
File: JVT-A003r1.DOC Page: 1
Date Printed: 14.03.2002

Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG

Pattaya, Thailand, 3-7 December 2001

Document JVT-A003r1
File: JVT-A003r1.doc
Generated: 2002-01-18

Title: Joint Model Number 1, Revision 1(JM-1r1)

Status: Approved Output Document

Contact: Thomas Wiegand
Heinrich Hertz Institute (HHI), Einsteinufer 37, D-10587 Berlin, Germany
Tel: +49 - 30 - 31002 617, Fax: +49 - 030 - 392 72 00, wiegand@hhi.de

Purpose: Information

This document presents the Joint Model Number 1 of the Joint Video Team formed by ITU-T SG16 Q.6
(VCEG) and ISO/IEC JTC 1/SC 29/WG 11 (MPEG). This document is a description of a reference
coding method to be used for the development of a new video compression ITU-T Recommendation
(H.26L) and ISO Standard (MPEG-4, Part 10).

It contains various corrections and improvements relative to TML-9 based on suggestions from the JVT
experts reflector.

In addition to JVT-A003, this version contains improvements regarding the Slice header description
contributed by Karsten Sühring, HHI. This contribution provides a description that is much closer to the
implementation in the TML code. However, due to time restrictions, this description has not been fully
completed and needs further work for which it serves as an excellent starting point.

File: JVT-A003r1.DOC Page: 2
Date Printed: 14.03.2002

File: JVT-A003r1.DOC Page: 3
Date Printed: 14.03.2002

CONTENTS

1 Scope... 7
2 Source Coder ... 8

2.1 Picture formats .. 8
2.2 Subdivision of a picture into macroblocks.. 8
2.3 Order of the bitstream within a macroblock ... 8

3 Syntax and Semantics ...10
3.1 Organization of syntax elements (NAL concept) ... 10

3.1.1 Slice Mode...10
3.1.2 Data Partitioning Mode ..10

3.2 Syntax diagrams.. 10
3.3 Slice Layer .. 11

3.3.1 Picture sync..12
3.3.2 Picture type (Ptype)..12
3.3.3 Picture Number (PN)..12
3.3.4 Reference Picture Selection Layer (RPSL) ...13
3.3.5 Re-Mapping of Picture Numbers Indicator (RMPNI)..13

3.3.5.1 Absolute Difference of Picture Numbers (ADPN)...14
3.3.5.2 Long-term Picture Index for Re-Mapping (LPIR) ...15

3.3.6 Reference Picture Buffering Type (RPBT) ...15
3.3.6.1 Memory Management Control Operation (MMCO)..15
3.3.6.2 Difference of Picture Numbers (DPN) ..16
3.3.6.3 Long-term Picture Index (LPIN)...17
3.3.6.4 Maximum Long-Term Picture Index Plus 1 (MLIP1)..17

3.3.7 Supplemental Enhancement Information ..17
3.4 Macroblock layer .. 17

3.4.1 Number of Skipped Macroblocks (RUN)..17
3.4.2 Macro block type (MB_Type) ..18

3.4.2.1 Intra Macroblock modes...18
3.4.2.2 Inter Macroblock Modes...18

3.4.3 Intra Prediction Mode (Intra_pred_mode)...18
3.4.3.1.1 Prediction for Intra-4x4 mode for luminance blocks...18
3.4.3.1.2 Prediction for Intra-16x16 mode for luminance..20
3.4.3.1.3 Prediction in intra coding of chrominance blocks...21

3.4.4 Reference frame (Ref_frame) ...22
3.4.5 Motion Vector Data (MVD) ...22

3.4.5.1 Prediction of vector components...22
3.4.5.1.1 Median prediction ...22
3.4.5.1.2 Directional segmentation prediction...23

3.4.5.2 Chrominance vectors..24
3.4.6 Coded Block Pattern (CBP)..24
3.4.7 Change of Quantizer Value (Dquant)..24

4 Decoding Process..26
4.1 Slice Decoding .. 26

4.1.1 Multi-Picture Decoder Process ...26
4.1.1.1 Decoder Process for Short/Long-term Picture Management26
4.1.1.2 Decoder Process for Reference Picture Buffer Mapping..27
4.1.1.3 Decoder Process for Multi-Picture Motion Compensation...27
4.1.1.4 Decoder Process for Reference Picture Buffering..28

4.2 Motion Compensation... 28
4.2.1 Fractional pixel accuracy..28

4.2.1.1 1/4 luminance sample interpolation...28
4.2.1.2 1/8 Pel Luminance Samples Interpolation ...29

4.3 Transform Coefficient Decoding .. 30

File: JVT-A003r1.DOC Page: 4
Date Printed: 14.03.2002

4.3.1 Transform for Blocks of Size 4x4 Samples ...30
4.3.2 Transform for Blocks of Size 2x2 Samples (DC vales for Chrominance)30
4.3.3 Zig-zag Scanning and Quantization ..31

4.3.3.1 Simple Zig-Zag Scan..31
4.3.3.2 Double Zig-Zag Scan ...31
4.3.3.3 Quantization...31
4.3.3.4 Scanning and Quantization of 2x2 chrominance DC coefficients...............................32

4.3.4 Use of 2-dimensional model for coefficient coding. ..32
4.4 Deblocking Filter .. 32

4.4.1 Picture Content Dependent Parameters for Filtering..33
4.4.2 Filtering Process...34
4.4.3 Stronger filtering for intra coded macroblocks ..34

4.5 Entropy Coding... 35
4.5.1 Universal Variable Length Coding (UVLC)..35
4.5.2 Context-based Adaptive Binary Arithmetic Coding (CABAC)..37

4.5.2.1 Overview ...37
4.5.2.2 Context Modeling for Coding of Motion and Mode Information37

4.5.2.2.1 Context Models for Macroblock Type ...37
4.5.2.2.1.1 Intra Pictures ...38
4.5.2.2.1.2 P- and B-Pictures...38

4.5.2.2.2 Context Models for Motion Vector Data ..39
4.5.2.2.3 Context Models for Reference Frame Parameter ..39

4.5.2.3 Context Modeling for Coding of Texture Information...40
4.5.2.3.1 Context Models for Coded Block Pattern...40
4.5.2.3.2 Context Models for Intra Prediction Mode...40
4.5.2.3.3 Context Models for Run/Level...40

4.5.2.3.3.1 Context-based Coding of LEVEL Information ...41
4.5.2.3.3.2 Context-based Coding of RUN Information ...41

4.5.2.4 Context Modeling for Coding of Dquant...41
4.5.2.5 Binarization of Non-Binary Valued Symbols ..41
4.5.2.6 Adaptive Binary Arithmetic Coding ...42

5 B-pictures ...43
5.1 Introduction... 43
5.2 Five Prediction modes... 43
5.3 Syntax.. 44

5.3.1 Picture type (Ptype) and RUN ..44
5.3.2 Macro block type (MB_type) ...44
5.3.3 Intra prediction mode (Intra_pred_mode) ...45
5.3.4 Reference Frame (Ref_frame) ..45
5.3.5 Block Size (Blk_size)...46
5.3.6 Motion vector data (MVDFW, MVDBW) ..46

5.4 Decoder Process for motion vector ... 46
5.4.1 Differential motion vectors...46
5.4.2 Motion vectors in direct mode ..47

6 SP-pictures ...48
6.1 Introduction... 48
6.2 Syntax changes.. 48
6.3 SP-frame decoding.. 48

7 Hypothetical Reference Decoder ...50
7.1 Purpose.. 50
7.2 Operation of the HRD... 50
7.3 Decoding Time of a Picture .. 50
7.4 Schedule of a Bit Stream... 50
7.5 Containment in a Leaky Bucket.. 50

File: JVT-A003r1.DOC Page: 5
Date Printed: 14.03.2002

7.6 Bit Stream Syntax ... 51
7.7 Minimum Buffer Size and Minimum Peak Rate .. 51
7.8 Encoder Considerations (informative) .. 52

Appendix I ... Non-normative Encoder Recommendation
...54
I.1 Motion Estimation and Mode Decision .. 54

I.1.1 Low-complexity mode ...54
I.1.1.1 Finding optimum prediction mode ..54

I.1.1.1.1 SA(T)D0 ...54
I.1.1.1.2 Block_difference ...55
I.1.1.1.3 Hadamard transform..55
I.1.1.1.4 Mode decision...55

I.1.1.2 Encoding on macroblock level..55
I.1.1.2.1 Intra coding ...55
I.1.1.2.2 Table for intra prediction modes to be used at the encoder side55
I.1.1.2.3 Inter mode selection ..56
I.1.1.2.4 Integer pixel search ...56
I.1.1.2.5 Fractional pixel search...56
I.1.1.2.6 Decision between intra and inter ..57

I.1.2 High-complexity mode...57
I.1.2.1 Motion Estimation..57

I.1.2.1.1 Integer-pixel search ...57
I.1.2.1.2 Fractional pixel search...57
I.1.2.1.3 Finding the best motion vector...57
I.1.2.1.4 Finding the best reference frame..58

I.1.2.2 Mode decision..58
I.1.2.2.1 Macroblock mode decision ..58
I.1.2.2.2 INTER 16x16 mode decision...59
I.1.2.2.3 INTER 4x4 mode decision...59

I.1.2.3 Algorithm for motion estimation and mode decision...59
I.2 Quantization .. 60
I.3 Elimination of single coefficients in inter macroblocks ... 60

I.3.1 Luma ...60
I.3.2 Chroma ..60

I.4 Encoding with Anticipation of Slice Losses ... 60
Appendix II ..Network Adaptation Layer for IP networks

...62
II.1 Assumptions.. 62
II.2 Combining of Partitions according to Priorities ... 62
II.3 Packet Structure .. 63
II.4 Packetization Process .. 63
II.5 De-packetization ... 64
II.6 Repair and Error Concealment.. 64

Appendix III... Interim File Format
...65
III.1 General .. 65
III.2 File Identification.. 65
III.3 Clump.. 65

III.3.1Definition...65
III.3.1.1 Syntax..65
III.3.1.2 Semantics...66

III.4 Clump Order ... 66
III.5 Clump Definitions... 66

III.5.1File Type Clump ..66

File: JVT-A003r1.DOC Page: 6
Date Printed: 14.03.2002

III.5.1.1 Definition...66
III.5.1.2 Syntax..67
III.5.1.3 Semantics...67

III.5.2File Header Clump ...67
III.5.2.1 Definition...67
III.5.2.2 Syntax..67
III.5.2.3 Semantics...68

III.5.3Content Info Clump..68
III.5.3.1 Definition...68
III.5.3.2 Syntax..68
III.5.3.3 Semantics...69

III.5.4Alternate Track Info Clump..69
III.5.4.1 Definition...69
III.5.4.2 Syntax..70
III.5.4.3 Semantics...70

III.5.5Parameter Set Clump..70
III.5.5.1 Definition...70
III.5.5.2 Syntax..70
III.5.5.3 Semantics...71

III.5.6Segment Clump..72
III.5.6.1 Definition...72
III.5.6.2 Syntax..72
III.5.6.3 Semantics...72

III.5.7Alternate Track Header Clump...73
III.5.7.1 Definition...73
III.5.7.2 Syntax..73
III.5.7.3 Semantics...74

III.5.8Alternate Track Media Clump ..74
III.5.8.1 Definition...74
III.5.8.2 Syntax..75

III.5.9Switch Picture Clump...75
III.5.9.1 Definition...75
III.5.9.2 Syntax..75
III.5.9.3 Semantics...75

Appendix IV... Non-Normative Error Concealment
...77
IV.1 Introduction... 77
IV.2 INTRA Frame Concealment ... 77
IV.3 INTER and SP Frame Concealment ... 78

IV.3.1General ..78
IV.3.2Concealment using motion vector prediction ..79
IV.3.3Handling of Multiple reference frames ...80

IV.4 B Frame Concealment... 80
IV.5 Handling of Entire Frame Losses.. 80

File: JVT-A003r1.DOC Page: 7
Date Printed: 14.03.2002

1 Scope
This document is a description of a reference coding method to be used for the development of a new
video compression ITU-T Recommendation (H.26L) and ISO Standard (MPEG-4, Part 10). The basic
configuration of the algorithm is similar to H.263 and MPEG-4, Part 2.

File: JVT-A003r1.DOC Page: 8
Date Printed: 14.03.2002

2 Source Coder

2.1 Picture formats
The image width and height of the source data are restricted to be multiples of 16. At the moment only
colour sequences using 4:2:0 chrominance sub-sampling are supported.

2.2 Subdivision of a picture into macroblocks
Pictures are divided into macroblocks of 16x16 pixels. For instance, a QCIF picture is divided into 99
macroblocks as indicated in FIGURE 1. A number of consecutive macroblocks in coding order (see
FIGURE 1) can be organized in slices. Slices represent independent coding units in a way that they can be
decoded without referencing other slices of the same frame.

QCIF Image

9

11

FIGURE 1

Subdivision of a QCIF picture into 16x16 macroblocks

2.3 Order of the bitstream within a macroblock
FIGURE 2 and FIGURE 3 indicate how a macroblock is divided and the order of the different syntax
elements resulting from coding a macroblock.

0 0 1
1

0 0 1

2 3

0 1 2 3

4 5 6 7

0 1
2 3
4 5
6 7

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Mode 1 Mode 2 Mode 3 Mode 4

Mode 5 Mode 6 Mode 7

FIGURE 2

File: JVT-A003r1.DOC Page: 9
Date Printed: 14.03.2002

Numbering of the vectors for the different blocks depending on the inter mode. For each block the
horizontal component comes first followed by the vertical component

CBPY 8x8 block order

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Luma residual coding 4x4 block order

18 19

20 21

22 23

24 25

16 17

VU
2x2 DC

AC

Chroma residual coding 4x4 block order

0 1

32

FIGURE 3

Ordering of blocks for CBPY and residual coding of 4x4 blocks

File: JVT-A003r1.DOC Page: 10
Date Printed: 14.03.2002

3 Syntax and Semantics

3.1 Organization of syntax elements (NAL concept)
Tbd.

3.1.1 Slice Mode
Tbd.

3.1.2 Data Partitioning Mode
Data Partitioning re-arranges the symbols in a way that all symbols of one data type (e.g. DC coefficients,
macroblock headers, motion vectors) that belong to a single slice are collected in one VLC coded
bitstream that starts byte aligned. Decoders can process such a partitioned data streams by fetching
symbols from the correct partition. The partition to fetch from is determined through the decoder’s state
machine, according to the syntax diagram discussed in section 3.4.

