary syntax element is given, then, in a first
step, a suitable model is chosen according to a set of past observations. This process of constructing a
model conditioned on neighboring symbols is commonly referred to as context modeling and is the first
step in the entropy coding scheme. The particular context models that are designed for each given syntax
model are described in detail in Section 6.2 and Section 6.3. If a given symbol is non-binary valued, it
will be mapped onto a sequence of binary decisions, so-called bins, in a second step. The actual
binarization is done according to a given binary tree, as specified in Section 6.6. Finally, each binary
decision is encoded with the adaptive binary arithmetic coding (AC) engine using the probability
estimates, which have been provided either by the context modeling stage or by the binarization process
itself. The provided models serve as a probability estimation of the related bins. After encoding of each
bin, the related model will be updated with the encoded binary symbol. Hence, the model keeps track of
the actual statistics.

6.2 Context Modeling for Coding of Motion and Mode Information
In this section we describe in detail the context modeling of our adaptive coding method for the syntax
elements macroblock type (MB_type), motion vector data (MVD) and reference frame parameter
(Ref_frame).
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6.2.1 Context Models for Macroblock Type
We distinguish between MB_type for intra and inter frames. In the following, we give a description of the
context models which have been designed for coding of the MB_type information in both cases. The
subsequent process of mapping a non-binary valued MB_type symbol to a binary sequence in the case of
inter frames will be given in detail in section 6.6.

6.2.1.1 Intra Pictures
For intra pictures, there are two possible modes for each macroblock, i.e. Intra4x4 and Intra16x16, so that
signalling the mode information is reduced to transmitting a binary decision. Coding of this binary
decision for a given macroblock is performed by means of context-based arithmetic coding, where the
context of a current MB_type C is build by using the MB_types A and B1 of neighboring macroblocks
(as depicted in FIGURE 16) which are located in the causal past of the current coding event C. Since A
and B are binary decisions, we define the actual context number ctx_mb_type_intra(C) of C by
ctx_mb_type_intra(C) = A + B, which results in three different contexts according to the 4 possible
combinations of MB_type states for A and B.

In the case of MB_type Intra16x16, there are three additional parameters related to the chosen intra
prediction mode, the occurrence of significant AC-coefficients and the coded block pattern for the
chrominance coefficients, which have to be signalled. In contrast to the current test model, this
information is not included in the mode information, but is coded separately by using distinct models as
described in Section 6.6.

C

B

A

FIGURE 16

Neighboring symbols A and B used for conditional coding of a current symbol C.

6.2.1.2 P- and B-Pictures
Currently there a 10 different macroblock types for P-frames and 18 different macroblock types for B-
frames, provided that the additional information of the 16x16 Intra mode is not considered as part of the
mode information. Coding of a given MB_type information C is done similar to the case of intra frames
by using a context model which involves the MB_type information A and B of previously encoded (or
decoded) macroblocks (see FIGURE 16). However, here we only use the information whether the
neighboring macroblocks of the given macroblock are of type Skip (P-frame) or Direct (B-frame), such
that the actual context number ctx_mb_type_inter(C) is given in C-style notation for P-frame coding by
ctx_mb_type_inter(C) = ((A==Skip)?0:1) + ((B==Skip)?0:1) and by ctx_mb_type_inter(C) =
((A==Direct)?0:1) + ((B==Direct)?0:1) for B-frame coding. Thus, we obtain 3 different contexts,
which, however, are only used for coding of the first bin of the binarization b(C) of C, where the actual
binarization of C will be performed as outlined in Section 6.6. For coding the second bin, a separate
model is provided and for all remaining bins of b(C) two additional models are used as further explained
in Section 6.6. Thus, a total number of 6 different models are supplied for coding of macroblock type
information relating to P-and B-frames.

1 For mathematical convenience the meaning of the variables A, B and C is context dependent.
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ctx _ mvd (C,k) =

0, for e k(C) < 3,

1, for e k(C) > 15,

2, else

ctx _ mvd (C,k) =

0, for e k(C) < 3,

1, for e k(C) > 32,

2, else

ctx _ mvd (C,k) =

0, for e k(C) < 3,

1, for e k

2, else

ek(C) = | mvd k(A)| + | mvd k(B)|ek(C) = | mvd k(A)| + | mvd k(B)|C

B
A

C

B
A Separation of mvd k(C)

sign

Binariz ation

Bin_no. 1 2 3 4 5 ...

Context _no. {0,1,2} 3 4 5 6

Separation of mvd k(C)

|mvd k(C)||mvd k(C)| sign

Binarization

Bin_no. 1 2 3 4 5 ...

Context _no. {0,1,2} 3 4 5 6

Bin_no. 1 2 3 4 5 ...

Context _no. {0,1,2} 3 4 5 6 7

mvd k(C)mvd kmvd k(B)mvd kmvd k(A)mvd k

ctx_mvd(C,k)

(a) (b)

FIGURE 17

Illustration of the encoding process for a given residual motion vector component mvdk(C) of a
block C: (a) Context selection rule. (b) Separation of mvdk(C) into sign and magnitude, binarization

of the magnitude and assignment of context models to bin_nos.

6.2.2 Context Models for Motion Vector Data
Motion vector data consists of residual vectors obtained by applying motion vector prediction. Thus, it is
a reasonable approach to build a model conditioned on the local prediction error. A simple measure of the
local prediction error at a given block C is given by evaluating the L1-norm )()(),( BmvdAmvdBAe kkk +=
of two neighboring motion vector prediction residues )(Amvdk

and )(Bmvdk
for each component of a

motion vector residue )(Cmvdk
of a given block, where A and B are neighboring blocks of block C, as

shown in FIGURE 17(a). If one of the neighboring blocks belongs to an adjacent macroblock, we take
the residual vector component of the leftmost neighboring block in the case of the upper block B, and in
the case of the left neighboring block A we use the topmost neighboring block. If one of the neighboring
blocks is not available, because, for instance, the current block is at the picture boundary, we discard the
corresponding part of ke . By using

ke , we now define a context model ctx_mvd(C,k) for the residual

motion vector component )(Cmvdk
consisting of three different context models:
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For the actual coding process, we separate )(Cmvdk
in sign and modulus, where only the first bin of the

binarization of the modulus )(Cmvdk
is coded using the context models ctx_mvd(C,k). For the remaining

bins of the modulus, we have 4 additional models: one for the second, one for the third bin, one for the
fourth, and one model for all remaining bins. In addition, the sign coding routine is provided with a
separate model. This results in a total sum of 8 different models for each vector component.

In the case of B-frame coding, an additional syntax element has to be signaled when the bi-directional
mode is chosen. This element represents the block size (Blk_size), which is chosen for forward or
backward motion prediction. The related code number value ranges between 0 and 6 according to the 7
possible block shapes in FIGURE 2. Coding of Blk_size is done by using the binarization of the
P_MB_type as described in Section 6.6.

6.2.3 Context Models for Reference Frame Parameter
If the option of temporal prediction from more than one reference frame is enabled, the chosen reference
frame for each macroblock must be signaled. Given a macroblock and its reference frame parameter as a
symbol C according to the definition in Section 4.4, a context model is built by using symbols A and B of
the reference frame parameter belonging to the two neighboring macroblocks (see FIGURE 16). The
actual context number of C is then defined by ctx_ref_frame(C) = ((A==0)?0:1) + 2*((B==0)?0:1), such
that ctx_ref_frame(C) indicates one of four models used for coding of the first bin of the binary
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equivalent b(C) of C. Two additional models are given for the second bin and all remaining bins of b(C),
which sums up to a total number of six different models for the reference frame information.

6.3 Context Modeling for Coding of Texture Information
This section provides detailed information about the context models used for the syntax elements of
coded block pattern (CBP), intra prediction mode (IPRED) and (RUN, LEVEL) information.

6.3.1 Context Models for Coded Block Pattern
Except for MB_type Intra16x16, the context modeling for the coded block pattern is treated as follows.
There are 4 luminance CBP bits belonging to 4 8x8 blocks in a given macroblock. Let C denote such a Y-
CBP bit, then we define ctx_cbp_luma(C) = A + 2*B, where A and B are Y-CBP bits of the neighboring
8x8 blocks, as depicted in FIGURE 16. The remaining 2 bits of CBP are related to the chrominance
coefficients. In our coding approach, these bits are translated into two dependant binary decisions, such
that, in a first step, we send a bit cbp_chroma_sig which signals whether there are significant
chrominance coefficients at all. The related context model is of the same kind as that of the Y-CBP bits,
i.e. ctx_cbp_chroma_sig(C) = A + 2*B, where A and B are now notations for the corresponding
cbp_chroma_sig bits of neighboring macroblocks. If cbp_chroma_sig = 1 (non-zero chroma coefficients
exist), a second bit cbp_chroma_ac related to the significance of AC chrominance coefficients has to be
signalled. This is done by using a context model conditioned on the cbp_chroma_ac decisions A and B of
neighboring macroblocks, such that ctx_cbp_chroma_AC(C) = A + 2*B. Note, that due to the different
statistics there are different models for Intra and Inter macroblocks, so that the total number of different
models for CBP amounts to 2*3*4=24. For the case of MB_type Intra16x16, there are three additional
models, one for the binary AC decision and two models for each of the two chrominance CBP bits.

6.3.2 Context Models for Intra Prediction Mode
In Intra4x4 mode, coding of the intra prediction mode C of a given block is conditioned on the intra
prediction mode of the previous block A to the left of C (see FIGURE 16). In fact, it is not the prediction
mode number itself which is signaled and which is used for conditioning but rather its predicted order
similar as it is described in Section 4.4.4. There are 6 different prediction modes and for each mode, two
different models are supplied: one for the first bin of the binary equivalent of C and the other for all
remaining bins. Together with two additional models for the two bits of the prediction modes of MB_type
Intra16x16 (in binary representation), a total number of 14 different models for coding of intra prediction
modes is given.

6.3.3 Context Models for Run/Level and Coeff_count
Coding of RUN and LEVEL is conditioned primarily on the scanning mode, the DC/AC block type, the
luminance/chrominance, and the intra/inter macroblock decision. Thus, a total number of 8 different block
types are given according to TABLE 8. In contrast to the UVLC coding mode, RUN and LEVEL are
coded separately in the CABAC mode, and furthermore an additional coding element called
COEFF_COUNT is introduced, which denotes the number of non-zero coefficients in a given block. The
coefficients corresponding to a scanning mode are processed in the following way: First, the number of
non-zero coefficients COEFF_COUNT is encoded. Then, in a second step, RUN, LEVEL and SIGN of
all non-zero coefficients are encoded. FIGURE 18 illustrates this encoding scheme that is described in
more detail in the following sections.

TABLE 8

Numbering of the different block types used for coding of RUN, LEVEL and COEFF_COUNT

Ctx_run_level_coeff_count Block Type

0 Double Scan (Intra Luma only)

1 Single Scan (Inter Luma only)

2 Intra Luma 16x16, DC
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3 Intra Luma 16x16, AC

4 Inter Chroma, DC

5 Intra Chroma, DC

6 Inter Chroma, AC

7 Intra Chroma, AC

Count the number of coefficients of
transform unit (COEFF_COUNT)

Encode COEFF_COUNT;

For (i = 0; i < COEFF_COUNT; i++)
Encode RUN[i];
Encode LEVEL[i];
Encode SIGN[i];

If (i == 0)
MaxRun = MaxCoeff – COEFF_COUNT;

If (MaxRun > 0)
Encode (RUN[i], MaxRun);

MaxRun = Max Run – RUN[i];

Encode RUN[i];

FIGURE 18

Coding scheme for transform coefficients

6.3.3.1 Context-based Coding of COEFF_COUNT Information
For capturing the correlations between COEFF_COUNTs of neighboring blocks appropriate context
models are designed, which are only applied to the first binary decision (bin) in the unary binarization
tree. More specifically, first the COEFF_COUNT is classified according the block type and then a local
context for the first bin is built according to the rules specified in TABLE 9. The remaining bins are
coded with two separate models; one for the second and the other for all remaining bins.

TABLE 9

Description of the context formation for the first bin for coding of COEFF_COUNT
(CC denotes the COEFF_COUNT of the corresponding blocks)

Block
Type

Number
of ctx’s

Description of the context formation for the first bin Comments

0 3
ctx_coeff_count(A) =0;

ctx_coeff_count(B) = (CC(A)==0) ? 1 : 2;

A: upper scan path;

B: lower scan path

1 4 ctx_coeff_count(C) = ((CC(A)==0)?0:1) + 2*(( CC(B)==0)?0:1);
A,B,C as in Error!
Reference source
not found.

2 1 Only one ctx

3 3
ctx_coeff_count(0) =0;

ctx_coeff_count(i) = (CC(i-1)==0) ? 1 : 2; i={1,..,15}

i denotes the
number of the 4x4
block as in
FIGURE 3

4,5,6,7 2
ctx_coeff_count(U) == 0;

ctx_coeff_count(V) == 1;
U, V : the different
chroma parts
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6.3.3.2 Context-based Coding of RUN Information
For encoding the RUN, the information of the initially encoded COEFF_COUNT and all previously
encoded RUN elements is exploited, as shown in the pseudo-C code of FIGURE 18. Here, we make use
of the fact that, if the maximum number of a RUN range is known in advance, the binarization can be
restricted to a truncated code tree, which is explained in section 4.5.2.3.5. However, by using the
information given by previously encoded RUNs the MaxRun counter can further be adapted on the fly,
which may lead to potentially shorter binarized codewords of subsequent RUN elements to encode. In
some cases, where, for instance, coefficients are aggregated at the end of the scan path, signaling of zero-
valued RUN elements is completely omitted.

Context models for coding of RUN information depend on a threshold decision involving mostly the
coefficient counter, e.g. in 4x4 single scan inter coding mode, the context model ctx_run for luma is given
by ctx_run = ((COEFF_COUNT) >= 4) ? 1 : 0. For a more detailed description refer to Table 10. The
idea behind this context design is that the COEFF_COUNT represents the activity of the given block, and
that the probability distribution of the RUN symbol somehow depends on the activity of the block. First,
the RUN is classified according the given block type, then a context ctx_run is chosen according to Table
10. For each context ctx_run two separate models are provided for the coding of RUN; one model for the
first bin and the second model for all remaining bins of the binary codeword related to RUN.