Data Partitioning is implemented by concatenating all VLC coded symbols of one data type and one slice
(or full picture if slices are not used). At the moment, for a few partitions as indicated below contain data
of more than one data type that are so closely related that a finer diversion seems to be fruitless. The
following data types are currently defined:

0 TYPE_HEADER Picture or Slice Headers (Note 1)

1 TYPE_MBHEADER Macroblock header information (Note 2)

2 TYPE_MVD Motion Vector Data

3 TYPE_CBP Coded Block Patterm

4 TYPE_2x2DC 2x2 DC Coefficients

5 TYPE_COEFF_Y Luminance AC Coefficients

6 TYPE_COEFF_C Chrominance AC Coefficients

7 TYPE_EOS End-of-Stream Symbol

Note 1: TYPE_HEADER encompasses all Picture/Slice header information

Note 2: TYPE_MBHEADER encompasses The MB-Type, Intra-Prediction mode and Reference Frame
ID.

3.2 Syntax diagrams

File: JVT-A003r1.DOC Page: 11
Date Printed: 14.03.2002

MB_Type

Intra_pred_mode

Ref_frame

MVD

CBP

Tcoeff_luma

Tcoeff_chroma_DC

Tcoeff_chroma_AC

Loop

Omit

RUN

Dquant

FIGURE 4

Syntax diagram for all the elements in the macroblock layer

3.3 Slice Layer

Editor: The slice layer needs a significant amount of work together with the NAL concept. The

Picture sync and picture type codewords are present to ease the VCL development.

File: JVT-A003r1.DOC Page: 12
Date Printed: 14.03.2002

The information on the slice layer is coded depending on the NAL type. The coding, the order

and even the presence of some fields may differ between the different NALs.

3.3.1 Slicesync

A slice sync may be inserted as the first codeword if it is needed by the NAL. If UVLC codes are
used for the transmission of the slice level it should be a 31 bit long (L = 31) codeword with the

INFO part set to zero.

3.3.2 Temporal reference (TRType/TR)
Two codewords. Temporal reference type (TRType) indicates how TR is transmitted

TRType = 0 Absoltue TR

TRType <> 0 Error

The value of TR is formed by incrementing its value in the temporally-previous reference picture header
by one plus the number of skipped or non-reference pictures at the picture clock frequency since the
previously transmitted one.

3.3.3 Picture type (Ptype)
Code_number =0: Inter picture with prediction from the most recent decoded picture only.

Code_number =1: Inter picture with possibility of prediction from more than one previous decoded
picture. For this mode information reference picture for prediction must be signalled
for each macroblock.

Code_number =2: Intra picture.

Code_number =3: B picture with prediction from the most recent previous decoded and subsequent
decoded pictures only.

Code_number =4: B picture with possibility of prediction from more than one previous decoded picture
and subsequent decoded picture. When using this mode, information reference frame
for prediction must be signalled for each macroblock.

3.3.4 Size information
A series of up to three codewords. The first codeword indicates a size change. If set to zero the size is
unchaged otherwise (if set to one) it is followed by two codewords containing the new width and height.

3.3.5 Reference Picture ID

3.3.6 First MB in slice
The number of the first macroblock contained in this slice.

3.3.7 Slice QP (SQP)
Information about the quantizer QUANT to be used for luminance for the picture. (See under
Quantization concerning QUANT for chrominance). The 5 bit representation is the natural binary
representations of the values of QP which range from 0 to 31. QP is a pointer to the actual quantization
parameter QUANT to be used. (See below under quantization). The range of quantization value is still
about the same as for H.263, 1-31. An approximate relation between the QUANT in H.263 and QP is:
QUANTH.263(QP) ≈ QP0(QP) = 2QP/6 . QP0() will be used later for scaling purposes when selecting
prediction modes.

File: JVT-A003r1.DOC Page: 13
Date Printed: 14.03.2002

3.3.8 SP Slice QP
For SP frames the SP slice QP is transmitted.

3.3.9 Number of macroblocks in slice
For CABAC entropy coding the number of macroblocks contained in the slice is transmitted.

3.3.10 Picture Number (PN)
PN shall be incremented by 1 for each coded and transmitted picture, in modulo MAX_PN operation,
relative to the PN of the previous stored picture. For non-stored pictures, PN shall be incremented from
the value in the most temporally recent stored picture, which precedes the non-stored picture in bitstream
order.

The PN serves as a unique ID for each picture stored in the multi-picture buffer within MAX_PN coded
and stored pictures. Therefore, a picture cannot be kept in the buffer after more than MAX_PN-1
subsequent coded and stored pictures unless it has been assigned a long-term picture index as specified
below. The encoder shall ensure that the bitstream shall not specify retaining any short-term picture after
more than MAX_PN-1 subsequent stored pictures. A decoder which encounters a picture number on a
current picture having a value equal to the picture number of some other short-term stored picture in the
multi-picture buffer should treat this condition as an error.

3.3.11 Reference Picture Selection Layer (RPSL)
RPSL can be signaled with the following values:

Code number 0: The RPS layer is not sent,

Code number 1: The RPS layer is sent.

If RPSL is not sent, the default buffer indexing order presented in the next subsection shall be applied.
RPS layer information sent at the slice level does not affect the decoding process of any other slice.

If RPSL is sent, the buffer indexing used to decode the current slice and to manage the contents of the
picture buffer is sent using the following code words.

3.3.12 Re-Mapping of Picture Numbers Indicator (RMPNI)
RMPNI is present in the RPS layer if the picture is a P or B picture. RMPNI indicates whether any
default picture indices are to be re-mapped for motion compensation of the current slice – and how the re-
mapping of the relative indices into the multi-picture buffer is to be specified if indicated. If RMPNI
indicates the presence of an ADPN or LPIR field, an additional RMPNI field immediately follows the
ADPN or LPIR field.

A picture reference parameter is a relative index into the ordered set of pictures. The RMPNI, ADPN,
and LPIR fields allow the order of that relative indexing into the multi-picture buffer to be temporarily
altered from the default index order for the decoding of a particular slice. The default index order is for
the short-term pictures (i.e., pictures which have not been given a long-term index) to precede the long-
term pictures in the reference indexing order. Within the set of short-term pictures, the default order is for
the pictures to be ordered starting with the most recent buffered reference picture and proceeding through
to the oldest reference picture (i.e., in decreasing order of picture number in the absence of wrapping of
the ten-bit picture number field). Within the set of long-term pictures, the default order is for the pictures
to be ordered starting with the picture with the smallest long-term index and proceeding up to the picture
with long-term index equal to the most recent value of MLIP1−1.

For example, if the buffer contains three short-term pictures with short-term picture numbers 300, 302,
and 303 (which were transmitted in increasing picture-number order) and two long-term pictures with
long-term picture indices 0 and 3, the default index order is:

default relative index 0 refers to the short-term picture with picture number 303,

default relative index 1 refers to the short-term picture with picture number 302,

default relative index 2 refers to the short-term picture with picture number 300,

default relative index 3 refers to the long-term picture with long-term picture index 0, and

File: JVT-A003r1.DOC Page: 14
Date Printed: 14.03.2002

default relative index 4 refers to the long-term picture with long-term picture index 3.

The first ADPN or LPIR field that is received (if any) moves a specified picture out of the default order to
the relative index of zero. The second such field moves a specified picture to the relative index of one,
etc. The set of remaining pictures not moved to the front of the relative indexing order in this manner
shall retain their default order amongst themselves and shall follow the pictures that have been moved to
the front of the buffer in relative indexing order.

If there is not more than one reference picture used, no more than one ADPN or LPIR field shall be
present in the same RPS layer unless the current picture is a B picture. If the current picture is a B picture
and more than one reference picture is used, no more than two ADPN or LPIR fields shall be present in
the same RPS layer.

Any re-mapping of picture numbers specified for some slice shall not affect the decoding process for any
other slice.

In a P picture an RMPNI “end loop” indication is followed by RPBT.

Within one RPS layer, RMPNI shall not specify the placement of any individual reference picture into
more than one re-mapped position in relative index order.

TABLE 1

RMPNI operations for re-mapping of reference pictures

Code Number Re-mapping Specified

0 ADPN field is present and corresponds to a negative difference
to add to a picture number prediction value

1 ADPN field is present and corresponds to a positive difference
to add to a picture number prediction value

2 LPIR field is present and specifies the long-term index for a reference
picture

3 End loop for re-mapping of picture relative indexing default order

3.3.12.1 Absolute Difference of Picture Numbers (ADPN)
ADPN is present only if indicated by RMPNI. ADPN follows RMPNI when present. The code number of
the UVLC corresponds to ADPN – 1. ADPN represents the absolute difference between the picture
number of the currently re-mapped picture and the prediction value for that picture number. If no previous
ADPN fields have been sent within the current RPS layer, the prediction value shall be the picture number
of the current picture. If some previous ADPN field has been sent, the prediction value shall be the picture
number of the last picture that was re-mapped using ADPN.

If the picture number prediction is denoted PNP, and the picture number in question is denoted PNQ, the
decoder shall determine PNQ from PNP and ADPN in a manner mathematically equivalent to the
following:
if (RMPNI == '1') { // a negative difference
if (PNP – ADPN < 0)
PNQ = PNP – ADPN + MAX_PN;

else
PNQ = PNP – ADPN;

}else{ // a positive difference
if (PNP + ADPN > MAX_PN-1)
PNQ = PNP + ADPN – MAX_PN;

else
PNQ = PNP + ADPN;

File: JVT-A003r1.DOC Page: 15
Date Printed: 14.03.2002

}

The encoder shall control RMPNI and ADPN such that the decoded value of ADPN shall not be greater
than or equal to MAX_PN.

As an example implementation, the encoder may use the following process to determine values of ADPN
and RMPNI to specify a re-mapped picture number in question, PNQ:
DELTA = PNQ – PNP;
if (DELTA < 0) {
if (DELTA < –MAX_PN/2-1)
MDELTA = DELTA + MAX_PN;

else
MDELTA = DELTA;

}else{
if(DELTA > MAX_PN/2)
MDELTA = DELTA – MAX_PN;

else
MDELTA = DELTA;

}

ADPN = abs(MDELTA);

where abs() indicates an absolute value operation. Note that the code number of the UVLC corresponds
to the value of ADPN – 1, rather than the value of ADPN itself.

RMPNI would then be determined by the sign of MDELTA.

3.3.12.2 Long-term Picture Index for Re-Mapping (LPIR)
LPIR is present only if indicated by RMPNI. LPIR follows RMPNI when present. LPIR is transmitted
using UVLC codewords. It represents the long-term picture index to be re-mapped. The prediction value
used by any subsequent ADPN re-mappings is not affected by LPIR.

3.3.13 Reference Picture Buffering Type (RPBT)
RPBT specifies the buffering type of the currently decoded picture. It follows an RMPNI “end loop”
indication when the picture is not an I picture. It is the first element of the RPS layer if the picture is an I
picture. The values for RPBT are defined as follows:

Code number 0: Sliding Window,

Code number 1: Adaptive Memory Control.

In the “Sliding Window” buffering type, the current decoded picture shall be added to the buffer with
default relative index 0, and any marking of pictures as “unused” in the buffer is performed automatically
in a first-in-first-out fashion among the set of short-term pictures. In this case, if the buffer has sufficient
“unused” capacity to store the current picture, no additional pictures shall be marked as “unused” in the
buffer. If the buffer does not have sufficient “unused” capacity to store the current picture, the picture
with the largest default relative index among the short-term pictures in the buffer shall be marked as
“unused”. In the sliding window buffering type, no additional information is transmitted to control the
buffer contents.

In the "Adaptive Memory Control" buffering type, the encoder explicitly specifies any addition to the
buffer or marking of data as “unused” in the buffer, and may also assign long-term indices to short-term
pictures. The current picture and other pictures may be explicitly marked as “unused” in the buffer, as
specified by the encoder. This buffering type requires further information that is controlled by memory
management control operation (MMCO) parameters.

3.3.13.1 Memory Management Control Operation (MMCO)
MMCO is present only when RPBT indicates “Adaptive Memory Control”, and may occur multiple times
if present. It specifies a control operation to be applied to manage the multi-picture buffer memory. The

File: JVT-A003r1.DOC Page: 16
Date Printed: 14.03.2002

MMCO parameter is followed by data necessary for the operation specified by the value of MMCO, and
then an additional MMCO parameter follows – until the MMCO value indicates the end of the list of such
operations. MMCO commands do not affect the buffer contents or the decoding process for the decoding
of the current picture – rather, they specify the necessary buffer status for the decoding of subsequent
pictures in the bitstream. The values and control operations associated with MMCO are defined in
TABLE 2.

If MMCO is Reset, all pictures in the multi-picture buffer (but not the current picture unless specified
separately) shall be marked “unused” (including both short-term and long-term pictures).

The picture height and width shall not change within the bitstream except within a picture containing a
Reset MMCO command.

A “stored picture” does not contain an MMCO command in its RPS layer which marks that (entire)
picture as “unused”. If the current picture is not a stored picture, its RPS layer shall not contain any of the
following types of MMCO commands:

• An Reset MMCO command,

• Any MMCO command which marks any other picture (other than the current picture) as
“unused” that has not also been marked as “unused” in the ERPS layer of a prior stored picture,
or

• Any MMCO command which assigns a long-term index to a picture that has not also been
assigned the same long-term index in the ERPS layer of a prior stored picture

TABLE 2

Memory Management Control Operation (MMCO) Values

Code Number Memory Management Control Operation Associated Data Fields Following

0 End MMCO Loop None (end of ERPS layer)

1 Mark a Short-Term Picture as “Unused” DPN

2 Mark a Long-Term Picture as “Unused” LPIN

3 Assign a Long-Term Index to a Picture DPN and LPIN

4 Specify the Maximum Long-Term Picture Index MLIP1

5 Reset None

3.3.13.2 Difference of Picture Numbers (DPN)
DPN is present when indicated by MMCO. DPN follows MMCO if present. DPN is transmitted using
UVLC codewords and is used to calculate the PN of a picture for a memory control operation. It is used
in order to assign a long-term index to a picture, mark a short-term picture as “unused”. If the current
decoded picture number is PNC and the decoded UVLC code number is DPN, an operation
mathematically equivalent to the following equations shall be used for calculation of PNQ, the specified
picture number in question:
if (PNC – DPN < 0)
PNQ = PNC – DPN + MAX_PN;

else
PNQ = PNC – DPN;

Similarly, the encoder may compute the DPN value to encode using the following relation:
if (PNC – PNQ < 0)
DPN = PNC – PNQ + MAX_PN;

else
DPN = PNC – PNQ;

File: JVT-A003r1.DOC Page: 17
Date Printed: 14.03.2002

For example, if the decoded value of DPN is zero and MMCO indicates marking a short-term picture as
“unused”, the current decoded picture shall be marked as “unused” (thus indicating that the current
picture is not a stored picture).

3.3.13.3 Long-term Picture Index (LPIN)
LPIN is present when indicated by MMCO. LPIN specifies the long-term picture index of a picture. It
follows DPN if the operation is to assign a long-term index to a picture. It follows MMCO if the
operation is to mark a long-term picture as “unused”.