Table 10

Description of the context formation for RUNs
(the variable i denotes the coefficient counter (i ∈∈∈∈ {0,..,(COEFF_COUNT-1)}

Block
Type Description of the context formation for the runs)

0,3,6,7 ctx_run = ((COEFF_COUNT-i) >= 3) ? 1 : 0;

1 ctx_run = (COEFF_COUNT >= 4) ? 1 : 0;

2 ctx_run = ((COEFF_COUNT-i) >= 4) ? 1 : 0;

4,5 ctx_run = ((COEFF_COUNT-i) >= 2) ? 1 : 0;

6.3.3.3 Context-based Coding of LEVEL Information
LEVEL information is first separated into sign and magnitude. Then the magnitude and sign of LEVEL,
are first classified based on the block type. For coding of ABS_LEVEL=abs(LEVEL) context models
depending on the previously encoded or decoded ABS_LEVEL within a given block are applied. More
specifically, the following context model is defined for bins of the magnitude ABS_LEVEL:

Context Model for ABS_LEVEL
if (bin_nr>3)

bin_nr=3;
end
if (Prev_level>MAX_LEVEL)

Prev_level=MAX_LEVEL;
end
context_nr = (bin_nr-1)*MAX_LEVEL+Prev_level,

where MAX_LEVEL=3, and where the Prev_level is initialized to zero at the beginning of each block and
updated after each en-/decoding step by the most recently en-/decoded ABS_LEVEL value. Note that for
double-scan, Prev_level is initialized at the beginning of each scan, i.e., twice per block.
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6.4 Double Scan Always for CABAC Intra Mode
In the UVLC mode, the scan mode for intra coding depends on the QP value: for QP < 24 the double scan
is used, whereas for QP≥24 the single scan mode is employed. In the contrast to that, CABAC entropy
coding always uses the double scan mode, independently of the given QP value.

6.5 Context Modeling for Coding of Dquant
For a given macroblock, the value of Dquant is first mapped to a positive value using the arithmetic wrap
as described in section 4.4.8. This wrapped value C is then coded conditioned on the corresponding
Dquant A of the left neighboring macroblock, such that that ctx_dquant(C)=(A !=0); This results in 2
context models for the first bin. Two additional models are used for the second and all remaining bins of
the binarized value C. Thus, a total sum of four context models are used for Dquant.

TABLE 11

Binarization by means of the unary code tree

Code symbol Binarization
0 1
1 0 1
2 0 0 1
3 0 0 0 1
4 0 0 0 0 1
5 0 0 0 0 0 1
6 0 0 0 0 0 0 1

. . . . . . . . . . .

Bin_no. 1 2 3 4 5 6 7 . .

6.6 Binarization of Non-Binary Valued Symbols
A non-binary valued symbol will be decomposed into a sequence of binary decisions. Except for the
MB_type syntax element we use the binarization given by the unary code tree in Table 11.

TABLE 12

(a) Binarization for P-frame MB_type and (b) for B-frame MB_type

P_MB_type Binarization B_MB_type Binarization

0 0 0 0

1 1 0 0 1 1 0 0

2 1 0 1 2 1 0 1

3 1 1 0 0 0 3 1 1 0 0 0

4 1 1 0 0 1 4 1 1 0 0 1

5 1 1 0 1 0 5 1 1 0 1 0

6 1 1 0 1 1 6 1 1 0 1 1

7 1 1 1 0 0 7 1 1 1 0 0 0 0

8 1 1 1 0 1 . .

9 1 1 1 1 0 17 1 1 1 1 0 1 0

Bin_no 1 2 3 4 5 Bin_no 1 2 3 4 5 6 7
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For the binary decomposition of the MB_type symbols of P- or B-frames, which are of limited range (0
… 9) or (0 … 17) respectively, an alternative binarization is used, which is shown in TABLE 13.

6.6.1 Truncated Binarization for RUN, COEFF_COUNT and Intra Prediction Mode
If the maximum number of a given syntax element is known in advance, the binarization can be restricted
to a truncated code tree. Suppose the alphabet size of a specific syntax element is fixed, then for the unary
binarization of the maximum value of this syntax element the terminating “1” can be omitted. This
mechanism applies for RUN, COEFF_COUNT and Intra Prediction Mode.

6.7 Adaptive Binary Arithmetic Coding
At the beginning of the overall encoding of a given frame the probability models associated with all 126
different contexts are initialized with a pre-computed start distribution. For each symbol to encode the
frequency count of the related binary decision is updated, thus providing a new probability estimate for
the next coding decision. However, when the total number of occurrences of a given model exceeds a pre-
defined threshold, the frequency counts will be scaled down. This periodical rescaling exponentially
weighs down past observations and helps to adapt to the non-stationarity of a source.

The binary arithmetic coding engine used in our presented approach is a straightforward implementation
similar to that given in "Arithmetic Coding Revisited", Moffat, Neal, Witten. ACM Transactions on
Information Systems, 16(3):256-294, July 1998.

[Editor: This must be improved by the area assistant editor.] 
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7 B-pictures

7.1 Introduction

Temporal scalability is achieved using bi-directionally predicted pictures, or B pictures. The use of B
pictures is indicated in PTYPE. The B pictures are predicted from either or both the previous and
subsequent reconstructed pictures to achieve improved coding efficiency as compared to that of P
pictures. FIGURE 19 illustrates the predictive structure with two B pictures inserted between I/P
pictures.

I1 B2 B3 P4 B5 B6 P7

FIGURE 19

Illustration of B picture concept.

The location of B pictures in the bitstream is in a data-dependence order rather than in temporal order.
Pictures that are dependent on other pictures shall be located in the bitstream after the pictures on which
they depend. For example, as illustrated in Figure A.1, B2 and B3 are dependent on I1 and P4, and B5 and
B6 are dependent on P4 and P7. Therefore the bitstream syntax order of the encoded pictures would be I1,
P4, B2, B3, P7, B5, B6, … However, the display order of the decoded pictures should be I1, B2, B3, P4, B5,
B6, P7, … The difference between the bitstream order of encoded pictures and the display order of
decoded pictures will increase latency and memory to buffer the P pictures.

There is no limit to the number of B pictures that may be inserted between each I/P picture pair. The
maximum number of such pictures may be signaled by external means (for example Recommendation
H.245). The picture height, width, and pixel aspect ratio of a B picture shall always be equal to those of
its temporally subsequent reference picture.

The B pictures support multiple reference frame prediction. The maximum number of previous reference
frames that may be used for prediction in B pictures must be less than or equal to the number of reference
frames used in the immediately following P frame, and it may be signaled by external means (for example
Recommendation H.245). The use of this mode is indicated by PTYPE.

7.2 Macroblock modes and 8x8 sub-partition modes
There are five different prediction types supported by B pictures. They are direct, forward, backward, bi-
directional and the intra prediction modes. Both direct mode and bi-directional mode are bi-directional
prediction. The only difference is that the bi-directional mode uses separate motion vectors for forward
and backward prediction, whereas the forward and backward motion vectors of the direct mode are
derived from the motion vectors used in the corresponding macroblocks of the subsequent reference
frame. In the direct mode, the same number of motion vectors as in the co-located macroblock of the
temporal following reference picture is used. To calculate prediction blocks for the direct and bi-
directional prediction mode, the forward and backward motion vectors are used to obtain appropriate
blocks from reference frames and then these blocks are averaged by dividing the sum of the two
prediction blocks by two.

Forward prediction means prediction from a previous reference picture, and backward prediction means
prediction from a temporally subsequent reference picture.
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The intra prediction means to encode the macroblock by using intra coding.

For B-frames, a similar tree-structured macroblock partitioning as in P-pictures is used. As in P-frames,
one reference frame parameter is transmitted for each 16x16, 16x8, and 8x16 block as well as for each
8x8 sub-partition. Additionally, for each 16x16, 16x8, 8x16 block, and each 8x8 sub-partition, the
prediction direction (forward, backward, bi-directional) can be chosen separately. For avoiding a separate
code word to specify the prediction direction, the indication of the prediction direction is incorporated
into the codewords for macroblock modes and 8x8 partitioning modes, respectively, as shown in the table
Table 11 and Table 12. Moreover, an 8x8 sub-partition of a B-frame macroblock can also be coded in
Direct mode.

Table 11: Macroblock modes for B-frames

Code number Macroblock mode 1. block 2. block
0 Direct
1 16x16 Forw.
2 16x16 Backw.
3 16x16 Bidirect.
4 16x8 Forw. Forw.
5 8x16 Forw. Forw.
6 16x8 Backw. Backw.
7 8x16 Backw. Backw.
8 16x8 Forw. Backw.
9 8x16 Forw. Backw.
10 16x8 Backw. Forw.
11 8x16 Backw. Forw.
12 16x8 Forw. Bidirect.
13 8x16 Forw. Bidirect.
14 16x8 Backw. Bidirect.
15 8x16 Backw. Bidirect.
16 16x8 Bidirect. Forw.
17 8x16 Bidirect. Forw.
18 16x8 Bidirect. Backw.
19 8x16 Bidirect. Backw.
20 16x8 Bidirect. Bidirect.
21 8x16 Bidirect. Bidirect.
22 8x8(split)
23 Intra4x4
24 … Intra16x16

Table 12: Modes for 8x8 sub-partitions in B-frames

Code number 8x8 partition mode Prediction
0 Direct
1 8x8 Forw.
2 8x8 Backw.
3 8x8 Bidirect.
4 8x4 Forw.
5 4x8 Forw.
6 8x4 Backw.
7 4x8 Backw.
8 8x4 Bidirect.
9 4x8 Bidirect.
10 4x4 Forw.
11 4x4 Backw.
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12 4x4 Bidirect.
13 Intra

7.3 Syntax
Some additional syntax elements are needed for B pictures. The structure of B picture related fields is
shown in FIGURE 20. On the Ptype, two picture types shall be added to include B pictures with and
without multiple reference frame prediction. On the MB_type, different macroblock types are defined to
indicate the different prediction types for B pictures. The fields of MVDFW, and MVDBW are inserted
to enable bi-directional prediction. These fields replace the syntax element MVD.

Ptype

MB_Type

Intra_pred_mode

Ref_frame

MVDBW

Loop

Omit

RUN

MVDFW

8x8 mode

FIGURE 20

Syntax diagram for B pictures.[Editor: Add PSTRUCT]

7.3.1 Picture type (Ptype) ), Picture Structure (PSTRUCT) and RUN
See section 3.1 for definition.

7.3.2 Macro block type (MB_type) and 8x8 sub-partition type
Table 11shows the macroblock modes for B pictures.

In “Direct” prediction type, no motion vector data is transmitted.

In NxM mode, each NxM block of a macroblock is predicted by using different motion vectors, reference
frames, and prediction directions. As indicated in Table 11, three different macroblock modes that differ
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in their prediction directions exist for the 16x16 mode. For the 16x8 and 8x16 macroblock modi, 9
different combinations of the prediction directions are possible. If a macroblock is transmitted in 8x8
mode, an additional codeword for each 8x8 sub-partition indicates the decomposition of the 8x8 block as
well as the chosen prediction direction (see Table 12).

.

The “Intra_4x4” and “Intra_16x16” prediction type indicates that the macroblock is encoded by intra
coding with different intra prediction modes which are defined in the same manner as in section 4.4.4 and
TABLE 7. No motion vector data is transmitted for the intra macroblocks or 8x8 sub-partition coded in
intra mode.

7.3.3 Intra prediction mode (Intra_pred_mode)
As present, Intra_pred_mode indicates which intra prediction mode is used. Intra_pred_mode is present
when Intra_4x4 prediction type is indicated in the MB_type or the 8x8 sub-partition type. The
code_number is same as that described in the Intra_pred_mode entry of TABLE 7.

7.3.4 Reference Picture (Ref_picture)
At present, Ref_picture indicates the position of the reference picture in the reference picture buffer to be
used for forward motion-compensated for current macroblock. The reference frame parameter is
transmitted for each 16x16, 16x8, 8x16 block, and each 8x8 sub-partition if forward or bi-directional
prediction is used. Ref_picture is present only when the Ptype signals the use of multiple reference
frames. Decoded I/P pictures are stored in the reference picture buffer in first-in-first-out manner and the
most recently decoded I/P picture is always stored at position 0 in the reference frame buffer. The
code_number and interpretation for Ref_picture differs for PSTRUCT indicating field picture or frame
picture and is the same as the definition for REF_picture in section 3.4.4.

Note that whenever PSTRUCT indicates that the current picture is a field picture and when the present
MB_type indicates Backward_NxM or Bi-directional prediction type, the backward reference is the
immediately following I or P field of the same field parity (in display order). If PSTRUCT indicates a
frame, then the backward reference is the immediately following I or P frame (in display order).

TABLE 13

Code_number for ref_frame

Code_number Reference frame

0 The most recent previous frame (1 frame back)

1 2 frames back

2 3 frames back

… …

7.3.5 Motion vector data (MVDFW, MVDBW)
MVDFW is the motion vector data for the forward vector, if present. MVDBW is the motion vector data
for the backward vector, if present. If so indicated by MB_type and/or 8x8 sub-partition type, vector data
for 1-16 blocks are transmitted. The order of transmitted motion vector data is the same as thatindicated
in FIGURE 2. For the code_number of motion vector data, please refer to TABLE 7.

7.4 Decoder Process for motion vector

7.4.1 Differential motion vectors
Motion vectors for forward, backward, or bi-directionally predicted blocks are differentially encoded. A
prediction has to be added to the motion vector differences to get the motion vectors for the macroblock.



File: JVT-B118r1.DOC Page: 63
Date Printed: 14.03.2002

The predictions are formed in way similar to that described in section 4.4.6. The only difference is that
forward motion vectors are predicted only from forward motion vectors in surrounding macroblocks, and
backward motion vectors are predicted only from backward motion vectors in surrounding macroblocks.

If a neighboring macroblock does not have a motion vector of the same type, the candidate predictor for
that macroblock is set to zero for that motion vector type.

7.4.2 Motion vectors in direct mode
In direct mode the same block structure as for the co-located macroblock in the temporally subsequent
picture is used. For each of the sub-blocks the forward and backward motion vectors are computed as
scaled versions of the corresponding vector components of the co-located macroblock in the temporally
subsequent picture as described below.

If the multiple reference frame prediction is used, the forward reference frame for the direct mode is the
same as the one used for the corresponding macroblock in the temporally subsequent reference picture.
The forward and backward motion vectors for direct mode macroblocks are calculated differently
depending on whether PSTRUCT and the reference are fields or frames. Also note that if the subsequent
reference picture is an intra-coded frame or the reference macroblock is an intra-coded block, the motion
vectors are set to zero. With possible adaptive switch of frame/field coding at picture level, a B-frame or
its future reference frame can be coded in either frame structure or field structure. Hence, there can be
four different combinations of frame or field coding for a pair of a MB in B and its collocated MB in the
future reference. Calculations of the two MVs in direct mode are slightly different for the four cases.