3.3.13.4 Maximum Long-Term Picture Index Plus 1 (MLIP1)
MLIP1 is present if indicated by MMCO. MLIP1 follows MMCO if present. If present, MLIP1 is used
to determine the maximum index allowed for long-term reference pictures (until receipt of another value
of MLIP1). The decoder shall initially assume MLIP1 is "0" until some other value has been received.
Upon receiving an MLIP1 parameter, the decoder shall consider all long-term pictures having indices
greater than the decoded value of MLIP1 – 1 as “unused” for referencing by the decoding process for
subsequent pictures. For all other pictures in the multi-picture buffer, no change of status shall be
indicated by MLIP1.

3.3.14 Supplemental Enhancement Information
Supplemental enhancement information (SEI) is encapsulated into chunks of data separate from coded
slices, for example. It is up to the network adaptation layer to specify the means to transport SEI chunks.
Each SEI chunck may contain one or more SEI messages. Each SEI message shall consist of a SEI header
and SEI payload. The SEI header starts at a byte-aligned position from the first byte of a SEI chunk or
from the first byte after the previous SEI message. The SEI header consists of two codewords, both of
which consist of one or more bytes. The first codeword indicates the SEI payload type. Values from 00 to
FE shall be reserved for particular payload types, whereas value FF is an escape code to extend the value
range to yet another byte as follows:
payload_type = 0;
for (;;) {
payload_type += *byte_ptr_to_sei;
if (*byte_ptr_to_sei < 0xFF)
break;

byte_ptr_to_sei++;
}

The second codeword of the SEI header indicates the SEI payload size in bytes. SEI payload size shall be
coded similarly to the SEI payload type.

The SEI payload may have a SEI payload header. For example, a payload header may indicate to which
picture the particular data belongs. The payload header shall be defined for each
payload type separately.

3.4 Macroblock layer
Following the syntax diagram for the macroblock elements, the various elements are described.

3.4.1 Number of Skipped Macroblocks (RUN)
A macroblock is called skipped if no information is sent. In that case the reconstruction of an inter
macroblock is made by copying the collocated picture material from the last decoded frame. For a B
macroblock skip means direct mode without coefficients. RUN indicates the number of skipped
macroblocks in an inter- or B-picture before a coded macroblock. If a picture or slice ends with one or
more skipped macroblocks, they are represented by an additional RUN which counts the number of
skipped macroblocks.

File: JVT-A003r1.DOC Page: 18
Date Printed: 14.03.2002

3.4.2 Macro block type (MB_Type)
Refer to TABLE 7. There are different MB-Type tables for Intra and Inter frames.

3.4.2.1 Intra Macroblock modes
Intra 4x4 Intra coding as defined in sections 0 to 0.

Imode, nc, AC See definition in section 0. These modes refer to 16x16 intra coding.

3.4.2.2 Inter Macroblock Modes
Skip No further information about the macroblock is transmitted. A copy of the colocated

macroblock in the most recent decoded picture is used as reconstruction for the present
macroblock.

NxM (eg. 8x4) The macroblock is predicted from a past picture with block size NxM. For each NxM
block motion vector data is provided. Depending on N and M there may be 1 to 16
sets of motion vector data for a macroblock.

Intra 4x4 4x4 intra coding.

Code numbers from 9 and upwards represent 16x16 intra coding.

3.4.3 Intra Prediction Mode (Intra_pred_mode)
Even in Intra mode, prediction is always used for each sub block in a macroblock. A 4x4 block is to be
coded (pixels labeled a to p below). The pixels A to I from neighboring blocks are already decoded and
may be used for prediction.

I A B C D
E a b c d
F e f g h
G i j k l
H m n o p

FIGURE 5

Syntax diagram for the Picture header.

3.4.3.1.1 Prediction for Intra-4x4 mode for luminance blocks

For the luminance signal, there are 6 intra prediction modes labeled 0 to 5. Mode 0 is ‘DC-prediction’
(see below). The other modes represent directions of predictions as indicated below.

5

3
2 1

4

FIGURE 6

Syntax diagram for the Picture header.

Mode 0: DC prediction

Generally all pixels are predicted by (A+B+C+D+E+F+G+H)//8. If four of the pixels are outside the
picture, the average of the remaining four is used for prediction. If all 8 pixels are outside the picture the
prediction for all pixels in the block is 128. A block may therefore always be predicted in this mode.

File: JVT-A003r1.DOC Page: 19
Date Printed: 14.03.2002

Mode 1: Vertical/Diagonal Prediction

This mode is used only if all A,B,C,D are inside the picture.

a is predicted by: (A+B)/2

e is predicted by B

b,i are predicted by (B+C)/2

f,m are predicted by C

c,j are predicted by (C+D)/2

d,g,h,k,l,n,o,p are predicted by D

Mode 2: Vertical prediction

If A,B,C,D are inside the picture, a,e,i,m are predicted by A, b,f,j,n by B etc.

Mode 3: Diagonal prediction

This mode is used only if all A,B,C,D,E,F,G,H,I are inside the picture. This is a 'diagonal' prediction.

m is predicted by: (H+2G+F)//4

i,n are predicted by (G+2F+E)//4

e,j,o are predicted by (F+2E+I)//4

a,f,k,p are predicted by (E+2I+A)//4

b,g,l are predicted by (I+2A+B)//4

c,h are predicted by (A+2B+C)//4

d is predicted by (B+2C+D)//4

Mode 4: Horizontal prediction

If E,F,G,H are inside the picture, a,b,c,d are predicted by E, e,f,g,h by F etc.

Mode 5: Horizontal/Diagonal prediction

This mode is used only if all E,F,G,H are inside the picture.

a is predicted by: (E+F)/2

b is predicted by F

c,e are predicted by (F+G)/2

f,d are predicted by G

i,g are predicted by (G+H)/2

h,j,k,l,m,n,o,p are predicted by H

Coding of Intra 4x4 prediction modes

Since each of the 4x4 luminance blocks shall be assigned a prediction mode, this will require a
considerable number of bits if coded directly. We have therefore tried to find more efficient ways of
coding mode information. First of all we observe that the chosen prediction of a block is highly
correlated with the prediction modes of adjacent blocks. This is illustrated in FIGURE 7a. When the
prediction modes of A and B are known (including the case that A or B or both are outside the picture) an
ordering of the most probable, next most probable etc. of C is given. . When an adjacent block is coded
by 16x16 intra mode, prediction mode is “mode 0: DC_prediction”; when it is coded in inter mode,
prediction mode is “mode 0: DC_prediction” in the usual case and “outside” in the case of constrained
intra update. This ordering is listed in TABLE 3.

For each prediction mode of A and B a list of 5 numbers is given. Example: Prediction mode for A and B
is 2. The string 2 1 0 3 4 5 indicates that mode 2 is also the most probable mode for block C. Mode 1 is
the next most probable one etc. In the bitstream there will for instance be information that Prob0 = 1 (see
TABLE 7) indicating that the next most probable mode shall be used for block C. In our example this
means Intra prediction mode 1. Use of '–' in the table indicates that this instance cannot occur because A
or B or both are outside the picture.

For more efficient coding, information on intra prediction of two 4x4 luminance blocks are coded in one
codeword (Prob0 and Prob1 in TABLE 7). The order of the resulting 8 codewords is indicated in
FIGURE 7b.

File: JVT-A003r1.DOC Page: 20
Date Printed: 14.03.2002

0

2

0

2

1

3

1

3

4

6

4

6

5

7

5

7C

A

B

a

FIGURE 7

a) Prediction mode of block C shall be established. A and B are adjacent blocks. b) order of intra
prediction information in the bitstream

TABLE 3

Prediction mode as a function of ordering signaled in the bitstream (see text)
B\A outside 0 1 2 3 4 5

Outside 0 021-- 102--- 201--- 012--- 012--- 012---
0 045--- 041352 104325 230415 304215 043152 043512
1 045--- 014325 102435 203145 032145 041325 014352
2 045--- 012345 102345 210345 302145 042135 013245
3 045--- 304152 310425 231054 304215 403512 305412
4 405--- 403512 401532 240351 430512 403512 405312
5 504--- 540312 015432 201453 530412 450312 504132

3.4.3.1.2 Prediction for Intra-16x16 mode for luminance

Assume that the block to be predicted has pixel locations 0 to 15 horizontally and 0 to 15 vertically. We
use the notation P(i,j) where i,j = 0..15. P(i,-1), i=0..15 are the neighboring pixels above the block and P(-
1,j), j=0..15 are the neighboring pixels to the left of the block. Pred(i,j) i,j = 0..15 is the prediction for the
whole Luminance macroblock. We have 4 different prediction modes:

Mode 0 (vertical)

Pred(i,j) = P(i,-1), i,j=0..15

Mode 1 (horizontal)

Pred(i,j) = P(-1,j), i,j=0..15

Mode 2 (DC prediction)

Pred(i,j) = 32/)))1,(),1(((
15

0
∑

=

−+−
i

iPiP i,j=0..15,

where only the average of 16 pixels are used when the other 16 pixels are outside the picture or slice. If
all 32 pixels are outside the picture, the prediction for all pixels in the block is 128.

Mode 3 (Plane prediction)

Pred(i,j) = max(0, min(255, (a + bx(i-7) + cx(j-7) +16)/32)),

where:

a = 16x(P(-1,15) + P(15,-1))

b = 5x(H/4)/16

c = 5x(V/4)/16

∑
=

−−−−+=
8

1

))1,7()1,7((
i

iPiPixH

File: JVT-A003r1.DOC Page: 21
Date Printed: 14.03.2002

∑
=

−−−+−=
8

1

))7,1()7,1((
j

jPjPjxV

Residual coding

The residual coding is based on 4x4 transform. But similar to coding of chrominance coefficients,
another 4x4 transform to the 16 DC coefficients in the macroblock are added. In that way we end up with
an overall DC for the whole MB which works well in flat areas.

Since we use the same integer transform to DC coefficients, we have to perform additional normalization
to those coefficients, which implies a division by 676. To avoid the division we performed normalization
by 49/215 on the encoder side and 48/215 on the decoder side, which gives sufficient accuracy.

Only single scan is used for 16x16 intra coding.

To produce the bitstream, we first scan through the 16 ‘DC transform’ coefficients. There is no ‘CBP’
information to indicate no coefficients on this level. If AC = 1 (see below) ac coefficients of the 16 4x4
blocks are scanned. There are 15 coefficients in each block since the DC coefficients are included in the
level above.

Coding of mode information for Intra-16x16 mode

See TABLE 7. Three parameters have to be signaled. They are all included in MB-type.

Imode: 0,1,2,3

AC: 0 means there are no ac coefficients in the 16x16 block. 1 means that there is at least
one ac coefficient and all 16 blocks are scanned.

nc: CBP for chrominance (see 3.4.6)

3.4.3.1.3 Prediction in intra coding of chrominance blocks

For chrominance prediction there is only one mode. No information is therefore needed to be transmitted.
The prediction is indicated in the figure below. The 8x8 chrominance block consists of 4 4x4 blocks
A,B,C,D. S0,1,2,3 are the sums of 4 neighbouring pixels.

If S0, S1, S2, S3 are all inside the frame:

A = (S0 + S2 + 4)/8

B = (S1 + 2)/4

C = (S3 + 2)/4

D = (S1 + S3 + 4)/8

If only S0 and S1 are inside the frame:

A = (S0 + 2)/4

B = (S1 + 2)/4

C = (S0 + 2)/4

D = (S1 + 2)/4

If only S2 and S3 are inside the frame:

A = (S2 + 2)/4

B = (S2 + 2)/4

C = (S3 + 2)/4

D = (S3 + 2)/4

If S0, S1, S2, S3 are all outside the frame: A = B = C = D = 128

(Note: This prediction should be considered changed)

File: JVT-A003r1.DOC Page: 22
Date Printed: 14.03.2002

A B

C D

S1S0

S2

S3

FIGURE 8

Prediction of Chrominance blocks.

3.4.4 Reference frame (Ref_frame)
If PTYPE indicates possibility of prediction from more than one previous decoded picture, the exact
frame to be used must be signalled. This is done according to the following table.

Code_number Reference frame

0 The last decoded frame (1 frame back)

1 2 frames back

2 3 frames back

.. ..

3.4.5 Motion Vector Data (MVD)
If so indicated by MB_type, vector data for 1-16 blocks are transmitted. For every block a prediction is
formed for the horizontal and vertical components of the motion vector. MVD signals the difference
between the vector component to be used and this prediction. The order in which vector data is sent is
indicated in FIGURE 2. Motion vectors are allowed to point to pixels outside the reference frame. If a
pixel outside the reference frame is referred to in the prediction process, the nearest pixel belonging to the
frame (an edge or corner pixel) shall be used. All fractional pixel positions shall be interpolated as
described below. If a pixel referred in the interpolation process (necessarily integer accuracy) is outside of
the reference frame it shall be replaced by the nearest pixel belonging to the frame (an edge or corner
pixel). Reconstructed motion vectors shall be clipped to +-19 integer pixels outside of the frame.

3.4.5.1 Prediction of vector components
In all macroblocks with square motion vector blocks (16x16, 8x8, 4x4) "median prediction" (see
3.4.5.1.1) is used. In case the macroblock may be classified to have directional segmentation the
prediction is defined in 3.4.5.1.2.

3.4.5.1.1 Median prediction

In the figure below the vector component E of the indicated block shall be predicted. The prediction is
normally formed as the median of A, B and C. However, the prediction may be modified as described
below. Notice that it is still referred to as "median prediction"

A The component applying to the pixel to the left of the upper left pixel in E

B The component applying to the pixel just above the upper left pixel in E

C The component applying to the pixel above and to the right of the upper right pixel in E

D The component applying to the pixel above and to the left of the upper left pixel in E

File: JVT-A003r1.DOC Page: 23
Date Printed: 14.03.2002

D B C
A

E

FIGURE 9

Median prediction of motion vectors.

A, B, C, D and E may represent motion vectors from different reference pictures. As an example we may
be seeking prediction for a motion vector for E from the last decoded picture. A, B, C and D may
represent vectors from 2, 3, 4 and 5 pictures back. The following substitutions may be made prior to
median filtering.

• If A and D are outside the picture, their values are assumed to be zero and they are considered to
have "different reference picture than E".

• If D, B, C are outside the picture, the prediction is equal to A (equivalent to replacing B and C
with A before median filtering).

• If C is outside the picture or still not available due to the order of vector data (see FIGURE 2), C
is replaced by D.

If any of the blocks A, B, C, D are intra coded they count as having "different reference frame. If one and
only one of the vector components used in the median calculation (A, B, C) refer to the same reference
picture as the vector component E, this one vector component is used to predict E.

3.4.5.1.2 Directional segmentation prediction

If the macroblock where the block to be predicted belongs to has a directional segmentation (vector block
size of 8x16, 16x8, 8x4 or 4x8) the prediction is generated as follows (refer to figure below and the
definitions of A, B, C, E above):

Vector block size 8x16:

Left block: A is used as prediction if it has the same reference picture as E,

otherwise "Median prediction" is used

Right block: C is used as prediction if it has the same reference picture as E,

otherwise "Median prediction" is used

Vector block size 16x8:

Upper block: B is used as prediction if it has the same reference picture as E,

otherwise "Median prediction" is used

Lower block: A is used as prediction if it has the same reference picture as E,

otherwise "Median prediction" is used

Vector block size 8x4:

For white blocks: "Median prediction" is used

For shaded blocks:A is used as prediction

Vector block size 4x8:

For white blocks: "Median prediction" is used

For shaded blocks:B is used as prediction

If the indicated prediction block is outside the picture, the same substitution rules are applied as in the
case of median prediction.

File: JVT-A003r1.DOC Page: 24
Date Printed: 14.03.2002

16x88x16 8x4 4x8

FIGURE 10

Directional segmentation prediction

3.4.5.2 Chrominance vectors
Chrominance vectors are derived from the Luminance vectors. Since chrominance has half resolution
compared to Luminance, the chrominance vectors are obtained by a division of two:

Croma_vector = Luma_vector/2 - which means that the chrominance vectors have a resolution of 1/8
pixel.

Due to the half resolution, a chrominance vector applies to 1/4 as many pixels as the Luminance vector.
For example if the Luminance vector applies to 8x16 Luminance pixels, the corresponding chrominance
vector applies to 4x8 chrominance pixels and if the Luminance vector applies to 4x4 Luminance pixels,
the corresponding chrominance vector applies to 2x2 chrominance pixel.

For fractional pixel interpolation for chrominance prediction, bilinear interpolation is used. The result is
rounded to the nearest integer.

3.4.6 Coded Block Pattern (CBP)
The CBP contains information of which 8x8 blocks - Luminance and chrominance - contain transform
coefficients. Notice that an 8x8 block contains 4 4x4 blocks meaning that the statement '8x8 block
contains coefficients' means that 'one or more of the 4 4x4 blocks contain coefficients'. The 4 least
significant bits of CBP contain information on which of 4 8x8 luminance blocks in a macroblock contains
nonzero coefficients. Let us call these 4 bits CBPY. The ordering of 8x8 blocks is indicated in FIGURE
3. A 0 in position n of CBP (binary representation) means that the corresponding 8x8 block has no
coefficients whereas a 1 means that the 8x8 block has one or more non-zero coefficients.

For chrominance we define 3 possibilities:

nc=0: no chrominance coefficients at all.

nc=1 There are nonzero 2x2 transform coefficients. All chrominance AC coefficients = 0.
Therefore we do not send any EOB for chrominance AC coefficients.

nc=2 There may be 2x2 nonzero coefficients and there is at least one nonzero chrominance
AC coefficient present. In this case we need to send 10 EOBs (2 for DC coefficients
and 2x4=8 for the 8 4x4 blocks) for chrominance in a macroblock.

The total CBP for a macroblock is: CBP = CBPY + 16xnc
The CBP is signalled with a different codeword for Inter macroblocks and Intra macroblocks since the
statistics of CBP values are different in the two cases.

3.4.7 Change of Quantizer Value (Dquant)
Dquant contains the possibility of changing QUANT on the macroblock level. It does not need to be
present for macroblocks without nonzero transform coefficients. More specifically Dquant is present for
non-skipped macroblocks:

• If CBP indicates that there are nonzero transform coefficients in the MB or

• If the MB is 16x16 based intra coded

File: JVT-A003r1.DOC Page: 25
Date Printed: 14.03.2002

The value of Dquant may range from -16 to +16 which enables the QP to be changed to any value in the
range 0-31.

QUANTnew = modulo32(QUANTold + Dquant + 32) (also known as "arithmetic wrap")

File: JVT-A003r1.DOC Page: 26
Date Printed: 14.03.2002

4 Decoding Process

4.1 Slice Decoding

4.1.1 Multi-Picture Decoder Process
The decoder stores the reference pictures for inter-picture decoding in a multi-picture buffer. The decoder
replicates the multi-picture buffer of the encoder according to the reference picture buffering type and any
memory management control operations specified in the bitstream. The buffering scheme may also be
operated when partially erroneous pictures are decoded.

Each transmitted and stored picture is assigned a Picture Number (PN) which is stored with the picture in
the multi-picture buffer. PN represents a sequential picture counting identifier for stored pictures. PN is
constrained, using modulo MAX_PN arithmetic operation. For the first transmitted picture, PN should be
"0". For each and every other transmitted and stored picture, PN shall be increased by 1. If the difference
(modulo MAX_PN) of the PNs of two consecutively received and stored pictures is not 1, the decoder
should infer a loss of pictures or corruption of data. In such a case, a back-channel message indicating the
loss of pictures may be sent to the encoder.

Besides the PN, each picture stored in the multi-picture buffer has an associated index, called the default
relative index. When a picture is first added to the multi-picture buffer it is given default relative index 0
– unless it is assigned to a long-term index. The default relative indices of pictures in the multi-picture
buffer are modified when pictures are added to or removed from the multi-picture buffer, or when short-
term pictures are assigned to long-term indices.

The pictures stored in the multi-picture buffers can also be divided into two categories: long-term pictures
and short-term pictures. A long-term picture can stay in the multi-picture buffer for a long time (more
than MAX_PN-1 coded and stored picture intervals). The current picture is initially considered a short-
term picture. Any short-term picture can be changed to a long-term picture by assigning it a long-term
index according to information in the bitstream. The PN is the unique ID for all short-term pictures in the
multi-picture buffer. When a short-term picture is changed to a long-term picture, it is also assigned a
long-term picture index (LPIN). A long-term picture index is assigned to a picture by associating its PN
to an LPIN. Once a long-term picture index has been assigned to a picture, the only potential subsequent
use of the long-term picture’s PN within the bitstream shall be in a repetition of the long-term index
assignment. The PNs of the long-term pictures are unique within MAX_PN transmitted and stored
pictures. Therefore, the PN of a long-term picture cannot be used for assignment of a long-term index
after MAX_PN-1 transmitted subsequent stored pictures. LPIN becomes the unique ID for the life of a
long-term picture.

PN (for a short-term picture) or LPIN (for a long-term picture) can be used to re-map the pictures into re-
mapped relative indices for efficient reference picture addressing.

4.1.1.1 Decoder Process for Short/Long-term Picture Management
The decoder may have both long-term pictures and short-term pictures in its multi-picture buffer. The
MLIP1 field is used to indicate the maximum long-term picture index allowed in the buffer. If no prior
value of MLIP1 has been sent, no long-term pictures shall be in use, i.e. MLIP1 shall initially have an
implied value of "0". Upon receiving an MLIP1 parameter, a new MLIP1 shall take effect until another
value of MLIP1 is received. Upon receiving a new MLIP1 parameter in the bitstream, all long-term
pictures with associated long-term indices greater than or equal to MLIP1 shall be considered marked
“unused”. The frequency of transmitting MLIP1 is out of the scope of this Recommendation. However,
the encoder should send an MLIP1 parameter upon receiving an error message, such as an Intra request
message.

A short-term picture can be changed to a long-term picture by using an MMCO command with an
associated DPN and LPIN. The short-term picture number is derived from DPN and the long-term picture
index is LPIN. Upon receiving such an MMCO command, the decoder shall change the short-term picture
with PN indicated by DPN to a long-term picture and shall assign it to the long-term index indicated by
LPIN. If a long-term picture with the same long-term index already exists in the buffer, the previously-

File: JVT-A003r1.DOC Page: 27
Date Printed: 14.03.2002

existing long-term picture shall be marked “unused”. An encoder shall not assign a long-term index
greater than MLIP1–1 to any picture. If LPIN is greater than MLIP1–1, this condition should be treated
by the decoder as an error. For error resilience, the encoder may send the same long-term index
assignment operation or MLIP1 specification message repeatedly. If the picture specified in a long-term
assignment operation is already associated with the required LPIN, no action shall be taken by the
decoder. An encoder shall not assign the same picture to more than one long term index value. If the
picture specified in a long-term index assignment operation is already associated with a different long-
term index, this condition should be treated as an error. An encoder shall only change a short-term picture
to a long-term picture within MAX_PN transmitted consecutive stored pictures. In other words, a short-
term picture shall not stay in the short-term buffer after more than MAX_PN-1 subsequent stored pictures
have been transmitted. An encoder shall not assign a long-term index to a short-term picture that has been
marked as “unused” by the decoding process prior to the first such assignment message in the bitstream.
An encoder shall not assign a long-term index to a picture number that has not been sent.

4.1.1.2 Decoder Process for Reference Picture Buffer Mapping
The decoder employs indices when referencing a picture for motion compensation on the macroblock
layer. In pictures other than B pictures, these indices are the default relative indices of pictures in the
multi-picture buffer when the fields ADPN and LPIR are not present in the current slice layer as
applicable, and are re-mapped relative indices when these fields are present. In B pictures, the first one or
two pictures (depending on BTPSM) in relative index order are used for backward prediction, and the
forward picture reference parameters specify a relative index into the remaining pictures for use in
forward prediction. (needs to be changed)

The indices of pictures in the multi-picture buffer can be re-mapped onto newly specified indices by
transmitting the RMPNI, ADPN, and LPIR fields. RMPNI indicates whether ADPN or LPIR is present.
If ADPN is present, RMPNI specifies the sign of the difference to be added to a picture number
prediction value. The ADPN value corresponds to the absolute difference between the PN of the picture
to be re-mapped and a prediction of that PN value. The first transmitted ADPN is computed as the
absolute difference between the PN of the current picture and the PN of the picture to be re-mapped. The
next transmitted ADPN field represents the difference between the PN of the previous picture that was re-
mapped using ADPN and that of another picture to be re-mapped. The process continues until all
necessary re-mapping is complete. The presence of re-mappings specified using LPIR does not affect the
prediction value for subsequent re-mappings using ADPN. If RMPNI indicates the presence of an LPIR
field, the re-mapped picture corresponds to a long-term picture with a long-term index of LPIR. If any
pictures are not re-mapped to a specific order by RMPNI, these remaining pictures shall follow after any
pictures having a re-mapped order in the indexing scheme, following the default order amongst these non-
re-mapped pictures.

If the decoder detects a missing picture, it may invoke some concealment process, and may insert an
error-concealed picture into the multi-picture buffer. Missing pictures can be identified if one or several
picture numbers are missing or if a picture not stored in the multi-picture buffer is indicated in a
transmitted ADPN or LPIR. Concealment may be conducted by copying the closest temporally preceding
picture that is available in the multi-picture buffer into the position of the missing picture. The temporal
order of the short-term pictures in the multi-picture buffer can be inferred from their default relative index
order and PN fields. In addition or instead, the decoder may send a forced INTRA update signal to the
encoder by external means (for example, Recommendation H.245), or the decoder may use external
means or back-channel messages (for example, Recommendation H.245) to indicate the loss of pictures to
the encoder. A concealed picture may be inserted into the multi-picture buffer when using the "Sliding
Window" buffering type. If a missing picture is detected when decoding a Slice, the concealment may be
applied to the picture as if the missing picture had been detected at the picture layer.

4.1.1.3 Decoder Process for Multi-Picture Motion Compensation
Multi-picture motion compensation is applied if the use of more than one reference picture is indicated.
For multi-picture motion compensation, the decoder chooses a reference picture as indicated using the
reference frame fields on the macroblock layer. Once, the reference picture is specified, the decoding
process for motion compensation proceeds.

File: JVT-A003r1.DOC Page: 28
Date Printed: 14.03.2002

4.1.1.4 Decoder Process for Reference Picture Buffering
The buffering of the currently decoded picture can be specified using the reference picture buffering type
(RPBT). The buffering may follow a first-in, first-out ("Sliding Window") mode. Alternatively, the
buffering may follow a customized adaptive buffering ("Adaptive Memory Control") operation that is
specified by the encoder in the forward channel.

The "Sliding Window" buffering type operates as follows. First, the decoder determines whether the
picture can be stored into “unused” buffer capacity. If there is insufficient “unused” buffer capacity, the
short-term picture with the largest default relative index (i.e. the oldest short-term picture in the buffer)
shall be marked as “unused”. The current picture is stored in the buffer and assigned a default relative
index of zero. The default relative index of all other short-term pictures is incremented by one. The
default relative indices of all long-term pictures are incremented by one minus the number of short-term
pictures removed.

In the "Adaptive Memory Control" buffering type, specified pictures may be removed from the multi-
picture buffer explicitly. The currently decoded picture, which is initially considered a short-term picture,
may be inserted into the buffer with default relative index 0, may be assigned to a long-term index, or
may be marked as “unused” by the encoder. Other short-term pictures may also be assigned to long-term
indices. The buffering process shall operate in a manner functionally equivalent to the following: First,
the current picture is added to the multi-picture buffer with default relative index 0, and the default
relative indices of all other pictures are incremented by one. Then, the MMCO commands are processed:

If MMCO indicates a reset of the buffer contents , all pictures in the buffer are marked as “unused” except
the current picture (which will be the picture with default relative index 0).

If MMCO indicates a maximum long-term index using MLIP1, all long-term pictures having long-term
indices greater than or equal to MLIP1 are marked as “unused” and the default relative index order of the
remaining pictures are not affected.

If MMCO indicates that a picture is to be marked as “unused” in the multi-picture buffer and if that
picture has not already been marked as “unused”, the specified picture is marked as “unused” in the multi-
picture buffer and the default relative indices of all subsequent pictures in default order are decremented
by one.

If MMCO indicates the assignment of a long-term index to a specified short-term picture and if the
specified long-term index has not already been assigned to the specified short-term picture, the specified
short-term picture is marked in the buffer as a long-term picture with the specified long-term index. If
another picture is already present in the buffer with the same long-term index as the specified long-term
index, the other picture is marked as “unused”. All short-term pictures that were subsequent to the
specified short-term picture in default relative index order and all long-term pictures having a long-term
index less than the specified long-term index have their associated default relative indices decremented by
one. The specified picture is assigned to a default relative index of one plus the highest of the incremented
default relative indices, or zero if there are no such incremented indices.

4.2 Motion Compensation

4.2.1 Fractional pixel accuracy

4.2.1.1 1/4 luminance sample interpolation
The pixels labeled as 'A' represent original pixels at integer positions and other symbols represent the
pixels to be interpolated
A d b d A
e h f h
b g c g b
e h f i
A b A

The interpolation proceeds as follows

File: JVT-A003r1.DOC Page: 29
Date Printed: 14.03.2002

1 The 1/2 sample positions labeled as ‘b’ are obtained by first applying 6-tap filter (1,-5,20,20,-5,1)
to nearest pixels at integer locations in horizontal or vertical direction. The resulting intermediate
value b is divided by 32, rounded to the nearest integer and clipped to lie in the range [0, 255].

2 The 1/2 sample position labeled as ‘c’ is obtained using 6-tap filtering (1,-5,20,20,-5,1) of
intermediate the values b of the closest 1/2 sample positions in vertical or horizontal direction. The
obtained value is divided by 1024, rounded to the nearest integer and clipped to lie in the range [0,
255].

3 The 1/4 sample positions labeled as ‘d’, ‘g’, ‘e’ and ‘f’ are obtained by averaging (with truncation
to the nearest integer) the two nearest samples at integer or 1/2 sample position using d=(A+b)/2,
g=(b+c)/2, e=(A+b)/2, f=(b+c)/2.