Case 1: Both the current MB and its collocated are in frame mode

Both the current B and its future reference are in frame structure, as shown in Fig. 4. The forward
reference is the frame pointed by the forward MV of the collocated MB and the backward reference is the
immediate future reference frame of I or P. Two MVs ( BF MVMV , ) are calculated by (see Fig. 4)

DDBB

DBF

TRMVTRTRMV

TRMVTRMV

/)(

/

⋅−=
⋅=

where BTR is the temporal distance between the current B frame and the reference frame pointed by the

forward MV of the collocated MB, and DTR is the temporal distance between the future reference frame
and the reference frame pointed by the forward MV of the collocated MB.

f1 f2f2f1f2f1

TRD

TRB

MV

Time

MVF

MVB

............

current MB co-located MB

Future Ref. FrameRef. Frame Current B

FIGURE 21
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Both the current MB in B and its collocated MB in the future reference of I or P are in frame mode.
Solid-line is for frames and dot-line for fields. f1 stands for field 1 and f2 for field 2.

Case 2: Both the current MB and its collocated MB are in field mode

Both the current B frame and its future reference are in field structure. Two MVs of direct mode MB in B
field are calculated from the forward MV of the collocated MB in the future reference field of the same
parity. For field 1, the forward MV of the collocated MB will always point to one of the previously coded
I or P fields, as shown in Fig. 5. The forward reference field for the direct mode MB will be the same as
pointed by the forward MV of the collocated MB, and the backward reference field will be field 1 of the
future reference frame. The forward and backward MVs ),( ,, iBiF MVMV for the direct mode MB are

calculated as follows,

iDiiDiBiB

iDiiBiF

TRMVTRTRMV

TRMVTRMV

,,,,

,,,

/)(

/

⋅−=
⋅=

where the subscript, i , is the field index (1 for the 1st field and 2 for the 2nd field), and iMV is the

forward MV of the collocated MB in field i of the future reference frame. iBTR , is the temporal distance

between the current B field ( i ) and the reference field pointed by the forward MV of the collocated MB
in field interval, iDTR , is the temporal distance between the future reference field ( i ) and the reference

field pointed by the forward MV of the collocated MB in field interval.

f1 f2f2f1f2f1

TRD,1

TRB,1

MV1

Time

MVF,1

MVB,1

............

current MB co-located MB

Future Ref. FrameRef. Frame Current B

FIGURE 22

Both the current MB in B and its collocated MB in the future reference of I or P are in field mode.
Solid-line is for frames and dot-line for fields. f1 stands for field 1 and f2 for field 2. The forward
MV of the collocated MB in field 1 of the future reference always points to one of the previously

coded I or P fields.

For field 2, the forward MV of the collocated MB may point to one of the previously coded I or P fields.
Calculation of the forward and backward MVs therefore follows the same equation (2) above. However, it
is also possible that the forward MV of the collocated MB in field 2 of the future reference frame points
to field 1 of the same frame, as shown in Fig. 6. In this case, the two MVs ),( 2,2, BF MVMV of the direct

mode MB are calculated as follows:
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2,22,2,2,

2,22,2,

/)(

/
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TRMVTRMV

⋅+−=
⋅−=

Note that both MVs ),( 2,2, BF MVMV are now backward MVs, pointing to field 1 and field 2 of the future

reference frame respectively.

f1 f2f2f1f2f1

TRD,2

TRB,2

MV2

Time

MVF,2

MVB,2

............

current MB co-located MB

Future Ref. FrameRef. Frame Current B

FIGURE 23

Both the current MB in B and its collocated MB in the future reference of I or P are in field mode.
Solid-line is for frames and dot-line for fields. f1 stands for field 1 and f2 for field 2. The forward
MV of the collocated MB in field 2 of the future reference frame may point to field 1 of the same

frame.

Case 3:The current MB is field mode and its collocated MB in frame mode

The current B is in field structure while its future reference is in frame structure, as shown in Fig. 7. Let

MBcurrenty _ and MBcollocatedy _ be the notations of the vertical indexes of the current MB and its collocated

MB respectively. Then, MBcurrentMBcollocated yy __ 2= . Two MVs of direct mode MB are calculated from the

forward MV of the collocated MB in the future reference frame as follows

DDiBiB

DiBiF

TRMVTRTRMV

TRMVTRMV

/)(

/

,,

,,

⋅−=
⋅=

Since the collocated MB is frame coded, MV in (4) is derived by dividing the associated frame-based
MV by 2 in vertical direction. Forward reference field of direct mode MB is the same parity field in the
reference frame used by its collocated MB. Backward reference field is the same parity field of the future
reference frame.
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FIGURE 24

The current MB in B is in field mode while its collocated MB in the future reference of I or P in
frame mode. Solid-line is for frames and dot-line for fields. f1 stands for field 1 and f2 for field 2.

Case 4: The current MB is in frame mode while its collocated MB in fieldmode

The current B is in frame structure while its future reference is in field structure, as shown in Fig. 8. Let

MBcurrenty _ and MBcollocatedy _ be the notations of the vertical indexes of the current MB and its collocated

MB respectively. Then, 2/__ MBcurrentMBcollocated yy = . The two fields of the collocated MB in the future

reference may be coded in different modes. Since field 1 of the future reference is temporally close to the
current B, the collocated MB in field 1 of the future reference provides certain basis for the current MB.
Hence, the collocated MB in field 1 of the future reference is used in calculating the MVs and
determining the references for direct mode. Two frame-based MVs ),( BF MVMV of direct mode MB are
calculated as follows

1,11,

1,1

/)(

/

DDBB

DBF

TRMVTRTRMV

TRMVTRMV

⋅−=
⋅=

where 1MV is derived by doubling the field-based MV of the collocated MB in field 1 of the future

reference in vertical direction, BTR is the temporal distance between the reference frame of one of whose
fields is pointed by the forward MV of the collocated MB in field 1 of the future reference and the current
B frame in field interval, and 1,DTR is the temporal distance between field 1 of the future reference and

the reference field pointed by the forward MV of the collocated MB in field 1 of future reference.
Forward reference frame of the direct mode MB is the frame of one of whose fields is pointed by the
forward field MV of the collocated MB in field 1 of the future reference frame. Backward reference frame
is the future reference frame.
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FIGURE 25

The current MB in B is in frame mode while its collocated MB in the future reference of I or P is in
field mode. Solid-line is for frames and dot-line for fields. f1 stands for field 1 and f2 for field 2.
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8 SP-pictures
There are two types of S-pictures, namely SP-pictures and SI-pictures. SP-pictures make use of motion-
compensated predictive coding to exploit temporal redundancy in the sequence similar to P-pictures and
SI-pictures make use of spatial prediction similar to I-pictures. Unlike P-pictures, however, SP-picture
coding allows identical reconstruction of a frame even when different reference frames are being used. SI-
picture, on the other hand, can identically reconstruct a corresponding SP-picture. These properties of S-
pictures provide functionalities for bitstream switching, splicing, random access, VCR functionalities
such as fast-forward and error resilience/recovery.

8.1 Syntax
The use of S-pictures is indicated by PTYPE. If PTYPE indicates an S-picture, quantization parameter
PQP is followed by an additional quantization parameter SPQP in the slice header, see Section Error!
Reference source not found.. The rest of the syntax elements for SP-pictures are the same as those in
Inter-frames. Similarly, the rest of the syntax elements for SI-pictures are the same as those in I-pictures.

8.1.1 Picture type (Ptype) and RUN
See Section Error! Reference source not found. for definition.

8.1.2 Macro block type (MB_Type)
MB_Type indicates the prediction mode and the block size used to encode each macroblock. There are
different MB types for SP and SI-pictures.

8.1.3 Macroblock modes for SI-pictures
The MB types for SI-pictures are similar to those of I-pictures with an additional MB type, called SIntra
4x4. TABLE 14 depicts the relationship between the code numbers and MB_Type for SI-pictures.

SIntra 4x4 SI Mode.

Intra 4x4 4x4 Intra coding.

Imode, nc, AC See definition in Section Error! Reference source not found.. These modes refer to
16x16 intra coding.

TABLE 14

MB Type for SI-Pictures
Code_
number

MB_Type
(SI-pictures)

0 SIntra 4x4
1 Intra 4x4
2 0,0,01

3 1,0,0
4 2,0,0
5 3,0,0
6 0,1,0
7 1,1,0
8 2,1,0
9 3,1,0

10 0,2,0
11 1,2,0
12 2,2,0
13 3,2,0
14 0,0,1
15 1,0,1
16 2,0,1
17 3,0,1
18 0,1,1
19 1,1,1
20 2,1,1
21 3,1,1
22 0,2,1
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23 1,2,1
24 2,2,1
25 3,2,1

1 16x16 based intra mode. The 3 numbers refer to values for (Imode,AC,nc) - see Error! Reference
source not found..

8.1.4 Macroblock Modes for SP-pictures
The MB types for SP-pictures are identical to those of P-pictures, see Section Error! Reference source
not found. and TABLE 7. However, all of the inter mode macroblocks, i.e., Skip and NxM, in SP frames
refer to SP mode.

8.1.5 Intra Prediction Mode (Intra_pred_mode)
Intra_pred_mode is present when Intra 4x4 or SIntra 4x4 prediction types are indicated by the MB_Type.
Intra_pred_mode indicates which intra prediction mode is used for a 4x4 block in the macroblock. The
code_number for SIntra 4x4 is the same as that described in the Intra_pred_mode entry of TABLE 7.

Coding of Intra 4x4 prediction modes

Coding of the intra prediction modes for SIntra 4x4 blocks in SI-pictures is identical to that in I-pictures,
i.e., the intra prediction modes of the neighboring blocks are taken into account as described in Section
3.4.3.1.1. Coding of the intra prediction modes for Intra 4x4 blocks in SI-pictures differs from I-picture
coding if the neighboring block is coded in SIntra 4x4 mode. In this case the prediction mode of the
neighboring Sintra 4x4 block is treated to be “mode 0: DC_prediction”.

Lerr

predK

recL dderr crec rec

D
E

M
U

LT
IP

LE
X

IN
G

decoded
video

from
encoder

Inverse
Transform

frame
memory

Inverse
QuantisationQuantisation

Inverse
Quantisation

P (x,y)

motion information

R(x,y)MC
prediction

Transform

prediction
Intra

Intra prediction mode information

Loopfilter

FIGURE 26

A generic block diagram of S-picture decoder

8.2 S-frame decoding
A video frame in SP-picture format consists of blocks encoded in either Intra mode (Intra 4x4, Intra 8x8
or Intra 16x16 Modes) or in SP mode (Skip or NxM). Similarly, SI-pictures consist of macroblocks
encoded in either Intra mode or in SI mode (SIntra 4x4). Intra macroblocks are decoded identically to
those in I- and P-pictures. FIGURE 26 depicts a generic S-picture decoding for SI and SP modes. In SP
mode, the prediction P(x,y) for the current macroblock of the frame being decoded is formed by the
motion compensated prediction block in the identical way to that used in P-picture decoding. In SI mode,
the prediction P(x,y) is formed by intra prediction block in the identical way to that used in I-picture
decoding. After forming the predicted block P(x,y), the decoding of SI and SP-macroblocks follows the
same steps. Firstly, the received prediction error coefficients denoted by Lerr are dequantized using
quantization parameter PQP and the results are added to the transform coefficients Kpred of predicted block
which are found by applying forward transform, see Section Error! Reference source not found., to the
predicted block. The resulting sum is quantized with the quantization parameter SPQP. These steps are
combined in a single step as follows:
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and the values of f and the coefficients Q(m,i,j) are defined in Subsection 5.3.3.3. Here QP1 is signaled by
PQP value and the QP2 is signaled by the additional QP parameter SPQP. Notice that when QP1=QP2,
then the calculation of YQREC reduces simply to the sum of the received level and the level found by
quantizing the predicted block coefficient. The coefficients YQREC are then dequantized using QP=QP2 and
inverse transform is performed for these dequantized levels, as defined in Subsections 0 and 5.3.1,
respectively. Finally, after the reconstruction of a macroblock, filtering of this macroblock takes place as
described in Section 8.2.2.

8.2.1 Decoding of DC values of Chrominance
The decoding of chrominance components for SP- and SI-macroblocks is similar to the decoding of
luminance components described in Section 8.2. AC coefficients of the chrominance blocks are decoded
following the steps described in the earlier section 8.2 where the quantization parameters PQP and SPQP
are changed according to the relation between the quantization values of luminance and chrominance, as
specified in Section Error! Reference source not found.. As described in Section Error! Reference
source not found., the coding of DC coefficients of chrominance components includes an additional 2x2
transform. Similarly, for SP and SI-macroblocks, an additional 2x2 transform is applied to the DC
coefficients of the predicted 4x4 chrominance blocks and the steps described in Section 8.2 are applied to
the 2x2 transform coefficients.

8.2.2 Deblocking Filter
When applying deblocking filter for macroblocks in S-frames, all macroblocks are treated as Intra
macroblocks as described in Section Error! Reference source not found..
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9 Hypothetical Reference Decoder

9.1 Purpose
The hypothetical reference decoder (HRD) is a mathematical model for the decoder, its input buffer, and
the channel. The HRD is characterized by the channel’s peak rate R (in bits per second), the buffer size B
(in bits), and the initial decoder buffer fullness F (in bits). These parameters represent levels of resources
(transmission capacity, buffer capacity, and delay) used to decode a bit stream.

A closely related object is the leaky bucket (LB), which is a mathematical constraint on a bit stream. A
leaky bucket is characterized by the bucket’s leak rate R1 (in bits per second), the bucket size B1 (in bits),
and the initial bucket fullness B1

–F1 (in bits). A given bit stream may be constrained by any number of
leaky buckets (R1,B1,F1),…,(RN,BN,FN), N≥1. The LB parameters for a bit stream, which are encoded in
the bit stream header, precisely describe the minimum levels of the resources R, B, and F that are
sufficient to guarantee that the bit stream can be decoded.

9.2 Operation of the HRD
The HRD input buffer has capacity B bits. Initially, the buffer begins empty. At time tstart it begins to
receive bits, such that it receives S(t) bits through time t. S(t) can be regarded as the integral of the
instantaneous bit rate through time t. The instant at which S(t) reaches the initial decoder buffer fullness
F is identified as the decoding time t0 of the first picture in the bit stream. Decoding times t1, t2, t3, …, for
subsequent pictures (in bit stream order) are identified relative to t0, per Section 9.3. At each decoding
time ti, the HRD instantaneously removes and decodes all di bits associated with picture i, thereby
reducing the decoder buffer fullness from bi bits to bi – di bits. Between time ti and ti+1, the decoder buffer
fullness increases from bi – di bits to bi – di + [S(ti+1) – S(ti)] bits. That is, for i ≥ 0,

b0 = F

bi+1= bi – di + [S(ti+1) – S(ti)].

The channel connected to the HRD buffer has peak rate R. This means that unless the channel is idle
(whereupon the instantaneous rate is zero), the channel delivers bits into the HRD buffer at instantaneous
rate R bits per second.

9.3 Decoding Time of a Picture

The decoding time ti of picture i is equal to its presentation time τi, if there are no B pictures in the
sequence. If there are B pictures in the sequence, then ti = τi – mi, where mi = 0 if picture i is a B picture;
otherwise mi equals τi – τi’, where τi’ is the presentation time of the I or P picture that immediately
precedes picture i (in presentation order). If there is no preceding I or P picture (i.e., if i = 0), then mi = m0

= t1 – t0. The presentation time of a picture is determinable from its temporal reference and the frame
rate.

9.4 Schedule of a Bit Stream
The sequence (t0,d0), (t1,d1), (t2,d2), … is called the schedule of a bit stream. The schedule of a bit stream
is intrinsic to the bit stream, and completely characterizes the instantaneous coding rate of the bit stream
over its lifetime. A bit stream may be pre-encoded, stored to a file, and later transmitted over channels
with different peak bit rates to decoders with different buffer sizes. The schedule of the bit stream is
invariant over such transmissions.

9.5 Containment in a Leaky Bucket
A leaky bucket with leak rate R1, bucket size B1, and initial bucket fullness B1–F1 is said to contain a bit
stream with schedule (t0,d0), (t1,d1), (t2,d2), … if the bucket does not overflow under the following
conditions. At time t0, d0 bits are inserted into the leaky bucket on top of the B1–F1 bits already in the
bucket, and the bucket begins to drain at rate R1 bits per second. If the bucket empties, it remains empty
until the next insertion. At time ti, i ≥ 1, di, bits are inserted into the bucket, and the bucket continues to
drain at rate R1 bits per second. In other words, for i ≥ 0, the state of the bucket just prior to time ti is
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b0 = B1–F1

bi+1 = max{0, bi + di – R1(ti+1–ti)}.

The leaky bucket does not overflow if bi + di ≤ B1 for all i ≥ 0.

Equivalently, the leaky bucket contains the bit stream if the graph of the schedule of the bit stream lies
between two parallel lines with slope R1, separated vertically by B1 bits, possibly sheared horizontally,
such that the upper line begins at F1 at time t0, as illustrated in the figure below. Note from the figure that
the same bit stream is containable in more than one leaky bucket. Indeed, a bit stream is containable in an
infinite number of leaky buckets.

FIGURE 27

Illustration of the leaky bucket concept.

If a bit stream is contained in a leaky bucket with parameters (R1,B1,F1), then when it is communicated
over a channel with peak rate R1 to a hypothetical reference decoder with parameters R=R1, B=B1, and
F=F1, then the HRD buffer does not overflow or underflow.

9.6 Bit Stream Syntax
The header of each bit stream shall specify the parameters of a set of N ≥ 1 leaky buckets,
(R1,B1,F1),…,(RN,BN,FN), each of which contains the bit stream. In the current Test Model, these
parameters are specified in the first 1+3N 32-bit integers of the Interim File Format, in network (big-
endian) byte order:

N, R1, B1, F1, …, RN, BN, FN .

The Rn shall be in strictly increasing order, and both Bn and Fn shall be in strictly decreasing order.

These parameters shall not exceed the capability limits for particular profiles and levels, which are yet to
be defined.

9.7 Minimum Buffer Size and Minimum Peak Rate
If a bit stream is contained in a set of leaky buckets with parameters (R1,B1,F1), …, (RN,BN,FN), then when
it is communicated over a channel with peak rate R, it is decodable (i.e., the HRD buffer does not
overflow or underflow) provided B ≥ Bmin(R) and F ≥ Fmin(R), where for Rn ≤ R ≤ Rn+1,

Bmin(R) = αBn + (1 – α)Bn+1

Fmin(R) = αFn + (1 – α)Fn+1

α = (Rn+1 – R) / (Rn+1 – Rn).

For R ≤ R1,

Bmin(R) = B1 + (R1 – R)T

Fmin(R) = F1,

t0 t1 t2 …t3 t0 t1 t2 …t3

B1
B2

F2

B2

0

F1

B1

0

bitsbits

time time

slope R1 slope R2
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where T = tL-1 – t0 is the duration of the bit stream (i.e., the difference between the decoding times for the
first and last pictures in the bit stream). And for R ≥ RN,

Bmin(R) = BN

Fmin(R) = FN .

Thus, the leaky bucket parameters can be linearly interpolated and extrapolated.

Alternatively, when the bit stream is communicated to a decoder with buffer size B, it is decodable
provided R ≥ Rmin(B) and F ≥ Fmin(B), where for Bn ≥ B ≥ Bn+1,

Rmin(B) = αRn + (1 – α)Rn+1

Fmin(B) = αFn + (1 – α)Fn+1

α = (B – Bn+1) / (Bn – Bn+1).

For B ≥ B1,

Rmin(B) = R1 – (B – B1)/T

Fmin(B) = F1.

For B ≤ BN , the stream may not be decodable.

In summary, the bit stream is guaranteed to be decodable in the sense that the HRD buffer does not
overflow or underflow, provided that the point (R,B) lies on or above the lower convex hull of the set of
points (0,B1+R1T), (R1,B1), …, (RN,BN), as illustrated in the figure below. The minimum start-up delay
necessary to maintain this guarantee is Fmin(R) / R.

BN

…

(R1,B1)

(R2,B2)

(R3, B3)

(RN-1,BN-1)

(RN,BN)

B
(bits)

B (bits)

TRRBB )( 11 −+=

R (bits/sec)

FIGURE 28

Illustration of the leaky bucket concept.

A compliant decoder with buffer size B and initial decoder buffer fullness F that is served by a channel
with peak rate R shall perform the tests B ≥ Bmin(R) and F ≥ Fmin(R), as defined above, for any compliant
bit stream with LB parameters (R1,B1,F1),…,(RN,BN,FN), and shall decode the bit stream provided that B ≥
Bmin(R) and F ≥ Fmin(R).

9.8 Encoder Considerations (informative)
The encoder can create a bit stream that is contained by some given N leaky buckets, or it can simply
compute N sets of leaky bucket parameters after the bit stream is generated, or a combination of these. In
the former, the encoder enforces the N leaky bucket constraints during rate control. Conventional rate
control algorithms enforce only a single leaky bucket constraint. A rate control algorithm that
simultaneously enforces N leaky bucket constraints can be obtained by running a conventional rate
control algorithm for each of the N leaky bucket constraints, and using as the current quantization
parameter (QP) the maximum of the QPs recommended by the N rate control algorithms.
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Additional sets of leaky bucket parameters can always be computed after the fact (whether rate controlled
or not), from the bit stream schedule for any given Rn, from the iteration specified in Section 9.5.
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Appendix I Non-normative Encoder Recommendation

I.1 Motion Estimation and Mode Decision

I.1.1 Low-complexity mode

I.1.1.1 Finding optimum prediction mode
Both for intra prediction and motion compensated prediction, a similar loop as indicated in Error!
Reference source not found. is run through. The different elements will be described below.

SA(T)D0

Prediction
Block_difference

Hadamard transform
SA(T)D

SA(T)Dmin

FIGURE 29

Loop for prediction mode decision

I.1.1.1.1 SA(T)D0
The SA(T)D to be minimised is given a 'bias' value SA(T)D0 initially in order to favour prediction modes
that need few bits to be signalled. This bias is basically a parameter representing bit usage times QP0(QP)

Intra mode decision: SA(T)D0 = QP0(QP)xOrder_of_prediction_mode (see above)

Motion vector search: SA(T)D0 = QP0(QP)x(Bits_to_code_vector + 2xcode_number_of_ref_frame)

In addition there are two special cases:

• For motion prediction of a 16x16 block with 0 vector components, 16xQP0(QP) is subtracted
from SA(T)D to favour the skip mode.

• For the whole intra 4x4 macroblock, 24xQP0(QP) is added to the SA(T)D before comparison with
the best SA(T)D for inter prediction. This is an empirical value to prevent using too many intra
blocks.

For flat regions having zero motion, B pictures basically fail to make effective use of zero motion and
instead are penalized in performance by selecting 16x16 intra mode. Therefore, in order to prevent
assigning 16x16 intra mode to a region with little details and zero motion, SA(T)D of direct mode is
subtracted by 16xQP0(QP) to bias the decision toward selecting the direct mode.

The calculation of SA(T)D0 at each mode is as follows.

• Forward prediction mode :
SA(T)D0 = QP0(QP) x (2xcode_number_of_Ref_frame + Bits_to_code_MVDFW)

• Backward prediction mode :
SA(T)D0 = QP0(QP) x Bits_to_code_MVDBW
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• Bi-directional prediction mode :
SA(T)D0 = QP0(QP) x (2xcode_number_of_Ref_frame + Bits_to_code_forward_Blk_size +
Bits_to_code_backward_Blk_size + Bits_to_code_MVDFW + Bits_to_code_MVDBW)

• Direct prediction mode :
SA(T)D0 = – 16 x QP0(QP)

• Intra 4x4 mode :
SA(T)D0 = 24 x QP0(QP)

• Intra 16x16 mode :
SA(T)D0 = 0

I.1.1.1.2 Block_difference
For the whole block the difference between the original and prediction is produced

Diff(i,j) = Original(i,j) - Prediction(i,j)

I.1.1.1.3 Hadamard transform
For integer pixel search (see below) we use SAD based on Diff(i,j) for decision. Hence no Hadamard is
done and we use SAD instead of SATD.

∑=
ji

jiDiffSAD
,

),(

However, since we will do a transform of Diff(i,j) before transmission, we will do a better optimisation if
a transform is done before producing SAD. Therefore a two dimensional transform is performed in the
decision loop for selecting intra modes and for fractional pixel search (see below). To simplify
implementation, the Hadamard transform is chosen in this mode decision loop. The relation between
pixels and basis vectors (BV) in a 4 point Hadamard transform is illustrated below (not normalized):

Pixels →
B 1 1 1 1
V 1 1 -1 -1

↓ 1 -1 -1 1
1 -1 1 -1

This transformation is performed horizontally and vertically and result in DiffT(i,j). Finally SATD for
the block and for the present prediction mode is produced.

2/)),((
,
∑=
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jiDiffTSATD

I.1.1.1.4 Mode decision
Choose the prediction mode that results in the minimum value SA(T)Dmin = min(SA(T)D+SA(T)D0).

I.1.1.2 Encoding on macroblock level

I.1.1.2.1 Intra coding
When starting to code a macroblock, intra mode is checked first. For each 4x4 block, full coding
indicated in Error! Reference source not found. is performed. At the end of this loop the complete
macroblock is intra coded and a SATDintra is calculated.

I.1.1.2.2 Table for intra prediction modes to be used at the encoder side
Error! Reference source not found. gives the table of intra prediction modes according to probability of
each mode to be used on the decoder side. On the encoder side we need a sort of inverse table.
Prediction modes for A and B are known as in Error! Reference source not found.. For the encoder we
have found a Mode that we want to signal with an ordering number in the bitstream (whereas on the
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decoder we receive the order in the bitstream and want to convert this to a mode). Error! Reference
source not found. is therefore the relevant table for the encoder. Example: Prediction mode for A and B
is 2. The string in Error! Reference source not found. is 2 1 0 3 4 5. This indicates that prediction
mode 0 has order 2 (third most probable). Prediction mode 1 is second most probable and prediction
mode 2 has order 0 (most probable) etc. As in Error! Reference source not found. '–' indicates that this
instance can not occur because A or B or both are outside the picture.

TABLE 15

Prediction ordering to be used in the bitstream as a function of prediction mode (see text).
B\A outside 0 1 2 3 4 5

outside 0----- 021--- 102--- 120--- 012--- 012--- 012---

0 0---12 025314 104325 240135 143025 035214 045213

1 0---12 014325 102435 130245 032145 024315 015324

2 0---12 012345 102345 210345 132045 032415 013245

3 0---12 135024 214035 320154 143025 145203 145032

4 1---02 145203 125403 250314 245103 145203 145302

5 1---20 245310 015432 120534 245130 245301 135420

I.1.1.2.3 Inter mode selection
Next motion vector search is performed for motion compensated prediction. A search is made for all 7
possible block structures for prediction as well as from the 5 past decoded pictures. This result in 35
combinations of blocksizes and reference frames. For B-frames, the motion search is also conducted for
the temporal following reference picture to obtain backward motion vectors.

I.1.1.2.4 Integer pixel search
The search positions are organised in a 'spiral' structure around the predicted vector (see vector
prediction). The numbering from 0 and upwards for the first positions are listed below:

. . . . . .

. 15 9 11 13 16

. 17 3 1 4 18

. 19 5 0 6 20

. 21 7 2 8 22

. 23 10 12 14 24

A parameter MC_range is used as input for each sequence. To speed up the search process, the search
range is further reduced:

• Search range is reduced to: Range = MC_range/2 for all block sizes except 16x16 in prediction
from the most recent decoded picture.

• The range is further reduced to: Range = Range/2 for search relative to all older pictures.

After Range has been found, the centre for the spiral search is adjusted so that the (0,0) vector position is
within the search range. This is done by clipping the horizontal and vertical positions of the search centre
to ±Range.

I.1.1.2.5 Fractional pixel search
Fractional pixel search is performed in two steps. This is illustrated below where capital letters represent
integer positions, numbers represent ½ pixel positions and lower case letters represent ¼ pixel positions.

A B C
1 2 3

D 4 E 5 F
a b c

6 d 7 e 8
f g h
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G H I

Assume that the integer search points to position E. Then ½ pixel positions 1,2,3,4,5,6,7,8 are searched.
Assume that 7 is the best position. Then the ¼ pixel positions a,b,c,d,e,f,g,h are searched. (Notice that by
this procedure a position with ‘more low pass filtering’ – see 5.2.1 - is automatically checked). If motion
compensation with 1/8 pixel accuracy is used, an additional sub-pixel refinement step is performed in the
described way. After fractional pixel search has been performed for the complete macroblock, the SATD
for the whole macroblock is computed: SATDinter.

I.1.1.2.6 Decision between intra and inter
If SATDintra < SATDinter intra coding is used. Otherwise inter coding is used.