4 The 1/4 sample positions labeled as 'h' are obtained by averaging (with truncation to nearest
integer) the two nearest pixels ‘b’ in diagonal direction.

5 The pixel labeled 'i' (the "funny" position) is computed as (A1+A2+A3+A4+2)/4 using the four
nearest original pixels.

4.2.1.2 1/8 Pel Luminance Samples Interpolation
The pixels labeled as 'A' represent original pixels at integer positions and other symbols represent 1/2, 1/4
and 1/8 pixels to be interpolated.
A d b1 d b2 d b3 d A
d e d f d f d e
b1 d c11 d c12 d c13 d
d f d g d g d f
b2 d c21 d c22 d c23 d
d f d g d g d e
b3 d c31 d c32 d c33 d
d e d f d f d e
A A

The interpolation proceeds as follows

1 The 1/2 and 1/4 sample positions labeled as 'b' are obtained by first calculating intermediate values
‘b’ using 8 tap filtering of nearest pixels at integer locations in horizontal or vertical direction. The
final value of 'b' is calculated as (b+128)/256 and clipped to lie in the range [0, 255]. The 1/2 and
1/4 sample positions labeled as 'c’ are obtained by 8 tap filtering of intermediate values b in
horizontal or vertical direction, dividing the result of filtering by 65536, rounding it to the nearest
integer and clipping it to lie in the range [0, 255]. The filter tap values depend on pixel position and
are listed below:

‘b’, ‘c’ position filter tabs

1/4 (-3, 12, -37, 229, 71, -21, 6, -1)

2/4 (-3, 12, -39, 158, 158, -39, 12, -3)

3/4 (-1, 6, -21, 71, 229, -37, 12, -3)

2 The 1/8 sample positions labeled as ‘d’ are calculated as the average (with truncation to the nearest
integer) of the two closest ‘A’, ‘b’ or ‘c’ values in the horizontal or vertical direction.

3 The 1/8 sample positions labeled as ‘e’ are calculated by averaging with truncation of two 1/4

pixels labeled as ‘b1’, which are the closest in the diagonal direction [Editor: what about the e-

position column 8, row 6 ?]. The 1/8 sample positions labeled as ‘g’ are calculated via
(A+3c22+2)/4 and the 1/8 sample positions marked as ‘f’ are calculated via (3b1+ b1+2)/4 (pixel 'b2'
closer to ‘f’ is multiplied by 3).

File: JVT-A003r1.DOC Page: 30
Date Printed: 14.03.2002

Integer position pixels

1/8 pixels

1/2 and 1/4 pixels

FIGURE 11

Diagonal interpolation for 1/8 pel interpolation.

4.3 Transform Coefficient Decoding
This section defines all elements related to transform coding and decoding. It is therefore relevant to all
the syntax elements 'Tcoeff' in the syntax diagram.

4.3.1 Transform for Blocks of Size 4x4 Samples
Instead of DCT, an integer transform with basically the same coding property as a 4x4 DCT is used. The
transformation of the pixels a,b,c,d into 4 transform coefficients A,B,C,D is defined by:
A = 13a + 13b + 13c + 13d
B = 17a + 7b - 7c - 17d
C = 13a - 13b – 13c + 13d
D = 7a - 17b + 17c - 7d

The inverse transformation of transform coefficients A,B,C,D into 4 pixels a',b',c',d' is defined by:
a' = 13A + 17B + 13C + 7D
b' = 13A + 7B - 13C – 17D
c' = 13A – 7B – 13C + 17D
d' = 13A – 17B + 13C - 7D

The relation between a and a' is: a' = 676a. This is because the expressions defined above contain no
normalisation. Normalisation will be performed in the quantization/dequantisation process and a final
shift after inverse quantization.

The transform/inverse is performed both vertically and horizontally in the same manner as in H.263. By
the above exact definition of inverse transform, the same operations will be performed on coder and
decoder side, which means that we have no 'inverse transform mismatch'.

4.3.2 Transform for Blocks of Size 2x2 Samples (DC vales for Chrominance)
With the low resolution of chrominance it seems to be preferable to have larger blocksize than 4x4.
Specifically the 8x8 DC coefficient seems very useful for better definition of low resolution chrominance.
The 2 dimensional 2x2 transform procedure is illustrated below. DC0,1,2,3 are the DC coefficients of
2x2 chrominance blocks.

DC0 DC1 Two dimensional 2x2 transform ⇒ DDC(0,0) DDC(1,0)

DC2 DC3 DDC(0,1) DDC(1,1)

Definition of transform:

DCC(0,0) = (DC0+DC1+DC2+DC3)/2

DCC(1,0) = (DC0-DC1+DC2-DC3)/2

File: JVT-A003r1.DOC Page: 31
Date Printed: 14.03.2002

DCC(0,1) = (DC0+DC1-DC2-DC3)/2

DCC(1,1) = (DC0-DC1-DC2+DC3)/2

Definition of inverse transform:

DC0 = (DCC(0,0)+ DCC(1,0)+ DCC(0,1)+ DCC(1,1))/2

DC1 = (DCC(0,0)- DCC(1,0)+ DCC(0,1)- DCC(1,1))/2

DC2 = (DCC(0,0)+ DCC(1,0)- DCC(0,1)- DCC(1,1))/2

DC3 = (DCC(0,0)- DCC(1,0)- DCC(0,1)+ DCC(1,1))/2

4.3.3 Zig-zag Scanning and Quantization

4.3.3.1 Simple Zig-Zag Scan
Except for Intra coding of luminance with QP<24, simple scan is used. This is basically zig-zag scanning
similar to the one used in H.263. The scanning pattern is:

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

FIGURE 12

Simple zig-zag scan.

4.3.3.2 Double Zig-Zag Scan
When using the VLC defined above, we use a one bit code for EOB. For Inter blocks and Intra with high
QP the probability of EOB is typically 50%, which is well matched with the VLC. In other words this
means that we on average have one non-zero coefficient per 4x4 block in addition to the EOB code
(remember that a lot of 4x4 blocks only have EOB). On the other hand, for Intra coding we typically
have more than one non-zero coefficient per 4x4 block. This means that the 1 bit EOB becomes
inefficient. To improve on this the 4x4 block is subdivided into two parts that are scanned separately and
with one EOB each. The two scanning parts are shown below – one of them in bold.

0 1 2 5

0 2 3 6

1 3 4 7

4 5 6 7

FIGURE 13

Double zig-zag scan.

4.3.3.3 Quantization
The quantization/dequantization process shall perform 'normal' quantization/dequantization as well as
take care of the fact that transform operations are kept very simple and therefore do not contain
normalization of transform coefficients. 32 different QP values are used. They are arranged so that there
is an increase of step size of about 12% from one QP to the next. Increase of QP by 6 means that the step
size is about doubled. There is no 'dead zone' in the quantization process and the total range of step size
from smallest to largest is about the same as for H.263.

File: JVT-A003r1.DOC Page: 32
Date Printed: 14.03.2002

The QP signalled in the bitstream applies for luminance quantization/dequantization. This could be called
QPluma. For chrominance quantization/dequantization a different value - QPchroma - is used. The relation
between the two is:

QPluma 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

QPchroma 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 20 21 22 22 23 23 24 24 25 25

When QP is used in the following we mean QPluma or QPchroma depending on what is appropriate.

Two arrays of numbers are used for quantization/dequantization.

A(QP=0,..,31)
620,553,492,439,391,348,310,276,246,219,195,174,155,138,123,110,98,87,78,69,62,55,49,44,39,35,31,
27,24,22,19,17

B(QP=0,..,31)

3881,4351,4890,5481,6154,6914,7761,8718,9781,10987,12339,13828,15523,17435,19561,21873,24552,
27656,30847,34870,38807,43747,49103,54683,61694,68745,77615,89113,100253,109366,126635,
141533

The relation between A() and B() is: A(QP)xB(QP)x6762 = 240.

It is assumed that a coefficient K is quantized in the following way:

LEVEL = (KxA(QP) + fx220)/220 |f| is in the range (0-0.5) and f has the same sign as K.

Dequantization:

K' = LEVELxB(QP)

After inverse transform this results in pixel values that are 220 too high. A shift of 20 bits (with rounding)
is therefore needed on the reconstruction side. The definition of transform and quantization is designed
so that no overflow will occur with use of 32 bit arithmetic.

4.3.3.4 Scanning and Quantization of 2x2 chrominance DC coefficients
DDC() is quantized (and dequantized) separately resulting in LEVEL, RUN and EOB. The scanning
order is: DCC(0,0), DCC(1,0), DCC(0,1), DCC(1,1). Inverse 2x2 transform as defined above is then
performed after dequantization resulting in dequantized 4x4 DC coefficients: DC0’ DC1’ DC2’ DC3’.

Chrominance AC coefficients (4x4 based) are then quantized similarly to before. Notice that there are
only 15 AC coefficients. The maximum size of RUN is therefore 14. However, for simplicity we use the
same relation between LEVEL, RUN and Code no. as defined for ‘Simple scan’ in TABLE 7.

4.3.4 Use of 2-dimensional model for coefficient coding.
In the 3D model for coefficient coding (see H.263) there is no good use of a short codeword of 1 bit. On
the other hand, with the use of 2D VLC plus End Of Block (EOB) (as used in H.261, H.262) and with the
small block size, 1 bit for EOB is usually well matched to the VLC.

Furthermore, with the fewer non-zero coefficients per block, the advantage of using 3D VLC is reduced.

As a result we use a 2D model plus End Of Block (EOB) in the present model. This means that an event
to be coded (RUN, LEVEL) consists of:

RUN which is the number of zero coefficients since the last nonzero coefficient.

LEVEL the size of the nonzero coefficient

EOB signals that there are no more nonzero coefficients in the block

4.4 Deblocking Filter
After the reconstruction of a macroblock a conditional filtering of this macroblock takes place, that effects
the boundaries of the 4x4 block structure. For this purpose each 4x4 luminance block in a reconstructed
macroblock is assigned a filtering Strength, which has the following value:

File: JVT-A003r1.DOC Page: 33
Date Printed: 14.03.2002

TABLE 4

Assignment of filtering strength.

4x4 block condition Strength

Macro block is INTRA-coded, or member of SP-frame 2

Macro block is non INTRA, but has nonzero coefficients 1

Else 0

Filtering across 4x4 block boundary takes place if:
• Strength ≠ 0 on at least one of the sides of the boundary, or

• the absolute difference between one of the motion vector components of the two adjacent blocks
is at least one integer pixel (four ¼ pixels). For macro blocks in B-frames which are predicted
"bidirectional" or "direct", this condition has to be valid for at least one of the involved vectors, or

• the adjacent motion vectors refer to different reference frames

Filtering takes place on a macroblock level. In a first step the 16 pel of the 4 vertical edges (horizontal
filtering) of the 4x4 raster are filtered. Than the 4 horizontal edges (vertical filtering) follow. Note, that
this process also affects the boundaries of the already reconstructed macroblocks above and to the right of
the current macroblock.

Block boundaries of chrominance blocks always correspond to a block boundary of luminance blocks.
Therefore corresponding Strength and motion vector difference for luminance are also used for
chrominance boundaries. That is, for every 4x4 luminance block two 2x2 chrominance blocks are
processed.

4.4.1 Picture Content Dependent Parameters for Filtering
The set of eight pixels across a 4x4 block horizontal or vertical boundary is denoted as

p4,p3,p2,p1 | q1,q2,q3,q4

FIGURE 14

Illustration of de-blocking filtering.

with the actual boundary between p1 and q1. Up to two pixels can be updated as a result of the filtering
process on both sides of the boundary (that is at most p2, p1, q1, q2). The number of updated pixels on both
sides of the boundary depends on corresponding activity parameters ap and aq. They are limited by the so
called overall activity parameter n:

n = min(3, 4 - |p1-q1| *α(QP) / 128)

Activity parameter ap is equal to the smallest integer i>0 not larger than n for which the inequality |p1-
pi+1| ≥ β(QP) holds. If no i < n satisfies the condition, ap is set to n. aq is obtained correspondingly. For
the quantizer dependant threshold parameters α and β see TABLE 5 below.

TABLE 5

QP dependent threshold parameters αααα and ββββ.

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 128 128 128 128 128 128 128 128 128 128 122 96 75 59 47 37

β 0 0 0 0 0 0 0 0 3 3 3 4 4 4 6 6

QP 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

File: JVT-A003r1.DOC Page: 34
Date Printed: 14.03.2002

α 29 23 18 15 13 11 9 8 7 6 5 4 3 3 2 2

β 6 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14

4.4.2 Filtering Process
There are 3 conditions, that determine which of the boundary pixels are filtered:

• If (ap > 1) and (aq > 1) the pixels p1 and q1 are filtered by:

∆ = Clip(-c, c, ((q1 – p1) << 2 + (p2 – q2) + 4) >> 3)

P1 = Clip(0, 255, (p1+∆))

Q1 = Clip(0, 255, (q1- ∆))

• If (ap == 3) and (aq >1) p2 is filtered by:

∆ = Clip(-cp, cp, (p3+p1 - p2<<1) >> 1)

P2 = Clip(0, 255, (p2+∆))

• If (ap>1) and (aq == 3) q2 is filtered by:

∆ = Clip(-cq, cq, (q3+q1 - q2<<1) >> 1)

Q2 = Clip(0, 255, (q2+∆))

Here Clip() denotes a clipping function with the parameters Clip(Min, Max, Value)

with the clipping constants:

cp = ClipTbl(QP, Strengthp)

cq = ClipTbl(QP, Strengthq)

c = (cp + cq + ap + aq) / 2

TABLE 6

ClipTbl (QP, Strength):

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ClipTbb(qp,0) 0

ClipTbl(qp,1) 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 5 5

ClipTbl(qp,2) 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 5 7 8 9

4.4.3 Stronger filtering for intra coded macroblocks
In case of intra coding and areas in the picture with little texture the subjective quality can be improved
by stronger filtering across macroblock boundaries (that is: not 4x4 block boundaries). This stronger
filtering is performed only if one or both of the adjacent macroblocks are intra coded and ap = 3 and aq = 3
and 1 < |p1-q1| < QP / 4.

In this case luminance filtering is performed using the formulas shown below. For chrominance pixels p3

to q3, are not filtered.
P
1
= (25*p

3
+ 26*p

2
+ 26*p

1
+ 26*q

1
+ 25*q

2
+ 64) / 128

P
2
= (25*p

4
+ 26*p

3
+ 26*p

2
+ 26*P

1
+ 25*q

1
+ 64) / 128

P
3
= (26*p

4
+ 51*p

3
+ 26*P

2
+ 25*P

1
+ 64) / 128

Q
1
= (25*p

2
+ 26*p

1
+ 26*q

1
+ 26*q

2
+ 25*q

3
+ 64) / 128

Q
2
= (25*p

1
+ 26*Q

1
+ 26*q

2
+ 26*q

3
+ 25*q

4
+ 64) / 128

Q
3
= (25*Q

1
+ 26*Q

2
+ 51*q

3
+ 26*q

4
+ 64) / 128

Note, that when filtering across the next 4x4 block boundary, pixel q3 may get overwritten. To
compensate the effect Q3 is stored and used as P2 when filtering across the next 4x4 block boundary.