I.1.2 High-complexity mode

I.1.2.1 Motion Estimation
For each block or macroblock the motion vector is determined by full search on integer-pixel positions
followed by sub-pixel refinement.

I.1.2.1.1 Integer-pixel search
As in low-complexity mode, the search positions are organized in a spiral structure around a prediction
vector. The full search range given by MC_range is used for all INTER-modes and reference frames. To
speed up the search process , the prediction vector of the 16x16 block is used as center of the spiral search
for all INTER-modes. Thus the SAD values for 4x4 blocks can be pre-calculated for all motion vectors of
the search range and than used for fast SAD calculation of all larger blocks. The search range is not
forced to contain the (0,0)-vector.

I.1.2.1.2 Fractional pixel search
The fractional pixel search is performed as in the low-complexity case.

I.1.2.1.3 Finding the best motion vector
The integer-pixel motion search as well as the sub-pixel refinement returns the motion vector that
minimizes

)())(,()(),( pmmm −⋅+= RcsDTSAJ MOTIONMOTION λλ

with ( , )T
x ym m=m being the motion vector, ( , )T

x yp p=p being the prediction for the motion vector,

and MOTIONλ being the Lagrange multiplier. The rate term ( )R m - p represents the motion information

only and is computed by a table-lookup. The rate is estimated by using the universal variable length code
(UVLC) table, even if CABAC is used as entropy coding method. For integer-pixel search, SAD is used
as distortion measure. It is computed as

,

1, 1

( , ( )) [ , ] [ , ]
B B

x y
x y

SAD s c s x y c x m y m
= =

= − − −∑m , 48,16 orB = .

with s being the original video signal and c being the coded video signal. In the sub-pixel refinement
search, the distortion measure SATD is calculated after a Hadamard transform (see section Error!
Reference source not found.). The Lagrangian multiplier MOTIONλ is given by

/3
, 0.85 2QP

MODE Pλ = ⋅

for I- and P-frames and
/3

, 4 0.85 2QP
MODE Bλ = ⋅ ⋅

for B-frames, where QP is the macroblock quantization parameter.
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I.1.2.1.4 Finding the best reference frame
The determination of the reference frame REF and the associated motion vectors for the NxM inter modes
is done after motion estimation by minimizing

))())()((()))(,(,()|( REFRREFREFRREFREFcsSATDREFJ MOTIONMOTION +−⋅+= pmm λλ .

The rate term )(REFR represents the number of bits associated with choosing REF and is computed by
table-lookup using UVLC.

I.1.2.1.5 Finding the best prediction direction for B-frames
The determination of the prediction direction PDIR for the NxM inter modes in B-frames is done after
motion estimation and reference frame decision by minimizing

( | ) ( , ( , ( )))

( ( ( ) ( )) ( ( )))
MOTION

MOTION

J PDIR SATD s c PDIR PDIR

R PDIR PDIR R REF PDIR

λ

λ

= +

⋅ − +

m

m p

I.1.2.2 Mode decision

I.1.2.2.1 Macroblock mode decision
The macroblock mode decision is done by minimizing the Lagrangian functional

( , , | , ) ( , , | ) ( , , | )MODE MODEJ s c MODE QP SSD s c MODE QP R s c MODE QPλ λ= + ⋅

where QP is the macroblock quantizer, MODEλ is the Lagrange multiplier for mode decision, and

MODE indicates a mode chosen from the set of potential prediction modes:

I-frame: { }1616,44 xINTRAxINTRAMODE ∈ ,

P-frame:








∈
88,168,816,1616

,,1616,44

xxxx

SKIPxINTRAxINTRA
MODE ,

B-frame:








∈
88,168,816,1616

,,1616,44

xxxx

DIRECTxINTRAxINTRA
MODE .

Note that the SKIP mode refers to the 16x16 mode where no motion and residual information is
encoded. SSD is the sum of the squared differences between the original block s and its reconstruction
c given as
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QPMODEyxcyxsQPMODEcsSSD

and ( , , | )R s c MODE QP is the number of bits associated with choosing MODE and QP including the

bits for the macroblock header, the motion, and all DCT blocks. [ ]QPMODEyxcY |,, and [ ]yxsY ,

represent the reconstructed and original luminance values; Uc , Vc and Us , Vs the corresponding

chrominance values.

The Lagrangian multiplier MODEλ is given by

/3
, 0.85 2QP

MODE Pλ = ⋅

for I- and P-frames and
/3

, 4 0.85 2QP
MODE Bλ = ⋅ ⋅
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for B-frames, where QP is the macroblock quantization parameter.

I.1.2.2.2 8x8 mode decision
The mode decision for 8x8 sub-partitions is done similar to the macroblock mode decision by minimizing
the Lagrangian functional

( , , | , ) ( , , | ) ( , , | )MODE MODEJ s c MODE QP SSD s c MODE QP R s c MODE QPλ λ= + ⋅

where QP is the macroblock quantizer, MODEλ is the Lagrange multiplier for mode decision, and

MODE indicates a mode chosen from the set of potential prediction modes:

P-frame:








∈
44,84,48,88

,44

xxxx

xINTRA
MODE

B-frame:








∈
44,84,48,88

,,44

xxxx

DIRECTxINTRA
MODE .

I.1.2.2.3 INTER 16x16 mode decision
The INTER16x16 mode decision is performed by choosing the INTER16x16 mode which results in the
minimum SATD value.

I.1.2.2.4 INTER 4x4 mode decision
For the INTRA4x4 prediction, the mode decision for each 4x4 block is performed similar to the
macroblock mode decision by minimizing

)|,,()|,,(),|,,( QPIMODEcsRQPIMODEcsSSDQPIMODEcsJ MODEMODE ⋅+= λλ

where QP is the macroblock quantizer, MODEλ is the Lagrange multiplier for mode decision, and

IMODE indicates an intra prediction mode:

{ }LRDIAGRLDIAGDIAGVERTHORDCIMODE _,_,,,,∈ .

SSD is the sum of the squared differences between the original 4x4 block luminance signal s and its
reconstruction c, and )|,,( QPIMODEcsR represents the number of bits associated with choosing
IMODE. It includes the bits for the intra prediction mode and the DCT-coefficients for the 4x4 luminance
block. The rate term is computed using the UVLC entropy coding, even if CABAC is used for entropy
coding.

I.1.2.3 Algorithm for motion estimation and mode decision
The procedure to encode one macroblock s in a I-, P- or B-frame in the high-complexity mode is
summarized as follows.

1. Given the last decoded frames, MODEλ , MOTIONλ , and the macroblock quantizer QP

2. Choose intra prediction modes for the INTRA 4x4 macroblock mode by minimizing
)|,,()|,,(),|,,( QPIMODEcsRQPIMODEcsSSDQPIMODEcsJ MODEMODE ⋅+= λλ

with { }LRDIAGRLDIAGDIAGVERTHORDCIMODE _,_,,,,∈ .

3. Determine the best 1616xINTRA prediction mode by choosing the mode that results in the
minimum SATD.

4. For each 8x8 sub-partition

Perform motion estimation and reference frame selection by minimizing

SSD + λ Rate(MV, REF)
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B-frames: Choose prediction direction by minimizing

SSD + λ Rate(MV(PDIR), REF(PDIR))

Determine the coding mode of the 8x8 sub-partition using the rate-constrained mode
decision, i.e. minimize

SSD + λ Rate(MV, REF, Luma-Coeff, block 8x8 mode)
Here the SSD calculation is based on the reconstructed signal after DCT, quantization, and
IDCT.

5. Perform motion estimation and reference frame selection for 16x16, 16x8, and 8x16 modes by
minimizing

))())()((()))(,(,()()|)(,( REFRREFREFRREFREFcsDTSAREFREFJ MOTIONMOTION +−⋅+= pmmm λλ
for each reference frame and motion vector of a possible macroblock mode.

6. B-frames: Determine prediction direction by minimizing

)))(())()((()))(,(,()|( PDIRREFRPDIRPDIRRPDIRPDIRcsSATDPDIRJ MOTIONMOTION +−⋅+= pmm λλ

7. Choose the macroblock prediction mode by minimizing
( , , | , ) ( , , | ) ( , , | )MODE MODEJ s c MODE QP SSD s c MODE QP R s c MODE QPλ λ= + ⋅ ,

given QP and MODEλ when varying MODE . MODE indicates a mode out of the set of potential

macroblock modes:

I-frame: { }1616,44 xINTRAxINTRAMODE ∈ ,

P-frame:








∈
88,168,816,1616

,,1616,44

xxxx

SKIPxINTRAxINTRA
MODE ,

B-frame:








∈
88,168,816,1616

,,1616,44

xxxx

DIRECTxINTRAxINTRA
MODE .

The computation of ( , , | , )MODEJ s c SKIP QP λ and ),|,,( MODEQPDIRECTcsJ λ is simple. The costs

for the other macroblock modes are computed using the intra prediction modes or motion vectors and
reference frames, which have been estimated in the previous steps.

I.2 Quantization

( ) ( ) ( ) 15 ( 12) / 6, , ( 12)%6, , / 2 QP
QY i j Y i j Q QP i j f + +=  ⋅ + +  

I.3 Elimination of single coefficients in inter macroblocks

I.3.1 Luminance
With the small 4x4 blocks, it may happen that for instance a macroblock has only one nonzero coefficient
with |Level| =1. This will probably be a very expensive coefficient and it could have been better to set it
to zero. For that reason a procedure to check single coefficients have been implemented for inter luma
blocks. During the quantization process, a parameter Single_ctr is accumulated depending on Run and
Level according to the following rule:

• If Level = 0 or (|Level| = 1 and Run > 5) nothing is added to Single_ctr.

• If |Level| > 1, 9 is added to Single_ctr.

• If |Level| = 1 and Run < 6, a value T(Run) is added to Single_ctr. where T(0:5) =(3,2,2,1,1,1)
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• If the accumulated Single_ctr for a 8x8 block is less than 4, all coefficients of that luma block are
set to zero. Similarly, if the accumulated Single_ctr for the whole macroblock is less than 6, all
coefficients of that luma macroblock are set to zero.

I.3.2 Chrominance
A similar method to the one for luma is used. Single_ctr is calculated similarly for each chroma
component, but for AC coefficients only and for the whole macroblock.

If the accumulated Single_ctr for each chroma component of a macroblock is less than 7, all the AC
chroma coefficients of that component for the whole macroblock are set to zero.

I.4 S-Pictures

I.4.1 Encoding of secondary SP-pictures

This section suggests an algorithm that can be used to create a secondary SP-picture with identical pixel
values to another SP-picture (called the target SP-picture). The secondary SP-picture is typically used for
switching from one bitstream to another and thus has different reference frames for motion compensation
than the target SP-picture.

Intra-type macroblocks from the target SP-picture are copied into the secondary SP-picture without
alteration. SP-macroblocks from the target SP-pictures will be replaced by the following procedure: Let
Lrec be the quantized coefficients, see Section 8.2, that are used to reconstruct the SP-block. Define the
difference levels Lerr by:

Lerr = Lrec - LP

where LP is the quantized transform coefficients of the predicted block from any of the SP coding modes.
Then a search over all the possible SP modes is performed and the mode resulting in the minimum
number of bits is selected.

I.4.2 Encoding of SI-pictures

The following algorithm is suggested to encode an SI-picture such that the reconstruction of it is identical
to that of an SP-picture. SP-pictures consist of intra and SP-macroblocks. Intra-type macroblocks from
SP-pictures are copied into SI-pictures with minor alteration. Specifically, the MB_Type is altered to
reflect Intra Modes in SI-pictures, i.e., MB_Type is incremented by one, See TABLE 14. The SP-
macroblocks from SP-pictures will be replaced by SIntra 4x4 modes. Let Lrec be the quantized
coefficients, see Section 8.2, that are used to reconstruct the SP-block. Define the difference levels Lerr by:

Lerr = Lrec - LI

where LI is the quantized transform coefficients of the predicted block from any of the intra prediction
modes. Then a search over the possible intra prediction modes is performed and the mode resulting in the
minimum number of bits is selected.

I.5 Encoding with Anticipation of Slice Losses
Low delay video transmission may lead to losses of slices. The decoder may then stop decoding until the
next I picture or P picture may conduct a concealment, for example as explained in Appendix IV, and
continue decoding. In the latter case, spatio-temporal error propagation occurs if the concealed picture
content is referenced for motion compensation. There are various means to stop spatio-temporal error
propagation including the usage of multiple reference pictures and Intra coding of macroblocks. For the
latter case, a Lagrangian mode selection algorithm is suggested as follows.

Since transmission errors occur randomly, the decoding result is also a random process. Therefore, the
average decoder distortion is estimated to control the encoder for a specified probability of packet losses
p. The average decoding result is obtained by running N complete decoders at the encoder in parallel. The
statistical process of loosing a slice is assumed to be independent for each of the N decoders. The slice
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loss process for each decoder is also assumed to be i.i.d. and a certain slice loss probability p is assumed
to be known at the encoder. Obviously for large N the decoder gets a very good estimate of the average
decoder distortion. However, with increasing N a linear increase of storage and decoder complexity in the
encoder is incurred. Therefore, this method might not be practical in real-time encoding processes and
complexity and memory efficient algorithms are currently under investigation.

To encode a macroblock in a P picture, the set of possible macroblock types is given as

MBS = { SKIP, INTER_16x16, INTER_16x8, INTER_8x16, INTER_8x8, INTRA_16x16}

For each macroblock the coding mode m’ is selected according to

{ }' min
MB

m mm
m D Rλ

∈
= +

S

with Dm being the distortion in the current macroblock when selecting macroblock mode m and Rm being
the corresponding rate, i.e. the number of bits. For the COPY_MB and all INTER_MxN types, the
distortion Dm is computed as

∑∑
=

−=
N

n i
mniim pff

N
D

1

2
,, ))(ˆ(

1

with fi being the original pixel value at position i within the macroblock and mnif ,,
ˆ being the

reconstructed pixel value at position i for coding macroblock mode m in the simulated decoder n. The
distortion for the INTRA macroblocks remains unchanged. Since the various reconstructed decoders also
contain transmission errors, the Lagrangian cost function for the COPY_MB and all INTER_MxN types
increases making INTRA_NxN types more popular.

The λ parameter for mode decision depends on the quantization parameter q as follows
/ 3(1 )0 .8 5 2Q Ppλ = − ⋅ .
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Appendix II Network Adaptation Layer

II.1 Byte Stream NAL Format
The byte stream NAL format is specified for use by systems that transmit JVT video as an ordered stream
of bytes, such as ITU-T Rec. H.222.0 | ISO/IEC 13818-1 systems or ITU-T Rec. H.320 systems.

The byte stream NAL format consists of the sequence of video packets, each of which is prefixed as
follows:

1. Optionally (at the discretion of the encoder if not prohibited by a system-level specification), any
number of zero-stuffing bytes (ZSB) having the value zero.

2. A three-byte start code prefix (SCP), consisting of two bytes that are both equal to zero (0x00),
followed by one byte having the value one (0x01).

3. The payload type indicator byte (PTIB),
4. One or more EBSP’s then follows as determined by the PTIB.

Any number of zero-stuffing bytes (ZSB) may optionally (at the discretion of the encoder if not
prohibited by a system-level specification) follow the last video packet in the byte stream.

The location of each SCP can be detected by scanning for the three-byte SCP value pattern in the byte
stream.

The first EBSP starts immediately after the SCP and PTIB, and the last EBSP ends with the last non-zero
byte prior to the next SCP.

II.2 IP NAL Format
This section covers the Network Adaptation Layer for non-managed, best effort IP networks using RTP
[RFC1889] as the transport. The section will likely end up in the form of a standard’s track RFC
covering an RTP packetization for H.26L.

The NAL takes the information of the Interim File Format as discussed in section Error! Reference
source not found. and converts it into packets that can conveyed directly over RTP. It is designed to be
able to take advantage of more than one virtual transport stream (either within one RTP stream by
unequal packet content protection currently discussed in the IETF and as Annex I of H.323, or by using
several RTP streams with network or application layer unequal error protection).

In doing so, it has to

• arrange partitions in an intelligent way into packets

• eventually split/recombine partitions to match MTU size constraints

• avoid the redundancy of (mandatory) RTP header information and information in the video
stream

• define receiver/decoder reactions to packet losses. Note: the IETF tends more and more to do this
in a normative way, whereas in the ITU and in MPEG this is typically left to implementers. Issue
has to be discussed one day. Current document provides information without makeing any
assumptions about that.

II.2.1 Assumptions
Any packetization scheme has to make some assumptions on typical network conditions and constraints.
The following set of assumptions have been used in earlier Q.15 research on packetization and are
deemed to be still valid:

• MTU size: around 1500 bytes per packet for anything but dial-up links, 500 bytes for dial-up
links.
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• Packet loss characteristic: non-bursty (due to drop-tail router implementations, and assuming
reasonable pacing algorithms (e.g. no bursting occurs at the sender).

• Packet loss rate: up to 20%

II.2.2 Combining of Partitions according to Priorities
In order to allow unequal protection of more important bits of the bitstream, exactly two packets per slice
are generated (see Q15-J-53 for a detailed discussion). Slices should be used to ensure that both packets
meet the MTU size constraints to avoid network splitting/recombining processes.

The ’First’ packet contains the following partitions:

• TYPE_HEADER

• TYPE_MBHEADER

• TYPE_MVD

• TYPE_EOS

The ’Second’ packet is assembled using the rest of the partitions

• TYPE_CBP Coded Block Patterm

• TYPE_2x2DC 2x2 DC Coefficients

• TYPE_COEFF_Y Luminance AC Coefficients

• TYPE_COEFF_C Chrominance AC Coefficients

This configuration allows decoding the first packet independently from the second (although not vice
versa). As the first packet is more important both because motion information is important for struction
[for what?] and because the ’First’ packet is necessary to decode the ’Second’, UEP should be used to
protect the ’First’ packet s higher.

II.2.3 Packet Structure
Each packet consists of a fixed 32 bit header a series of Part-of-Partition structures (POPs).

The packet header contains information

Bit 31 1 == This packet contains a picture header

Bit 30 1 == This packet contains a slice header

Bits 25..29 Reserved

Bits 10-24 StartMB. It is assumed that no picture has more than 2**14 Macroblocks

Bits 0..9 SliceID. It is assumed that a picture does not have more than 1024 slices

Note: The PictureID (TR) can be easily reconstructed from the RTP Timestamp and is therefore not coded
again.

Note: The current software reconstructs QP and Format out of the VLC coded Picture/Slice header
symbols. This is architecturally not nice and should be changed, probably by deleting these two values
from the interim File Format.

Note: This header is likely to change once bigger picture formats etc. come into play.

Each Part-of-Partition structure contains a header of 16 bits whose format is as follows

Bits 15..12 Data Type

Bits 11..0 Length of VLC-coded POP payload (in bits, starting byte-aligned, 0 indicates 4096
bits of payload)

The reasoning behind the introduction of POP packets lies in avoiding large fixed length headers for
(typically) small partitions. See Q15-J-53.
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II.2.4 Packetization Process
The packetization process converts the Interim File Format (or, in a real world system, data partitioned
symbols arriving through a software interface) into packets. The following RTP header fields are used
(see RFC1889 for exact semantics):

• Timestamp: is calculated according to the rules of RFC1889 and RFC2429 based on a 90 KHz
timestamp.

• Marker Bit: set for the very last packet of a picture (’Second’ packet of the last Slice), otherwise
cleared.

• Sequence Number is increased by one for every generated packet, and starts with 0 for easier
debugging (this in contrast to RFC1889, where a random initialization is mandatory for security
purposes).

• Version (V): 2

• Padding (P): 0

• Extension (X): 0

• Csourcecount (CC): 0

• Payload Type (PT): 0 (This in contrast to RFC1889 where 0 is forbidden)

The RTP header is followed by the payload, which follows the packet structure of section II.2.3.

The RTP packet file, used as the input to packet loss simulators and similar tools (note that this format is
identical to the ones used for IP-related testing during the H.263++ project, so that the loss simulators,
error paytterns etc, can be re-used):

Int32 size of the following packet in bytes

[]byte packet content, starting with the RTP header.

II.2.5 De-packetization
The De-packetization process reconstructs a file in the Interim File Format from an RTP packet file (that
is possible subject to packet losses). This task is straightforward and reverse to the packetization process.
(Note that the QP and Format fields currently have to be reconstructed using the VLC-coded symbols in
the TYPE_HEADER partition. This bug in the Interim File Format spec should be fixed some time).

II.2.6 Repair and Error Concealment
In order to take advantage of potential UEP for the ’First’ packet and the ability of the decoder to
reconstruct data where CBP/coefficient information was lost, a very simple error concealment strategy is
used. This strategy repairs the bitstream by replacing a lost CBP partition with CBPs that indicate no
coded coefficients. Unfortunately, the CBP codewords for Intra and Inter blocks are different, so that
such a repair cannot be done context-insensitive. Instead of (partly) VLC-decoding the CBP partition in
the NAL module in order to insert the correct type of CBP symbol in the (lost) partition, the decoder itself
can be changed to report the appropriate CBP symbols saying ”No coefficients” whenever the symbol
fetch for a CBP symbol returns with the indication of a lost/empty partition.
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Appendix III Interim File Format

III.1 General
Note: The intent of JVT is to move toward use of the ISO media file format as the defined method for
JVT video content storage. This Appendix defines an interim file format that can be used until
encapsulation of JVT video content into ISO media file format has been specified.

A file is self-contained.

A file consists of boxes, whose structure is identical to boxes of ISO/IEC 14496-1:2001 (ISO media file
format).

A box may contain other boxes. A box may have member attributes. If a box contains attributes and other
boxes, boxes shall follow the attribute values.

The attribute values in the boxes are stored with the most significant byte first, commonly known as
network byte order or big-endian format.

A number of boxes contain index values into sequences in other boxes. These indexes start with the value
0 (0 is the first entry in the sequence).

The Syntactic Description Language (SDL) of ISO/IEC 14496-1:2001 is used to define the file format. In
addition to the existing basic data types, the UVLC elementary data type is defined in this document. It
shall be used to carry variable-length bit-fields that follow the JVT UVLC design.

Unrecognized boxes should be skipped and ignored.

III.2 File Identification
The File Type Box is the first box of the file. JVT files shall be identified from a major Brand field equal
to ‘jvt ’.

The preferred file extension is ‘.jvt’.

III.3 Box

III.3.1 Definition
Boxes start with a header, which gives both size and type. The header permits compact or extended size
(32 or 64 bits). Most boxes will use the compact (32-bit) size. The size is the entire size of the box,
including the size and type header, fields, and all contained boxes. This facilitates general parsing of the
file.

III.3.1.1 Syntax
aligned(8) class box (unsigned int(32) boxType)

unsigned int(32) size;
unsigned int(32) type = boxType;

if (size==1) {
unsigned int(64) largesize;

} else if (size==0) {
// box extends to end of file

}
}

III.3.1.2 Semantics

• size is an integer that specifies the number of bytes in this box, including all its fields and
contained boxes; if size is 1 then the actual size is in the field largesize; if size is 0, then this box
is the last one in the file, and its contents extend to the end of the file (normally only used for an
Alternate Track Media Box)
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• type identifies the box type; standard boxes use a compact type, which is normally four printable
characters, to permit ease of identification, and is shown so in the boxes below.

III.4 Box Order
An overall view of the normal encapsulation structure is provided in the following table.

The table shows those boxes that may occur at the top-level in the left-most column; indentation is used
to show possible containment. Thus, for example, an Alternate Track Header Box (atrh) is found in a
Segment Box (segm).

Not all boxes need be used in all files; the mandatory boxes are marked with an asterisk (*). See the
description of the individual boxes for a discussion of what must be assumed if the optional boxes are not
present.

There are restrictions in which order the boxes shall appear in a file. See the box definitions for these
restrictions.

TABLE 16

Box types.

ftyp * Error!
Referen
ce
source
not
found.

File Type Box, identifies the file format

jvth * Error!
Referen
ce
source
not
found.

File Header Box, file-level meta-data

cinf Error!
Referen
ce
source
not
found.

Content Info Box, describes file contents

atin * Error!
Referen
ce
source
not
found.

Alternate Track Info Box, describes characteristics of tracks

prms * Error!
Referen
ce
source
not
found.

Parameter Set Box, enumerated set of frequently changing coding
parameters
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segm * Error!
Referen
ce
source
not
found.

Segment Box, contains meta- and media data for a defined period
of time

atrh * Error!
Referen
ce
source
not
found.

Alternate Track Header Box, meta-data for a track

pici * III.5.8 Picture Information Box, meta-data for individual pictures

layr III.5.9 Layer Box, meta-data for a layer of pictures

sseq III.5.10 Sub-Sequence Box, meta-data for a sub-sequence within a layer

swpc Error!
Referen
ce
source
not
found.

Switch Picture Box, identifies pictures that can be used to switch
between tracks.

atrm * III.5.11 Alternate Track Media Box, media data for a track

III.5 Box Definitions

III.5.1 File Type Box

III.5.1.1 Definition
Box Type: `ftyp’

Container: File

Mandatory: Yes

Quantity: Exactly one

A media-file structured according to the ISO media file format specification may be compatible with
more than one detailed specification, and it is therefore not always possible to speak of a single ‘type’ or
‘brand’ for the file. This box identifies a JVT file in a similar fashion without claiming compatibility with
the ISO format. However, it enables other file readers to identify the JVT file type. It must be placed first
in the file.

III.5.1.2 Syntax
aligned(8) class FileTypeBox aligned(8) extends box(‘ftyp’) {

unsigned int(32) majorBrand = ‘jvt ’;
unsigned int(16) jmMajorVersion;
unsigned int(16) jmMinorVersion;
unsigned int(32) compatibleBrands[]; // to end of the box

}

III.5.1.3 Semantics
This box identifies the specification to which this file complies.

majorBrand is a brand identifier for the interim JVT file format. Only ‘jvt ’ shall be used for majorBrand,
as the file format is not compatible with any other format.
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jmMajorVersion and jmMinorVersion define the version of the standard working draft the file complies
with. For example, JM-1 files shall have jmMajorVersion equal to 1 and jmMinorVersion equal to 0.

compatibleBrands is a list, to the end of the box, of brands. Should only include the entry ‘jvt ’.

Note: As the interim JVT file format is based on the ISO media file format, it might be appropriate to
allow a combination of many ISO media file format based file types into the same file. In such a case, the
majorBrand might not be equal to ‘jvt ‘ but ‘jvt ‘ should be one of the compatibleBrands. As this option
was not discussed in the Pattaya meeting, it is not reflected in the current specification of the interim JVT
file format (this document).

III.5.2 File Header Box

III.5.2.1 Definition
Box Type: `jvth’

Container: File

Mandatory: Yes

Quantity: One or more

This box must be placed as the second box of the file.

The box can be repeated at any position of the file when no container box is open. A File Header Box
identifies a random access point to the file. In other words, no data prior to a selected File Header Box is
required to parse any of the succeeding data. Furthermore, any segment can be parsed without a forward
reference to any of the data succeeding the particular segment.

III.5.2.2 Syntax
aligned(8) class fileHeaderBox extends box(‘jvth’) {

unsigned int(8) majorVersion = 0x00;
unsigned int(8) minorVersion = 0x00;
unsigned int(32) timescale;
unsigned int(32) numUnitsInTick;
unsigned int(64) duration;
unsigned int(16) pixAspectRatioX;
unsigned int(16) pixAspectRatioY;
unsigned int(16) maxPicId;
unsigned int(8) numAlternateTracks;
unsigned int(2) numBytesInPayloadCountMinusOne;
unsigned int(2) numBytesInPictureOffsetMinusTwo;
unsigned int(2) numBytesInPictureDisplayTimeMinusOne;
unsigned int(2) numBytesInPictureCountMinusOne;
unsigned int(2) numBytesInPayloadSizeMinusOne;

}

III.5.2.3 Semantics
majorVersion and minorVersion indicate the version of the file format. This specification defines the
format for version 0.1 (majorVersion.minorVersion). Version numbering is independent of working draft
document and joint model software as well as the version of the standard | recommendation. This allows
parsers interpret the high-level syntax of the files, even if decoding of a file according to the indicated
joint model or standard version was not supported.

timescale is the number of time units which pass in one second. For example, a time coordinate system
that measures time in sixtieths of a second has a time scale of 60.

numUnitsInTick is the number of time units according to timescale that correspond to one clock tick. A
clock tick is the minimum unit of time that can be presented in the file. For example, if the clock
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frequency of a video signal is (30 000) / 1001 Hz, timescale should be 30 000 and numUnitsInTick should
be 1001.

duration is an integer that declares length of the file (in the indicated timescale). Value zero indicates that
no duration information is available.

pixAspectRatioX and pixAspectRatioY define the pixel geometry, calculated by pixAspectRatioX /
pixAspectRatioY. Value zero in either or both of the attributes indicate an unspecified pixel aspect ratio.

maxPicId gives the maximum value for the picture identifier.

numAlternateTracks gives the number of alternative encodings of the same source. Typically each
encoding is targeted for different bit-rate. Each file shall contain at least one track.

numBytesInPayloadCountMinusOne indicates the number of bytes that are needed to signal the
maximum number of payloads in any picture. For example, numBytesInPayloadCountMinusOne equal to
zero indicates that one byte is needed to signal the number of payloads, and the maximum number of
payloads is 255.

numBytesInPictureOffsetMinusTwo indicates the number of bytes that are needed to signal picture
offsets. For example, numBytesInPictureOffsetMinusTwo equal to zero indicates that the offsets are two-
byte integer values with a range of –32768 to 32767.

numBytesInPictureDisplayTimeMinusOne indicates the number of bytes that are needed to signal picture
display time offsets.

numBytesInPictureCountMinusOne indicates the number of bytes that are needed to signal the maximum
number of pictures in a segment.

numBytesInPayloadSizeMinusOne indicates the number of bytes to signal the maximum payload size in
bytes.