File: JVT-A003r1.DOC Page: 35
Date Printed: 14.03.2002

4.5 Entropy Coding

4.5.1 Universal Variable Length Coding (UVLC)
In the default entropy coding mode, a universal VLC is used to code all syntax. The table of codewords
may be written in the following compressed form.

1
0 x

0
1

0 x
1
0 x

0
1

0 x
2
0 x

1
0 x

0
1

0 x
3
0 x

2
0 x

1
0 x

0
1

.................

where xn take values 0 or 1. We will sometimes refer to a codeword with its length in bits (L) and INFO
= xn .. x1 x0 . Notice that the number of bits in INFO is L/2 (division by truncation). The codewords are
numbered from 0 and upwards. The definition of the numbering is:

Code_number = 2L/2 + INFO -1 (L/2 use division with truncation. INFO = 0 when L = 1)

Some of the first code numbers and codewords are written explicitly in the table below. As an example,
for the code number 5, L = 5 and INFO = 10 (binary) = 2 (decimal)

Code number Codewords in explicit form
0 1
1 0 0 1
2 0 1 1
3 0 0 0 0 1
4 0 0 0 1 1
5 0 1 0 0 1
6 0 1 0 1 1
7 0 0 0 0 0 0 1
8 0 0 0 0 0 1 1
9 0 0 0 1 0 0 1
10 0 0 0 1 0 1 1
11 0 1 0 0 0 0 1
..

When L and INFO is known, the regular structure of the table makes it easy to create a codeword bit by
bit. Similarly, a decoder may easily read bit by bit until the last "1" which gives the end of the codeword.
L and INFO is then readily available. For each parameter to be coded, there is a conversion rule from the
parameter value to the code number (or L and INFO). TABLE 7 lists the connection between code
number and most of the parameters used in the present coding method.

File: JVT-A003r1.DOC Page: 36
Date Printed: 14.03.2002

TABLE 7

Connection between codeword number and parameter values.
Code_

number
RUN MB_Type Intra_pred_mode1 MVD

DQUANT
CBP Tcoeff_chroma_DC2 Tcoeff_chroma_AC2

Tcoeff_luma2

Simple scan

Tcoeff_luma2

Double scan

Intra Inter Prob0 Prob1 Intra Inter Level Run Level Run Level Run
0 0 Intra4x4 16x16 0 0 0 47 0 EOB - EOB - EOB -
1 1 0,0,03 16x8 1 0 1 31 16 1 0 1 0 1 0
2 2 1,0,0 8x16 0 1 -1 15 1 -1 0 -1 0 -1 0
3 3 2,0,0 8x8 0 2 2 0 2 2 0 1 1 1 1
4 4 3,0,0 8x4 1 1 -2 23 4 -2 0 -1 1 -1 1
5 5 0,1,0 4x8 2 0 3 27 8 1 1 1 2 2 0
6 6 1,1,0 4x4 3 0 -3 29 32 -1 1 -1 2 -2 0
7 7 2,1,0 Intra4x4 2 1 4 30 3 3 0 2 0 1 2
8 8 3,1,0 0,0,03 1 2 -4 7 5 -3 0 -2 0 -1 2
9 9 0,2,0 1,0,0 0 3 5 11 10 2 1 1 3 3 0

10 10 1,2,0 2,0,0 0 4 -5 13 12 -2 1 -1 3 -3 0
11 11 2,2,0 3,0,0 1 3 6 14 15 1 2 1 4 4 0
12 12 3,2,0 0,1,0 2 2 -6 39 47 -1 2 -1 4 -4 0
13 13 0,0,1 1,1,0 3 1 7 43 7 1 3 1 5 5 0
14 14 1,0,1 2,1,0 4 0 -7 45 11 -1 3 -1 5 -5 0
15 15 2,0,1 3,1,0 5 0 8 46 13 4 0 3 0 1 3
16 16 3,0,1 0,2,0 4 1 -8 16 14 -4 0 -3 0 -1 3
17 17 0,1,1 1,2,0 3 2 9 3 6 3 1 2 1 1 4
18 18 1,1,1 2,2,0 2 3 -9 5 9 -3 1 -2 1 -1 4
19 19 2,1,1 3,2,0 1 4 10 10 31 2 2 2 2 2 1
20 20 3,1,1 0,0,1 0 5 -10 12 35 -2 2 -2 2 -2 1
21 21 0,2,1 1,0,1 1 5 11 19 37 2 3 1 6 3 1
22 22 1,2,1 2,0,1 2 4 -11 21 42 -2 3 -1 6 -3 1
23 23 2,2,1 3,0,1 3 3 12 26 44 5 0 1 7 6 0
24 24 3,2,1 0,1,1 4 2 -12 28 33 -5 0 -1 7 -6 0
25 25 1,1,1 5 1 13 35 34 4 1 1 8 7 0
26 26 2,1,1 5 2 -13 37 36 -4 1 -1 8 -7 0
27 27 3,1,1 4 3 14 42 40 3 2 1 9 8 0
28 28 0,2,1 3 4 -14 44 39 -3 2 -1 9 -8 0
29 29 1,2,1 2 5 15 1 43 3 3 4 0 9 0
30 30 2,2,1 3 5 -15 2 45 -3 3 -4 0 -9 0
31 31 3,2,1 4 4 16 4 46 6 0 5 0 10 0
32 32 5 3 -16 8 17 -6 0 -5 0 -10 0
33 33 5 4 17 17 18 5 1 3 1 4 1
34 34 4 5 -17 18 20 -5 1 -3 1 -4 1
35 35 5 5 18 20 24 4 2 3 2 2 2
36 36 -18 24 19 -4 2 -3 2 -2 2
37 37 19 6 21 4 3 2 3 2 3
38 38 -19 9 26 -4 3 -2 3 -2 3
39 39 20 22 28 7 0 2 4 2 4
40 40 -20 25 23 -7 0 -2 4 -2 4
41 41 21 32 27 6 1 2 5 2 5
42 42 -21 33 29 -6 1 -2 5 -2 5
43 43 22 34 30 5 2 2 6 2 6
44 44 -22 36 22 -5 2 -2 6 -2 6
45 45 23 40 25 5 3 2 7 2 7
46 46 -23 38 38 -5 3 -2 7 -2 7
47 47 24 41 41 8 0 2 8 11 0

..

1 Prob0 and Prob1 defines the Intra prediction modes of two blocks relative to the prediction of prediction
modes (see details in the section for Intra coding).
2 For the entries above the horizontal line, the table is needed for relation between code number and
Level/Run/EOB. For the remaining Level/Run combination there is a simple rule. The Level/Run
combinations are assigned a code number according to the following priority: 1) sign of Level (+ -)
2) Run (ascending) 3) absolute value of Level (ascending).
3 16x16 based intra mode. The 3 numbers refer to values for (Imode,AC,nc) - see 0.

File: JVT-A003r1.DOC Page: 37
Date Printed: 14.03.2002

4.5.2 Context-based Adaptive Binary Arithmetic Coding (CABAC)

4.5.2.1 Overview
The entropy coding method of context-based adaptive binary arithmetic coding (CABAC) has three
distinct elements compared to the default entropy coding method using a fixed, universal table of variable
length codes (UVLC):

• Context modeling provides estimates of conditional probabilities of the coding symbols. Utilizing
suitable context models, given inter-symbol redundancy can be exploited by switching between
different probability models according to already coded symbols in the neighborhood of the
current symbol to encode.

• Arithmetic codes permit non-integer number of bits to be assigned to each symbol of the alphabet.
Thus the symbols can be coded almost at their entropy rate. This is extremely beneficial for
symbol probabilities much greater than 0.5, which often occur with efficient context modeling. In
this case, a variable length code has to spend at least one bit in contrast to arithmetic codes, which
may use a fraction of one bit.

• Adaptive arithmetic codes permit the entropy coder to adapt itself to non-stationary symbol
statistics. For instance, the statistics of motion vector magnitudes vary over space and time as
well as for different sequences and bit-rates. Hence, an adaptive model taking into account the
cumulative probabilities of already coded motion vectors leads to a better fit of the arithmetic
codes to the current symbol statistics.

FIGURE 15

Generic block diagram of CABAC entropy coding scheme

Next we give a short overview of the main coding elements of the CABAC entropy coding scheme as
depicted in FIGURE 15. Suppose a symbol related to an arbitrary syntax element is given, then, in a first
step, a suitable model is chosen according to a set of past observations. This process of constructing a
model conditioned on neighboring symbols is commonly referred to as context modeling and is the first
step in the entropy coding scheme. The particular context models that are designed for each given syntax
model are described in detail in Section 4.5.2.2 and Section 4.5.2.3. If a given symbol is non-binary
valued, it will be mapped onto a sequence of binary decisions, so-called bins, in a second step. The actual
binarization is done according to a given binary tree, as specified in Section 4.5.2.5. Finally, each binary
decision is encoded with the adaptive binary arithmetic coding (AC) engine using the probability
estimates, which have been provided either by the context modeling stage or by the binarization process
itself. The provided models serve as a probability estimation of the related bins. After encoding of each
bin, the related model will be updated with the encoded binary symbol. Hence, the model keeps track of
the actual statistics.

4.5.2.2 Context Modeling for Coding of Motion and Mode Information
In this section we describe in detail the context modeling of our adaptive coding method for the syntax
elements macroblock type (MB_type), motion vector data (MVD) and reference frame parameter
(Ref_frame).

4.5.2.2.1 Context Models for Macroblock Type

We distinguish between MB_type for intra and inter frames. In the following, we give a description of the
context models which have been designed for coding of the MB_type information in both cases. The

File: JVT-A003r1.DOC Page: 38
Date Printed: 14.03.2002

subsequent process of mapping a non-binary valued MB_type symbol to a binary sequence in the case of
inter frames will be given in detail in section 4.5.2.5.

4.5.2.2.1.1 Intra Pictures

For intra pictures, there are two possible modes for each macroblock, i.e. Intra4x4 and Intra16x16, so that
signalling the mode information is reduced to transmitting a binary decision. Coding of this binary
decision for a given macroblock is performed by means of context-based arithmetic coding, where the
context of a current MB_type C is build by using the MB_types A and B1 of neighboring macroblocks
(as depicted in FIGURE 16) which are located in the causal past of the current coding event C. Since A
and B are binary decisions, we define the actual context number ctx_mb_type_intra(C) of C by
ctx_mb_type_intra(C) = A + B, which results in three different contexts according to the 4 possible
combinations of MB_type states for A and B.

In the case of MB_type Intra16x16, there are three additional parameters related to the chosen intra
prediction mode, the occurrence of significant AC-coefficients and the coded block pattern for the
chrominance coefficients, which have to be signaled. In contrast to the current test model, this
information is not included in the mode information, but is coded separately by using distinct models as
described in Section 4.5.2.3.

C

B

A

FIGURE 16

Neighboring symbols A and B used for conditional coding of a current symbol C.

4.5.2.2.1.2 P- and B-Pictures

Currently there a 10 different macroblock types for P-frames and 18 different macroblock types for B-
frames, provided that the additional information of the 16x16 Intra mode is not considered as part of the
mode information. Coding of a given MB_type information C is done similar to the case of intra frames
by using a context model which involves the MB_type information A and B of previously encoded (or
decoded) macroblocks (cp. FIGURE 16). However, here we only use the information whether the
neighboring macroblocks of the given macroblock are of type Skip (P-frame) or Direct (B-frame), such
that the actual context number ctx_mb_type_inter(C) is given in C-style notation for P-frame coding by
ctx_mb_type_inter(C) = ((A==Skip)?0:1) + ((B==Skip)?0:1) and by ctx_mb_type_inter(C) =
((A==Direct)?0:1) + ((B==Direct)?0:1) for B-frame coding. Thus, we obtain 3 different contexts,
which, however, are only used for coding of the first bin of the binarization b(C) of C, where the actual
binarization of C will be performed as outlined in Section 4.5.2.5. For coding the second bin, a separate
model is provided and for all remaining bins of b(C) two additional models are used as further explained
in Sect. 4.5.2.3. Thus, a total number of 6 different models are supplied for coding of macroblock type
information relating to P-and B-frames.

1 For mathematical convenience the meaning of the variables A, B and C is context dependent.

File: JVT-A003r1.DOC Page: 39
Date Printed: 14.03.2002

ctx _ mvd (C,k) =

0, for e k(C) < 3,

1, for e k(C) > 15,

2, else

ctx _ mvd (C,k) =

0, for e k(C) < 3,

1, for e k(C) > 32,

2, else

ctx _ mvd (C,k) =

0, for e k(C) < 3,

1, for e k

2, else

ek(C) = | mvd k(A)| + | mvd k(B)|ek(C) = | mvd k(A)| + | mvd k(B)|C

B
A

C

B
A Separation of mvd k(C)

sign

Binariz ation

Bin_no. 1 2 3 4 5 ...

Context _no. {0,1,2} 3 4 5 6

Separation of mvd k(C)

|mvd k(C)||mvd k(C)| sign

Binarization

Bin_no. 1 2 3 4 5 ...

Context _no. {0,1,2} 3 4 5 6

Bin_no. 1 2 3 4 5 ...

Context _no. {0,1,2} 3 4 5 6 7

mvd k(C)mvd kmvd k(B)mvd kmvd k(A)mvd k

ctx_mvd(C,k)

(a) (b)

FIGURE 17

Illustration of the encoding process for a given residual motion vector component mvdk(C) of a
block C: (a) Context selection rule. (b) Separation of mvdk(C) into sign and magnitude,

binarization of the magnitude and assignment of context models to bin_nos.

4.5.2.2.2 Context Models for Motion Vector Data

Motion vector data consists of residual vectors obtained by applying motion vector prediction. Thus, it is
a reasonable approach to build a model conditioned on the local prediction error. A simple measure of the
local prediction error at a given block C is given by evaluating the L1-norm)()(),(BmvdAmvdBAe kkk +=
of two neighboring motion vector prediction residues)(Amvdk

and)(Bmvdk
for each component of a

motion vector residue)(Cmvdk
of a given block, where A and B are neighboring blocks of block C, as

shown in FIGURE 17 (a). If one of the neighboring blocks belongs to an adjacent macroblock, we take
the residual vector component of the leftmost neighboring block in the case of the upper block B, and in
the case of the left neighboring block A we use the topmost neighboring block. If one of the neighboring
blocks is not available, because, for instance, the current block is at the picture boundary, we discard the
corresponding part of ke . By using

ke , we now define a context model ctx_mvd(C,k) for the residual

motion vector component)(Cmvdk
consisting of three different context models:








>
<

=
.,2

,32)(,1

,3)(,0

),(_

else

Ce

Ce

kCmvdctx k

k

For the actual coding process, we separate)(Cmvdk
in sign and modulus, where only the first bin of the

binarization of the modulus)(Cmvdk
is coded using the context models ctx_mvd(C,k). For the remaining

bins of the modulus, we have 4 additional models: one for the second, one for the third bin, one for the
fourth, and one model for all remaining bins. In addition, the sign coding routine is provided with a
separate model. This results in a total sum of 8 different models for each vector component (see FIGURE
17).