III.5.3 Content Info Box

III.5.3.1 Definition
Box Type: `cinf´

Container: File

Mandatory: No

Quantity: Zero or more

This box gives information about the content of the file.

The box can be repeated at any position of the file when no container box is open.

III.5.3.2 Syntax
aligned(8) class contentInfoBox extends box(‘cinf’) {

unsigned int(64) creationTime;
unsigned int(64) modificationTime;

unsigned int(8) titleNumBytes;
if (titleNumBytes)

unsigned int(8)[titleNumBytes] title;

unsigned int(8) authorNumBytes;
if (authorNumBytes)

unsigned int(8)[authorNumBytes] author;

unsigned int(8) copyrightNumBytes;
if (copyrightNumBytes)

unsigned int(8)[copyrightNumBytes] copyright;
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unsigned int(16) descriptionNumBytes;
if (descriptionNumBytes)

unsigned int(8)[descriptionNumBytes] description;

unsigned int(16) URINumBytes;
if (URINumBytes)

unsigned int(8)[URINumBytes] URI;
}

III.5.3.3 Semantics
creationTime is an integer that declares the creation time of the presentation (in seconds since midnight,
Jan. 1, 1904).

modificationTime is an integer that declares the most recent time the presentation was modified (in
seconds since midnight, Jan. 1, 1904.

titleNumBytes gives the number of bytes in title.

title, if present, contains the title of the file coded according to ISO/IEC 10646-1 UTF-8.

authorNumBytes gives the number of bytes in author.

author, if present, contains the author of the source or the encoded representation in the file coded
according to ISO/IEC 10646-1 UTF-8.

copyrightNumBytes gives the number of bytes in copyright.

copyright shall be used only to convey intellectual property information regarding the source or the
encoded representation in the file. copyright is coded according to ISO/IEC 10646-1 UTF-8.

descriptionNumBytes gives the number of bytes in description.

description shall be used only to convey descriptive information associated with the information contents
of the file. description is coded according to ISO/IEC 10646-1 UTF-8.

URINumBytes gives the number of bytes in URI.

URI contains a uniform resource identifier (URI), as defined in IETF RFC 2396. URI is coded according
to ISO/IEC 10646-1 UTF-8. URI shall be used to convey any related information to the file.

III.5.4 Alternate Track Info Box

III.5.4.1 Definition
Box Type: ‘atin’

Container: File

Mandatory: Yes

Quantity: One or more.

This box specifies the characteristics of alternate tracks. The box shall precede the first Segment Box. The
box can be repeated at any position of the file when no container box is open.

III.5.4.2 Syntax
aligned(8) class alternateTrackInfo {

unsigned int(16) displayWindowWidth;
unsigned int(16) displayWindowHeight;
unsigned int(16) maxSDUSize;
unsigned int(16) avgSDUSize;
unsigned int(32) avgBitRate;

}
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aligned(8) class alternateTrackInfoBox
extends box(‘atin’) {
(class alternateTrackInfo) trackInfo[numAlternateTracks];

}

III.5.4.3 Semantics
displayWindowWidth and displayWindowHeight declare the preferred size of the rectangular area on
which video images are displayed. The values are interpreted as amount of pixels.

An SDU is defined as the payload and the payload header. maxSDUSize gives the size in bytes of the
largest SDU of the track. avgSDUSize gives the average size of the SDU over the entire track. Value zero
in either attribute indicates that no information is available.

avgBitRate gives the average bit-rate in bits/second over the entire track. Payloads and payload headers
taken into account in the calculation.

III.5.5 Parameter Set Box

III.5.5.1 Definition
Box Type: ‘prms’

Container: File

Mandatory: Yes

Quantity: One or more

This box specifies a parameter set.

Parameter sets can be repeated in the file to allow random access. A parameter set is uniquely identified
within a file based on parameterSetID. Decoders can infer a repetition of a parameter set if a set with the
same parameterSetID has already appeared in a file. A redundant copy of a parameter set can safely be
ignored.

III.5.5.2 Syntax
aligned(8) class parameterSetBox

extends box(‘prms’) {
unsigned int(16) parameterSetID;
unsigned int(8) profile;
unsigned int(8) level;
unsigned int(8) version;
unsigned int(16) pictureWidthInMBs;
unsigned int(16) pictureHeightInMBs;
unsigned int(16) displayRectangleOffsetTop;
unsigned int(16) displayRectangleOffsetLeft;
unsigned int(16) displayRectangleOffsetBottom;
unsigned int(16) displayRectangleOffsetRight;
unsigned int(8) displayMode;
unsigned int(16) displayRectangleOffsetFromWindowTop;
unsigned int(16) displayRectangleOffsetFromWindowLeftBorder;
unsigned int(8) entropyCoding;
unsigned int(8) motionResolution;
unsigned int(8) partitioningType;
unsigned int(8) intraPredictionType;
bit requiredPictureNumberUpdateBehavior;

};
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III.5.5.3 Semantics
parameterSetId gives the identifier of the parameter set. The identifier shall be unique within a file.

profile defines the coding profile in use.

level defines the level in use within the profile.

version defines the version in use within the profile and the level.

pictureWidthInMBs and pictureHeightInMBs define the extents of the coded picture in macroblocks.

displayRectangleOffsetTop, displayRectangleOffsetLeft, displayRectangleOffsetBottom, and
displayRectangleOffsetRight define the rectangle to be displayed from the coded picture. Pixel units are
used.

displayMode defines the preferred displaying mode. Value zero indicates that the display rectangle shall
be rescaled to fit onto the display window. No scaling algorithm is defined. Image shall be as large as
possible, no clipping shall be applied, image aspect ratio shall be maintained, and image shall be centered
in the display window. Value one indicates that the display rectangle shall be located as indicated in
displayRectangleOffsetFromWindowTop and displayRectangleFromWindowLeftBorder. No scaling shall
be done and clipping shall be applied to areas outside the display window. No fill pattern is defined for
areas in the display window that are not covered by the display rectangle.

displayRectangleOffsetFromWindowTop and displayWindowOffsetFromWindowLeftBorder indicate the
location of the top-left corner of the display rectangle within the display window. The values are given in
pixels. The values are valid only if displayMode is one.

FIGURE 30 clarifies the relation of different display rectangle and window related attributes. The dashed
rectangle of in the decoded picture represents the display rectangle, which is indicated by
displayRectangleOffsetTop, displayRectangleOffsetLeft, displayRectangleOffsetBottom, and
displayRectangleOffsetRight.
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FIGURE 30

Relation of display window and rectangle attributes.

entropyCoding equal to zero stands for UVLC, whereas value one stands for CABAC.

motionResolution equal to zero stands for full-pixel motion resolution, one stands for half-pixel motion
resolution, two stands for ¼-pixel motion resolution, and three stands for 1/8-pixel motion resolution.

partitioningType equal to zero stands for the single slice mode and one stands for the data partitioning
mode.
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intraPredictionType equal to zero stands for normal INTRA prediction, whereas one stands for the
constrained INTRA prediction.

If requiredPictureNumberUpdateBehavior equals to one, decoder operation in case of missing picture
numbers is normatively specified. Decoder operation is defined in section CROSS-REFERENCE TO BE
ADDED.

III.5.6 Segment Box

III.5.6.1 Definition
Box Type: `segm’

Container: File

Mandatory: Yes

Quantity: One or more

A segment box contains data from a certain period of time. Segments shall not overlap in time. Segments
shall appear in ascending order of time in the file. A segment box is a container box for several other
boxes.

III.5.6.2 Syntax
aligned(8) class SegmentBox extends Box(‘segm’) {

unsigned int(64) fileSize;
unsigned int(64) startTick;
unsigned int(64) segmentDuration;

}

III.5.6.3 Semantics
fileSize indicates the number of bytes from the beginning of the Segment Box to the end of the file. Value
zero indicates that no size information is available. When downloading a file to a device with limited
storage capabilities, fileSize can be used to determine if a file fits into the available storage space. In a
progressive downloading service, fileSize, startTick, and duration (in the File Header Box) can be used to
estimate the average bit-rate of the file including meta-data. This estimation can then be used to decide
how much initial buffering is needed before starting the playback.

startTick indicates the absolute time of the beginning of the segment since the beginning of the
presentation (time zero). Any time offsets within the segment are relative to startTick.

segmentDuration indicates the duration of the segment. Value zero indicates that no duration information
is available.

III.5.7 Alternate Track Header Box

III.5.7.1 Definition
Box Type: ‘atrh’

Container: Segment Box (‘segm’)

Mandatory: Yes

Quantity: One or more

An alternate track represents an independent encoding of the same source as for the other alternate tracks.
The Alternate Track Header Box contains meta-data for an alternate track. The boxes shall appear in the
same order in all Segment Boxes and they can be indexed starting from zero. Each succeeding box is
associated with an index one greater than the previous one. The index can be used to associate the box
with a particular track and with the information given in the Alternate Track Info Box.

The Alternate Track Header Box is a container box including at least a Picture Information Box and
optionally one or more Layer Boxes.
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III.5.7.2 Syntax
aligned(8) class alternateTrackHeaderBox extends box(‘atrh’) {

unsigned int(8) numLayers;
}

III.5.7.3 Semantics
numLayers indicates the number of layers and Layer Boxes within the Alternate Track Header Box.

III.5.8 Picture Information Box

III.5.8.1 Definition
Box Type: ‘pici’

Container: Alternate Track Header Box (‘atrh’)

Mandatory: Yes

Quantity: One or more

The box contains an indication of the number of the pictures in the alternate track in this segment. In
addition, the box contains picture information for each of these pictures. Picture information shall appear
in ascending order of picture identifiers (in modulo arithmetic). In other words, picture information shall
appear in coding/decoding order of pictures.

A picture information block contains a pointer to the coded representation of the picture. A picture is
associated with a display time and with a number of so-called payloads.

A payload refers to a slice, a data partition, or a piece of supplemental enhancement information. A
payload header refers to an equivalent definition as in VCEG-N72R1. For example, a payload header of a
single slice includes the “first byte”, an indication of the parameter set in use, and the slice header.

III.5.8.2 Syntax
aligned(8) class payloadInfo {

unsigned int((numBytesInPayloadSizeMinusOne + 1) * 8) payloadSize;
unsigned int(8) headerSize;
unsigned int(4) payloadType;
unsigned int(1) errorIndication;
unsigned int(3) reserved = 0;
if (payloadType == 0) { // single slice

UVLC parameterSet;
sliceHeader;

}
else if (payloadType == 1) { // partition A

UVLC parameterSet;
sliceHeader;
UVLC sliceID;

}
else if (payloadType == 2 || payloadType == 3) { // Partition B or

C
UVLC pictureID;
UVLC sliceID;

}
else if (payloadType == 5) { // Supplemental enhancement

information
// no additional codewords

}
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}

aligned(8) class pictureInfo {
bit intraPictureFlag;
bit syncPictureFlag;
aligned(8) int((numBytesInPictureOffsetMinusTwo + 2) * 8)

pictureOffset;
int((numBytesInPictureDisplayTimeMinusOne + 1) * 8)

pictureDisplayTime;
if (numLayers) { // from AlternateTrackHeaderBox

unsigned int(8) layerNumber;
unsigned int(16) subSequenceIdentifier;
if (syncPictureFlag) {

unsigned int(8) originLayerNumber;
unsigned int(16) originSubSequenceIdentifier;

}
}
unsigned int((numBytesInPayloadCountMinusOne + 1) * 8)

numPayloads;
(class payloadInfo) payloadData[numPayloads];

}

aligned(8) class PictureInformationBox extends Box(‘pici’) {
unsigned int((numBytesInPictureCountMinusOne + 1) * 8)

numPictures;
(class pictureInfo) pictureData[numPictures];

}

III.5.8.3 Semantics
payloadInfo gives information related to a payload. payloadSize indicates the number of bytes in the
payload (excluding the payload header). The value of headerSize is the number of bytes in the payload
header, i.e., the number of bytes remaining in the structure. The rest of the data is defined in VCEG-
N72R1.

pictureInfo gives information related to a picture.

intraPictureFlag is set to one, when the picture is an INTRA picture. The flag is zero otherwise.

If syncPictureFlag is one, the coded picture represents the same picture content than the previous or
succeeding coded picture having syncPictureFlag equal to one. Any coded representation of a sync
picture can be used to recover the reconstructed picture, and no noticeable difference on the reconstructed
picture or any picture based on that should occur. Reconstructred pictures that are exactly equal can be
reached with SP pictures. The picture number of the sync pictures shall be the same, and, if present, the
layer number and sub-sequence identifier of the sync pictures shall be the same.

A picture pointer is maintained to point to the beginning of the latest picture in the corresponding
Alternate Track Media Box. The pointer is relative to the beginning of the Alternate Track Media Box.
pictureOffset gives the increment or the decrement (in bytes) for the picture pointer to obtain the coded
data for the picture. Initially, before updating the pointer for the first picture of the alternate track in a
segment, the picture pointer shall be zero.

pictureDisplayTime gives the time when the picture is to be displayed. It is assumed that the picture
remains visible until the next picture is to be displayed. The value is relative to the corresponding value of
the previous picture.

layerNumber and subSequenceIdentifier are present if numLayers in the Alternate Track Header Box is
greater than zero. layerNumber and subSequenceIdentifier identify to which layer and sub-sequence the
picture belongs. In case of a sync picture, originLayerNumber and originSubSequence indicate the sub-
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sequence, based on which the sync picture was created. Notice that the sync picture itself may reside in a
different sub-sequence.

numPayloads indicates the number of payloads in the picture. payloadData is an array of payloadInfo
structures signaling the characteristics of the payloads.

numPictures indicates the number of pictures in the track during the period of the segment. pictureData is
an array of pictureInfo structures signaling the meta-data of the pictures.

III.5.9 Layer Box

III.5.9.1 Definition
Box Type: ‘layr’

Container: Alternate Track Header Box (‘atrh’)

Mandatory: No

Quantity: Zero or more

This box defines the layer information of the pictures in the segment.

Layers can be ordered hierarchically based on their dependency on each other: The base layer is
independently decodable. The first enhancement layer depends on some of the data in the base layer. The
second enhancement layer depends on some of the data in the first enhancement layer and in the base
layer and so on.

A layer number is assigned to layers. Number zero stands for the base layer. The first enhancement layer
is associated with number one and each additional enhancement layer increments the number by one.
Layer Boxes shall appear in ascending order of layer numbers starting from zero.

A Layer Box contains at least one Sub-Sequence Box.

III.5.9.2 Syntax
aligned(8) class LayerBox extends Box(‘layr’) {

unsigned int(32) avgBitRate;
unsigned int(32) avgFrameRate;

}

III.5.9.3 Semantics
avgBitRate gives the average bit-rate in bits/second of the layer within the segment. Payloads and payload
headers taken into account in the calculation. Value zero means an undefined bit-rate.

avgFrameRate gives the average frame rate in frames/(256 seconds) of the layer within the segment.
Value zero means an undefined frame rate.

III.5.10Sub-Sequence Box

III.5.10.1Definition
Box Type: ‘sseq’

Container: Layer Box (‘layr’)

Mandatory: Yes

Quantity: One or more

This box defines the sub-sequence information of the pictures in a particular layer within a segment.

A sub-sequence shall not depend on any other sub-sequence in the same or in a more enhanced scalability
layer. In other words, it shall only depend on one or more sub-sequences in one or more less enhanced
scalability layers. A sub-sequence in the base layer can be decoded independently of any other sub-
sequences.
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A sub-sequence covers a certain period of time within the sequence. Sub-sequences within a layer and in
different layers can partly or entirely overlap. A picture shall reside in one layer and in one sub-sequence
only.

A sub-sequence identifier is assigned to sub-sequences. Sub-sequences within a particular layer in a
segment shall have unique identifiers. If a sub-sequence continues in the next segment, it shall retain its
identifier.

III.5.10.2Syntax
aligned(8) class dependencyInfo{

unsigned int(8) layerNumber;
unsigned int(16) subSequenceIdentifier;

}
aligned(8) class SubSequenceBox extends Box(‘sseq’) {

unsigned int(16) subSequenceIdentifer;
bit continuationFromPreviousSegmentFlag;
bit continuationToNextSegmentFlag;
bit startTickAvailableFlag;
aligned(32) unsigned int(64) ssStartTick;
unsigned int(64) ssDuration;
unsigned int(32) avgBitRate;
unsigned int(32) avgFrameRate;
unsigned int(16) numReferencedSubSequences;
(class dependencyInfo) dependencyData[numReferencedSubSequences];

}

III.5.10.3Semantics
layerNumber and subSequenceIdentifier within the dependencyInfo class identify a sub-sequence that is
used as a motion compensation reference for the current sub-sequence.

subSequenceIdentifier in the Sub-Sequence Box gives the identifier for the sub-sequence.

continuationFromPreviousSegmentFlag is equal to one, if the current sub-sequence continues from the
previous segment.

continuationToNextSegmentFlag is equal to one, if the current sub-sequence continues in the next
segment.

If startTickAvailableFlag equals to zero, the value of ssStartTick and ssDuration is undefined. Otherwise,
ssStartTick indicates the start time of the sub-sequence relative to the start time of the segment.
ssDuration indicates the duration of the sub-sequence. ssDuration equal to zero indicates an undefined
duration.

avgBitRate gives the average bit-rate in bits/second of the sub-sequence within the segment. Payloads and
payload headers taken into account in the calculation. Value zero means an undefined bit-rate.

avgFrameRate gives the average frame rate in frames/(256 seconds) of the sub-sequence within the
segment. Value zero means an undefined frame rate.

numReferencedSubSequences gives the number of directly referenced sub-sequences. dependencyData is
an array of dependencyInfo structures giving the identification information of the referenced sub-
sequences.

III.5.11Alternate Track Media Box

III.5.11.1Definition
Box Type: ‘atrm’

Container: Segment Box (‘segm’)
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Mandatory: Yes

Quantity: One or more

An alternate track represents an independent encoding of the same source as for the other alternate tracks.
The Alternate Track Media Box contains the media-data for an alternate track and for the duration of the
segment. The boxes shall appear in the same order in all Segment Boxes and they can be indexed starting
from zero. Each succeeding box is associated with an index one greater than the previous one. The index
can be used to associate the box with a particular track and with the information given in other track-
related boxes.

Pictures can appear in the box in any order. This ensures that disposable pictures, such as conventional B
pictures, can be located flexibly. Data for different pictures shall not overlap. Data for a picture consists
of payloads, i.e., slices, data partitions, and pieces of supplemental enhancement information. Payloads
shall appear in successive bytes, and the order of payloads shall be the same as in the Alternate Track
Header Box.

III.5.11.2Syntax
aligned(8) class AlternateTrackMediaBox extends Box(‘atrm’) {
}

III.5.12Switch Picture Box

III.5.12.1Definition
Box Type: ‘swpc’

Container: Segment Box (‘segm’)

Mandatory: No

Quantity: Zero or one

This box defines which pictures can be used to switch from an alternate track to another. Typically these
pictures are SP pictures.

III.5.12.2Syntax
aligned(8) class uniquePicture {

unsigned int(8) alternateTrackIndex;
unsigned int((numBytesInPictureCountMinusOne + 1) * 8)

pictureIndex;
}

aligned(8) class switchPictureSet {
unsigned int(8) numSyncPictures;
(class uniquePicture) syncPicture[numSyncPictures];

}

aligned(8) class switchPictureBox extends Box(‘swpc’) {
unsigned int((numBytesInPictureCountMinusOne + 1) * 8)

numSwitchPictures;
(class switchPictureSet) switchPicture[numSwitchPictures];

}

III.5.12.3Semantics
uniquePicture uniquely identifies a picture within this segment. It contains two attributes:
alternateTrackIndex and pictureIndex. alternateTrackIndex identifies the alternate track where the picture
lies, and pictureIndex gives the picture index in coding order.
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switchPictureSet gives a set of pictures that represent the same picture contents and can be used to replace
any picture in the set as a reference picture for motion compensation. numSyncPictures gives the number
of pictures in the set. syncPicture is an array of uniquePicture structures indicating which pictures belong
to the set.

numSwitchPictures indicates the number of picture positions that have multiple interchangeable
representations. switchPicture is an array of switchPictureSet structures indicating the set of pictures that
can be used interchangeably for each picture position.
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Appendix IV Non-Normative Error Concealment

IV.1 Introduction
It is assumed that no erroneous or incomplete slices are decoded. When all received slices of a picture
have been decoded, skipped slices are concealed according to the presented algorithms. In practice, record
is kept in a macroblock (MB) based status map of the frame. The status of an MB in the status map is
"Correctly received" whenever the slice that the MB is included in was available for decoding, "Lost"
otherwise. After the frame is decoded if the status map contains "Lost" MBs, concealment is started.

Given the slice structure and MB-based status map of a frame, the concealment algorithms were designed
to work MB-based. The missing frame area (pixels) covered by MBs marked as "Lost" in the status map
are concealed MB-by-MB (16x16 Y pixels, 8x8 U, V pixels). After an MB has been concealed it is
marked in the status map as "Concealed". The order in which "Lost" MBs are concealed is important as
also the "Concealed", and not only the "Correctly received" MBs are treated as reliable neighbors in the
concealment process whenever no "Correctly received" immediate neighbor of a "Lost" MB exists. In
such cases a wrong concealment can result in propagation of this concealment mistake to several neighbor
concealed MBs. The processing order chosen is to take the MB columns at the edge of the frame first and
then move inwards column-by-column so to avoid a concealment mistake made in the usually "difficult"
(discontinuous motion areas, large coded prediction error) center part of the frame propagate to the "easy"
(continuous motion area, similar motion over several frames) side parts of the frame.

FIGURE 31 shows a snapshot of the status map during the concealment phase where already concealed
MBs have the status of "Concealed", and the currently processed (concealed) MB is marked as "Current
MB".

Current MB

3 MB correctly received

2 MB concealed

0 MB lost

3 3 3 3 3 3 3 3
3 3 3 3 3 0 0 0 2 2 2
2 2 2 2 0 0 0 0 2 2 2
2 2 2 0 0 0 0 2 2 2
2 2 2 2 0 0 3 3 3 3 3
3 3 3 3 3 3 3 3

Lost slice

FIGURE 31

MB status map at the decoder

IV.2 INTRA Frame Concealment
Lost areas in INTRA frames have to be concealed spatially as no prior frame may resemble the INTRA
frame. The selected spatial concealment algorithm is based on weighted pixel averaging presented in A.
K. Katsaggelos and N. P. Galatsanos (editors), “Signal Recovery Techniques for Image and Video
Compression and Transmission”, Chapter 7, P. Salama, N. B. Shroff, and E. J. Delp, “Error
Concealment in Encoded Video Streams”, Kluwer Academic Publishers, 1998.

Each pixel value in a macroblock to be concealed is formed as a weighted sum of the closest boundary
pixels of the selected adjacent macroblocks. The weight associated with each boundary pixel is relative to
the inverse distance between the pixel to be concealed and the boundary pixel. The following formula is
used:

Pixel value = (∑ai×(B-di)) / ∑(B-di)

where ai is the pixel value of a boundary pixel in an adjacent macroblock, B is the horizontal or vertical
block size in pixels, and di is the distance between the destination pixel and the corresponding boundary
pixel in the adjacent macroblock.
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In
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FIGURE 32, the shown destination pixel is calculated as follows

Pixel value = (15x(16-3) + 21x(16-12) + 32x(16-7) + 7x(16-8)) / (13 + 4 + 9 + 8) ≈ 18

Only "Correctly received" neighboring MBs are used for concealment if at least two such MBs are
available. Otherwise, neighboring "Concealed" MBs are also used in the averaging operation.
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FIGURE 32

Spatial concealment based on weighted pixel averaging

IV.3 INTER and SP Frame Concealment

IV.3.1 General
Instead of directly operating in the pixel domain a more efficient approach is to try to "guess" the motion
in the missing pixel area (MB) by some kind of prediction from available motion information of spatial or
temporal neighbors. This "guessed" motion vector is then used for motion compensation using the
reference frame. The copied pixel values give the final reconstructed pixel values for concealment, and no
additional pixel domain operations are used. The presented algorithm is based on W.-M. Lam, A. R.
Reibman, and B. Liu, “Recovery of lost or erroneously received motion vectors,” in Proc. ICASSP’93,
Minneapolis, Apr. 1993, pp. V417–V420.
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IV.3.2 Concealment using motion vector prediction
The motion activity of the correctly received slices of the current picture is investigated first. If the
average motion vector is smaller than a pre-defined threshold (currently ¼ pixels for each motion vector
component), all the lost slices are concealed by copying from co-located positions in the reference frame.
Otherwise, motion-compensated error concealment is used, and the motion vectors of the lost
macroblocks are predicted as described in the following paragraphs.

The motion of a "Lost" MB is predicted from a spatial neighbor MB's motion relying on the statistical
observation, that the motion of spatially neighbor frame areas is highly correlated. For example, in a
frame area covered by a moving foreground scene object the motion vector field is continuous, which
means that it is easy to predict.

The motion vector of the "Lost" MB is predicted from one of the neighbor MBs (or blocks). This
approach assumes, that the motion vector of one of the neighbor MBs (or blocks) models the motion in
the current MB well. It was found in previous experiments, that median or averaging over all neighbors'
motion vectors does not give better results. For simplicity, in the current implementation the smallest
neighbor block size that is considered separately as predictor is set to 8x8 Y pixels. The motion of any
8x8 block is calculated as the average of the motion of the spatially corresponding 4x4 or other shaped
(e.g. 4x8) blocks.

The decision of which neighbor's motion vectors to use as prediction for the current MB is made based on
the smoothness of the concealed (reconstructed) image. During this trial procedure the concealment pixel
values are calculated using the motion vector of each candidate (motion compensated pixel values). The
motion vector, which results in the smallest luminance change across block boundaries when the block is
inserted into its place in the frame is selected. (see FIGURE 33). The zero motion vector case is always
considered and this copy concealment (copy pixel values from the co-located MB in the reference frame)
is evaluated similarly as the other motion vector candidates.

1botmv 2botmv

topmv

rightmv IN
OUT

FIGURE 33

Selecting the motion vector for prediction

The winning predictor motion vector is the one which minimizes the side match distortion smd , which is

the sum of absolute Y pixel value difference of the IN-block and neighboring OUT-block pixels at the
boundaries of the current block:

{ }, , , 1

ˆminarg ( )
N

dir IN OUT
sm j j

dir top bot left right j
d Y Y N

∈ =

  = −   
∑ mv

When "Correctly received" neighbor MBs exist the side match distortion is calculated only for them.
Otherwise all the "Concealed" neighbor MBs are included in the calculation.
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IV.3.3 Handling of Multiple reference frames
When multiple references are used, the reference frame of the candidate motion vector is used as the
reference frame for the current MB. That is, when calculating the side match distortion smd , the IN-block

pixels are from the reference frame of the candidate motion vector.

IV.4 B Frame Concealment
A simple motion vector prediction scheme according to the prediction mode of the candidate MB is used
as follows:

If the prediction mode of the candidate MB is

• forward prediction mode, use the forward MV as the prediction the same way as for P frames.

• backward prediction mode, use the backward MV as the prediction.

• bi-directional prediction mode, use the forward MV as the prediction, and discard the backward
MV.

• direct prediction mode, use the backward MV as the prediction.

Note that 1) Each MV, whether forward or backward, has its own reference frame. 2) An Intra coded
block is not used as a motion prediction candidate.

IV.5 Handling of Entire Frame Losses
TML currently lacks H.263 Annex U type of reference picture buffering. Instead, a simple sliding
window buffer model is used, and a picture is referred using its index in the buffer. Consequently, when
entire frames are lost, the reference buffer needs to be adjusted. Otherwise, the following received frames
would use wrong reference frames. To solve this problem, the reference picture ID is used to infer how
many frames are lost, and the picture indices in the sliding window buffer are shifted appropriately.