In the case of B-frame coding, an additional syntax element has to be signaled when the bi-directional
mode is chosen. This element represents the block size (Blk_size), which is chosen for forward or
backward motion prediction. The related code number value ranges between 0 and 6 according to the 7
possible block shapes in FIGURE 2. Coding of Blk_size is done by using the binarization of the
P_MB_type as described in Section 4.5.2.3.

4.5.2.2.3 Context Models for Reference Frame Parameter

If the option of temporal prediction from more than one reference frame is enabled, the chosen reference
frame for each macroblock must be signaled. Given a macroblock and its reference frame parameter as a
symbol C according to the definition in Sect. Error! Reference source not found., a context model is
built by using symbols A and B of the reference frame parameter belonging to the two neighboring
macroblocks (cp. FIGURE 16). The actual context number of C is then defined by ctx_ref_frame(C) =

File: JVT-A003r1.DOC Page: 40
Date Printed: 14.03.2002

((A==0)?0:1) + 2*((B==0)?0:1), such that ctx_ref_frame(C) indicates one of four models used for
coding of the first bin of the binary equivalent b(C) of C. Two additional models are given for the second
bin and all remaining bins of b(C), which sums up to a total number of six different models for the
reference frame information.

4.5.2.3 Context Modeling for Coding of Texture Information
This section provides detailed information about the context models used for the syntax elements of
coded block pattern (CBP), intra prediction mode (IPRED) and (RUN, LEVEL) information.

4.5.2.3.1 Context Models for Coded Block Pattern

Except for MB_type Intra16x16, the context modeling for the coded block pattern is treated as follows.
There are 4 luminance CBP bits belonging to 4 8x8 blocks in a given macroblock. Let C denote such a Y-
CBP bit, then we define ctx_cbp_luma(C) = A + 2*B, where A and B are Y-CBP bits of the neighboring
8x8 blocks, as depicted in FIGURE 16. The remaining 2 bits of CBP are related to the chrominance
coefficients. In our coding approach, these bits are translated into two dependant binary decisions, such
that, in a first step, we send a bit cbp_chroma_sig which signals whether there are significant
chrominance coefficients at all. The related context model is of the same kind as that of the Y-CBP bits,
i.e. ctx_cbp_chroma_sig(C) = A + 2*B, where A and B are now notations for the corresponding
cbp_chroma_sig bits of neighboring macroblocks. If cbp_chroma_sig = 1 (non-zero chroma coefficients
exist), a second bit cbp_chroma_ac related to the significance of AC chrominance coefficients has to be
signalled. This is done by using a context model conditioned on the cbp_chroma_ac decisions A and B of
neighboring macroblocks, such that ctx_cbp_chroma_AC(C) = A + 2*B. Note, that due to the different
statistics there are different models for Intra and Inter macroblocks, so that the total number of different
models for CBP amounts to 2*3*4=24. For the case of MB_type Intra16x16, there are three additional
models, one for the binary AC decision and two models for each of the two chrominance CBP bits.

4.5.2.3.2 Context Models for Intra Prediction Mode

In Intra4x4 mode, coding of the intra prediction mode C of a given block is conditioned on the intra
prediction mode of the previous block A to the left of C (cp. FIGURE 16). In fact, it is not the prediction
mode number itself which is signaled and which is used for conditioning but rather its predicted order
similar as it is desribed in Sect. 0. There are 6 different prediction modes and for each mode, two different
models are supplied: one for the first bin of the binary equivalent of C and the other for all remaining
bins. Together with two additional models for the two bits of the prediction modes of MB_type
Intra16x16 (in binary representation), a total number of 14 different models for coding of intra prediction
modes is given.

4.5.2.3.3 Context Models for Run/Level

Coding of (RUN, LEVEL) pairs is conditioned on the scanning mode, the DC/AC block type, the
luminance/chrominance, and the intra/inter macroblock decision. Thus, a total number of 9 different block
types are given according to TABLE 8, which, in turn, results in 9 different contexts. In contrast to the
current test model, RUN and LEVEL are coded separately in our coding approach, as described in the
following two subsections.

TABLE 8

Numbering of the different context models used for coding of RUN and LEVEL

Ctx_run_level Block Type

0 Double Scan

1 Single Scan, Inter

2 Single Scan, Intra

3 Intra16x16, DC

File: JVT-A003r1.DOC Page: 41
Date Printed: 14.03.2002

4 Intra16x16, AC

5 Chroma, DC, Inter

6 Chroma, DC, Intra

7 Chroma, AC, Inter

8 Chroma, AC, Intra

4.5.2.3.3.1 Context-based Coding of LEVEL Information

For a given block C, the LEVEL information is first separated into sign and magnitude. According to its
context ctx_run_level(C) four different models are chosen, where one model is used for coding of the
sign information and the remaining 3 models are used for the first, the second and all remaining bins of
the binarization of LEVEL. If LEVEL≠0 (EOB), the corresponding RUN is coded in a subsequent coding
routine, as described in the following section.

4.5.2.3.3.2 Context-based Coding of RUN Information

For each context ctx_run_level(C) two separate models are provided for the coding of RUN; one model
for the first bin and the second model for all remaining bins of the binary sequence related to RUN.

4.5.2.4 Context Modeling for Coding of Dquant
For a given macroblock, the value of Dquant is first mapped to a positive value using the arithmetic wrap
as described in section 3.4.7. This wrapped value C is then coded conditioned on the corresponding
Dquant A of the left neighboring macroblock, such that that ctx_dquant(C)=(A !=0); This results in 2
context models for the first bin. Two additional models are used for the second and all remaining bins of
the binarized value C. Thus, a total sum of four context models are used for Dquant.

TABLE 9

Binarization by means of the unary code tree

Code symbol Binarization
0 1
1 0 1
2 0 0 1
3 0 0 0 1

4 0 0 0 0 1
5 0 0 0 0 0 1
6 0 0 0 0 0 0 1

.

Bin_no. 1 2 3 4 5 6 7 . .

4.5.2.5 Binarization of Non-Binary Valued Symbols
A non-binary valued symbol will be decomposed into a sequence of binary decisions. Except for the
MB_type syntax element we use the binarization given by the unary code tree in TABLE 9.

TABLE 10

(a) Binarization for P-frame MB_type and (b) for B-frame MB_type

File: JVT-A003r1.DOC Page: 42
Date Printed: 14.03.2002

For the binary decomposition of the MB_type symbols of P-
or B-frames, which are of limited range (0 … 9) or (0 … 17)
respectively, an alternative binarization is used, which is
shown in TABLE 10.

4.5.2.6 Adaptive Binary Arithmetic Coding
At the beginning of the overall encoding of a given frame
the probability models associated with all 126 different
contexts are initialized with a pre-computed start
distribution. For each symbol to encode the frequency count
of the related binary decision is updated, thus providing a
new probability estimate for the next coding decision.
However, when the total number of occurrences of a given
model exceeds a pre-defined threshold, the frequency counts will be scaled down. This periodical
rescaling exponentially weighs down past observations and helps to adapt to the non-stationarity of a
source. The binary arithmetic coding engine used in our presented approach is a straightforward
implementation similar to that given in Witten et al., “Arithmetic Coding for Data Compression“, Comm.
of the ACM, 30 (6), 1987, pp.520-541.

P_MB_type Binarization B_MB_typ

0 0 0

1 1 0 0 1

2 1 0 1 2

3 1 1 0 0 0 3

4 1 1 0 0 1 4

5 1 1 0 1 0 5

6 1 1 0 1 1 6

7 1 1 1 0 0 7

8 1 1 1 0 1 .

9 1 1 1 1 0 17

Bin_no 1 2 3 4 5 Bin_no

File: JVT-A003r1.DOC Page: 43
Date Printed: 14.03.2002

5 B-pictures

5.1 Introduction

Temporal scalability is achieved using bi-directionally predicted pictures, or B pictures. The use of B
pictures is indicated in PTYPE. The B pictures are predicted from either or both the previous and
subsequent reconstructed pictures to achieve improved coding efficiency as compared to that of P
pictures. FIGURE 18 illustrates the predictive structure with two B pictures inserted between I/P
pictures.

I1 B2 B3 P4 B5 B6 P7

FIGURE 18

Illustration of B picture concept.

The location of B pictures in the bitstream is in a data-dependence order rather than in temporal order.
Pictures that are dependent on other pictures shall be located in the bitstream after the pictures on which
they depend. For example, as illustrated in Figure A.1, B2 and B3 are dependent on I1 and P4, and B5 and
B6 are dependent on P4 and P7. Therefore the bitstream syntax order of the encoded pictures would be I1,
P4, B2, B3, P7, B5, B6, … However, the display order of the decoded pictures should be I1, B2, B3, P4, B5,
B6, P7, … The difference between the bitstream order of encoded pictures and the display order of
decoded pictures will increase latency and memory to buffer the P pictures.

There is no limit to the number of B pictures that may be inserted between each I/P picture pair. The
maximum number of such pictures may be signaled by external means (for example Recommendation
H.245). The picture height, width, and pixel aspect ratio of a B picture shall always be equal to those of
its temporally subsequent reference picture.

The B pictures support multiple reference frame prediction. The maximum number of previous reference
frames that may be used for prediction in B pictures must be less than or equal to the number of reference
frames used in the immediately following P frame, and it may be signaled by external means (for example
Recommendation H.245). The use of this mode is indicated by PTYPE.

5.2 Five Prediction modes
There are five different prediction modes supported by B pictures. They are direct, forward, backward,
bi-directional and the intra prediction modes. Both direct mode and bi-directional mode are bi-directional
prediction. The only difference is that the bi-directional mode uses separate motion vectors for forward
and backward prediction, whereas the forward and backward motion vectors of the direct mode are
derived from the motion vectors used in the corresponding macroblocks of the subsequent reference
frame. In the direct mode, the same number of motion vectors as in the co-located macroblock of the
temporal following reference picture is used. To calculate prediction blocks for the direct and bi-
directional prediction mode, the forward and backward motion vectors are used to obtain appropriate
blocks from reference frames and then these blocks are averaged by dividing the sum of the two
prediction blocks by two.

Forward prediction means prediction from a previous reference picture, and backward prediction means
prediction from a temporally subsequent reference picture.

File: JVT-A003r1.DOC Page: 44
Date Printed: 14.03.2002

The intra prediction means to encode the macroblock by using intra coding.

5.3 Syntax
Some additional syntax elements are needed for B pictures. The structure of B picture related fields is
shown in FIGURE 19. On the Ptype, two picture types shall be added to include B pictures with and
without multiple reference frame prediction. On the MB_type, different macroblock types are defined to
indicate the different prediction types for B pictures. The fields of Blk_size, MVDFW, and MVDBW are
inserted to enable bi-directional prediction. These fields replace the syntax element MVD.

Ptype

MB_Type

Intra_pred_mode

Ref_frame

MVDBW

Loop

Omit

RUN

Blk_size

MVDFW

FIGURE 19

Syntax diagram for B pictures.

5.3.1 Picture type (Ptype) and RUN
See section 2.1 for definition.

5.3.2 Macro block type (MB_type)
The MB_type indicates the prediction mode and block size used to encode each macroblock. As
mentioned earlier, five different prediction modes are supported in B pictures. For the forward, backward
and bi-directional prediction modes, a macroblock is predicted from either or both of the previous and
subsequent pictures with block size NxM. TABLE 11shows the macroblock types and the included data
elements for B pictures.

In “Direct” prediction type, no motion vector data is transmitted.

File: JVT-A003r1.DOC Page: 45
Date Printed: 14.03.2002

The “Forward_NxM” indicates that the macroblock is predicted from a previous picture with block size
NxM. The “backward_NxM” indicates that the macroblock is predicted from a subsequent picture with
block size NxM. For each NxM block, motion vector data is provided. Therefore, depending on N and
M, up to 16 sets of motion vector data have to be transmitted for a macroblock.

For the “Bi-directional” prediction type, the parameter Blk_size is used to indicate the block size used for
forward and backward motion prediction (the Blk_size field is described in detail below). Both forward
and backward motion vector data sets are transmitted. Depending on the block size indicated in Blk_size,
up to 16 fields of motion vector data are transmitted for each of forward and backward prediction for a
macroblock.

The “Intra_4x4” and “Intra_16x16” prediction type indicates that the macroblock is encoded by intra
coding with different intra prediction modes which are defined in the same manner as in section 3.4.3 and
TABLE 7. No motion vector data is transmitted for the intra modes.

5.3.3 Intra prediction mode (Intra_pred_mode)
As present, Intra_pred_mode indicates which intra prediction mode is used for a macroblock.
Intra_pred_mode is present when Intra_4x4 prediction type is indicated in the MB_type. The
code_number is same as that described in the Intra_pred_mode entry of TABLE 7.

5.3.4 Reference Frame (Ref_frame)
At present, Ref_frame indicates the position of the reference frame in the reference frame buffer to be
used for forward motion compensated for current macroblock. Ref_frame is present only when the Ptype
signals the use of multiple reference frames and only when the present MB_type indicates Forward_NxM
or Bi-directional prediction type. Decoded I/P pictures are stored in the reference frame buffer in first-in-
first-out manner and the most recently decoded I/P frame is always stored at position 0 in the reference
frame buffer. The code_number for Ref_frame is described in TABLE 12.

TABLE 11

MB_Type and related data elements for B pictures

0 Direct

Code_number Prediction Type Intra_pred_mode Ref_frame1 Blk_size MVDFW MVDBW

1 Forward_16x16 X X

2 Backward_16x16 X

3 Bi-directional X X X X

4 Forward_16x8 X X

5 Backward_16x8 X

6 Forward_8x16 X X

7 Backward_8x16 X

8 Forward_8x8 X X

9 Backward_8x8 X

10 Forward_8x4 X X

11 Backward_8x4 X

12 Forward_4x8 X X

13 Backward_4x8 X

14 Forward_4x4 X X

15 Backward_4x4 X

16 Intra_4x4 X

File: JVT-A003r1.DOC Page: 46
Date Printed: 14.03.2002

17 Intra_16x162

… …
1 Ref_frame is a valid field only when the usage of multiple reference frames is present in Ptype, i.e. when Ptype=4..
2 Intra_16x16 indicates 16x16 based intra mode and should represent 24 different prediction modes as defined in
section 3.4.2.1. For code_number greater than 16 in TABLE 11, please see the code numbers from 9 and upwards
in the field of inter MB_type of TABLE 7 for reference.

TABLE 12

Code_number for ref_frame

Code_number Reference frame

0 The most recent previous frame (1 frame back)

1 2 frames back

2 3 frames back

… …

5.3.5 Block Size (Blk_size)
If present, Blk_size indicates which block size is used for forward and backward motion prediction in a
macroblock as described in TABLE 13. Blk_size is present only when Bi-directional prediction type is
indicated in the MB_type. There are two sets of Blk_size data, one for forward motion vector data, and
another for backward motion vector data.

TABLE 13

Code_number for Blk_size

Code_number Block Size

0 1 16x16 block

1 2 16x8 blocks

2 2 8x16 blocks

3 4 8x8 blocks

4 8 8x4 blocks

5 8 4x8 blocks

6 16 4x4 blocks

5.3.6 Motion vector data (MVDFW, MVDBW)
MVDFW is the motion vector data for the forward vector, if present. MVDBW is the motion vector data
for the backward vector, if present. If so indicated by MB_type or Blk_size (bi-directional prediction
type only), vector data for 1-16 blocks are transmitted. The order of transmitted motion vector data is the
same as thatindicated in FIGURE 2. For the code_number of motion vector data, please refer to TABLE
7.

5.4 Decoder Process for motion vector

5.4.1 Differential motion vectors
Motion vectors for forward, backward, or bi-directionally predicted macroblock are differentially
encoded. A prediction has to be added to the motion vector differences to get the motion vectors for the
macroblock. The predictions are formed in way similar to that described in section 3.4.5. The only
difference is that forward motion vectors are predicted only from forward motion vectors in surrounding

File: JVT-A003r1.DOC Page: 47
Date Printed: 14.03.2002

macroblocks, and backward motion vectors are predicted only from backward motion vectors in
surrounding macroblocks.

If a neighboring macroblock does not have a motion vector of the same type, the candidate predictor for
that macroblock is set to zero for that motion vector type.

5.4.2 Motion vectors in direct mode
In direct mode the same block structure as for the co-located macroblock in the temporally subsequent
picture is used. For each of the sub-blocks the forward and backward motion vectors are computed as
scaled versions of the corresponding vector components of the co-located macroblock in the temporally
subsequent picture as described below.

If the multiple reference frame prediction is used, the forward reference frame for the direct mode is the
same as the one used for the corresponding macroblock in the temporally subsequent reference picture.
The forward and backward motion vectors for direct mode macroblocks are calculated as follows.

MVF = (TRB * MV) / TRD

MVB = (TRB- TRD) * MV / TRD

Here, MVF is the forward motion vector, MVB is the backward motion vector, and MV represents the
motion vector in the corresponding macroblock in the subsequent reference picture. Note that if the
subsequent reference picture is an intra-coded frame or the reference macroblock is an intra-coded block,
the motion vectors are set to zero. TRD is the temporal distance between the temporally previous and next
reference frame, and TRB is the temporal distance between the current frame and previous reference
frame.

It should be noted that when multiple reference frame prediction is in use, the actual reference frame (the
same as for the co-located macroblock of the following picture) is used for the calculation of the temporal
distances TRD and TRB.

File: JVT-A003r1.DOC Page: 48
Date Printed: 14.03.2002

6 SP-pictures

6.1 Introduction
SP-pictures make use of motion-compensated predictive coding to exploit temporal redundancy in the
sequence similar to P-pictures while still allowing identical reconstruction of the frame even when
different reference frames are being used. This picture type provides functionalities for bitstream
switching, splicing, random access, VCR functionalities such as fast-forward and error
resilience/recovery. SP-pictures make use of the existing coding blocks and the syntax elements for P-
type frames while the difference is being forward transform coding and quantizing the predicted block
during the reconstruction of blocks in SP-pictures.

6.2 Syntax changes
The only syntax change related to SP-frames is illustrated in FIGURE 20 as changes to syntax diagram to
FIGURE 4. An additional quantization parameter is sent after the quantization parameter used for
prediction error. This additional quantization parameter is used for (de)quantization of the predicted
block. Otherwise, SP-frames have the identical syntax elements as P-frames. And all the syntax elements
are interpreted identical to P-frames, i.e., 4x4 or 4x8 or 8x8 etc. blocks for motion compensation,
reference frame number, etc.

Ptype

RUN

Loop

Omit

SPQP

FIGURE 20

Syntax diagram for SP-frames

6.3 SP-frame decoding
SP-frames consist of intra and inter-type macroblocks. Intra macroblocks are encoded/decoded as in I and
P-type pictures, therefore the following section refers to the decoding of the inter-type macroblocks in SP-
frames.

Similar to P-type frame decoding, first the motion-compensated predicted block is formed by using
received motion vector information, the reference frame number and the already decoded frames. Then,
forward transform is applied to the predicted block. The resulting coefficients and the received level
values are then used to calculate reconstructed image coefficients as follows:

Lrec = (KpredxA(QP2) + LerrxF(QP1,QP2)+fx220)/220

where

F(QP1,QP2)= (A(QP2)x220 + A(QP1)/2)/ A(QP1)

and A(QP) is defined in Section 4.3.3.3. Here QP1 is signaled by PQP value and the QP2 is signaled by the
additional QP parameter SPQP. Notice that when QP1=QP2, then the calculation of Lrec reduces simply to
the sum of the received level and the level found by quantizing the predicted block coefficient. The

File: JVT-A003r1.DOC Page: 49
Date Printed: 14.03.2002

coefficients, Lrec, are then dequantized using QP=QP2 and inverse transform is performed for these
dequantized levels, as defined in sections 4.3.3 and 4.3.1, respectively. Finally, the result of the inverse
transformation is shifted by 20 bit (with rounding).

While applying deblocking filter for macroblocks in SP-frames, all macroblocks are treated as Intra
macroblocks as described in Section 4.4.

Since an additional 2x2 transform is performed for the DC coefficients of chrominance blocks in a
macroblock after 4x4 transform of each, Section 4.3.2, the decoding of the chrominance component is
performed in the similar manner as described above with the following difference: For chrominance
macroblocks in SP-frames, an additional 2x2 transform is applied after 4x4 transform of the predicted
chrominance blocks. And then the steps described above are repeated for the DC coefficients as well as
for the AC coefficients. Note also that for chrominance blocks, the values of QP1 and QP2 are both
changed according to the relation between QP values of luminance and chrominance specified in Section
4.3.3.3.

File: JVT-A003r1.DOC Page: 50
Date Printed: 14.03.2002

7 Hypothetical Reference Decoder

7.1 Purpose
The hypothetical reference decoder (HRD) is a mathematical model for the decoder, its input buffer, and
the channel. The HRD is characterized by the channel’s peak rate R (in bits per second), the buffer size B
(in bits), and the initial decoder buffer fullness F (in bits). These parameters represent levels of resources
(transmission capacity, buffer capacity, and delay) used to decode a bit stream.

A closely related object is the leaky bucket (LB), which is a mathematical constraint on a bit stream. A
leaky bucket is characterized by the bucket’s leak rate R1 (in bits per second), the bucket size B1 (in bits),
and the initial bucket fullness B1

–F1 (in bits). A given bit stream may be constrained by any number of
leaky buckets (R1,B1,F1),…,(RN,BN,FN), N≥1. The LB parameters for a bit stream, which are encoded in
the bit stream header, precisely describe the minimum levels of the resources R, B, and F that are
sufficient to guarantee that the bit stream can be decoded.

7.2 Operation of the HRD
The HRD input buffer has capacity B bits. Initially, the buffer begins empty. At time tstart it begins to
receive bits, such that it receives S(t) bits through time t. S(t) can be regarded as the integral of the
instantaneous bit rate through time t. The instant at which S(t) reaches the initial decoder buffer fullness
F is identified as the decoding time t0 of the first picture in the bit stream. Decoding times t1, t2, t3, …, for
subsequent pictures (in bit stream order) are identified relative to t0, per Section 7.3. At each decoding
time ti, the HRD instantaneously removes and decodes all di bits associated with picture i, thereby
reducing the decoder buffer fullness from bi bits to bi – di bits. Between time ti and ti+1, the decoder buffer
fullness increases from bi – di bits to bi – di + [S(ti+1) – S(ti)] bits. That is, for i ≥ 0,

b0 = F

bi+1= bi – di + [S(ti+1) – S(ti)].

The channel connected to the HRD buffer has peak rate R. This means that unless the channel is idle
(whereupon the instantaneous rate is zero), the channel delivers bits into the HRD buffer at instantaneous
rate R bits per second.

7.3 Decoding Time of a Picture

The decoding time ti of picture i is equal to its presentation time τi, if there are no B pictures in the
sequence. If there are B pictures in the sequence, then ti = τi – mi, where mi = 0 if picture i is a B picture;
otherwise mi equals τi – τi’, where τi’ is the presentation time of the I or P picture that immediately
precedes picture i (in presentation order). If there is no preceding I or P picture (i.e., if i = 0), then mi = m0

= t1 – t0. The presentation time of a picture is determinable from its temporal reference and the frame
rate.

7.4 Schedule of a Bit Stream
The sequence (t0,d0), (t1,d1), (t2,d2), … is called the schedule of a bit stream. The schedule of a bit stream
is intrinsic to the bit stream, and completely characterizes the instantaneous coding rate of the bit stream
over its lifetime. A bit stream may be pre-encoded, stored to a file, and later transmitted over channels
with different peak bit rates to decoders with different buffer sizes. The schedule of the bit stream is
invariant over such transmissions.

7.5 Containment in a Leaky Bucket
A leaky bucket with leak rate R1, bucket size B1, and initial bucket fullness B1–F1 is said to contain a bit
stream with schedule (t0,d0), (t1,d1), (t2,d2), … if the bucket does not overflow under the following
conditions. At time t0, d0 bits are inserted into the leaky bucket on top of the B1–F1 bits already in the
bucket, and the bucket begins to drain at rate R1 bits per second. If the bucket empties, it remains empty
until the next insertion. At time ti, i ≥ 1, di, bits are inserted into the bucket, and the bucket continues to
drain at rate R1 bits per second. In other words, for i ≥ 0, the state of the bucket just prior to time ti is

File: JVT-A003r1.DOC Page: 51
Date Printed: 14.03.2002

b0 = B1–F1

bi+1 = max{0, bi + di – R1(ti+1–ti)}.

The leaky bucket does not overflow if bi + di ≤ B1 for all i ≥ 0.

Equivalently, the leaky bucket contains the bit stream if the graph of the schedule of the bit stream lies
between two parallel lines with slope R1, separated vertically by B1 bits, possibly sheared horizontally,
such that the upper line begins at F1 at time t0, as illustrated in the figure below. Note from the figure that
the same bit stream is containable in more than one leaky bucket. Indeed, a bit stream is containable in an
infinite number of leaky buckets.

FIGURE 21

Illustration of the leaky bucket concept.

If a bit stream is contained in a leaky bucket with parameters (R1,B1,F1), then when it is communicated
over a channel with peak rate R1 to a hypothetical reference decoder with parameters R=R1, B=B1, and
F=F1, then the HRD buffer does not overflow or underflow.

7.6 Bit Stream Syntax
The header of each bit stream shall specify the parameters of a set of N ≥ 1 leaky buckets,
(R1,B1,F1),…,(RN,BN,FN), each of which contains the bit stream. In the current Test Model, these
parameters are specified in the first 1+3N 32-bit integers of the Interim File Format, in network (big-
endian) byte order:

N, R1, B1, F1, …, RN, BN, FN .

The Rn shall be in strictly increasing order, and both Bn and Fn shall be in strictly decreasing order.

These parameters shall not exceed the capability limits for particular profiles and levels, which are yet to
be defined.

7.7 Minimum Buffer Size and Minimum Peak Rate
If a bit stream is contained in a set of leaky buckets with parameters (R1,B1,F1), …, (RN,BN,FN), then when
it is communicated over a channel with peak rate R, it is decodable (i.e., the HRD buffer does not
overflow or underflow) provided B ≥ Bmin(R) and F ≥ Fmin(R), where for Rn ≤ R ≤ Rn+1,

Bmin(R) = αBn + (1 – α)Bn+1

Fmin(R) = αFn + (1 – α)Fn+1

α = (Rn+1 – R) / (Rn+1 – Rn).

For R ≤ R1,

Bmin(R) = B1 + (R1 – R)T

Fmin(R) = F1,

t0 t1 t2 …t3 t0 t1 t2 …t3

B1
B2

F2

B2

0

F1

B1

0

bitsbits

time time

slope R1 slope R2

File: JVT-A003r1.DOC Page: 52
Date Printed: 14.03.2002

where T = tL-1 – t0 is the duration of the bit stream (i.e., the difference between the decoding times for the
first and last pictures in the bit stream). And for R ≥ RN,

Bmin(R) = BN

Fmin(R) = FN .

Thus, the leaky bucket parameters can be linearly interpolated and extrapolated.

Alternatively, when the bit stream is communicated to a decoder with buffer size B, it is decodable
provided R ≥ Rmin(B) and F ≥ Fmin(B), where for Bn ≥ B ≥ Bn+1,

Rmin(B) = αRn + (1 – α)Rn+1

Fmin(B) = αFn + (1 – α)Fn+1

α = (B – Bn+1) / (Bn – Bn+1).

For B ≥ B1,

Rmin(B) = R1 – (B – B1)/T

Fmin(B) = F1.

For B ≤ BN , the stream may not be decodable.

In summary, the bit stream is guaranteed to be decodable in the sense that the HRD buffer does not
overflow or underflow, provided that the point (R,B) lies on or above the lower convex hull of the set of
points (0,B1+R1T), (R1,B1), …, (RN,BN), as illustrated in the figure below. The minimum start-up delay
necessary to maintain this guarantee is Fmin(R) / R.

BN

…

(R1,B1)

(R2,B2)

(R3, B3)

(RN-1,BN-1)

(RN,BN)

B
(bits)

B (bits)

TRRBB)(11 −+=

R (bits/sec)

FIGURE 22

Illustration of the leaky bucket concept.

A compliant decoder with buffer size B and initial decoder buffer fullness F that is served by a channel
with peak rate R shall perform the tests B ≥ Bmin(R) and F ≥ Fmin(R), as defined above, for any compliant
bit stream with LB parameters (R1,B1,F1),…,(RN,BN,FN), and shall decode the bit stream provided that B ≥
Bmin(R) and F ≥ Fmin(R).

7.8 Encoder Considerations (informative)
The encoder can create a bit stream that is contained by some given N leaky buckets, or it can simply
compute N sets of leaky bucket parameters after the bit stream is generated, or a combination of these. In
the former, the encoder enforces the N leaky bucket constraints during rate control. Conventional rate
control algorithms enforce only a single leaky bucket constraint. A rate control algorithm that
simultaneously enforces N leaky bucket constraints can be obtained by running a conventional rate
control algorithm for each of the N leaky bucket constraints, and using as the current quantization
parameter (QP) the maximum of the QPs recommended by the N rate control algorithms.

File: JVT-A003r1.DOC Page: 53
Date Printed: 14.03.2002

Additional sets of leaky bucket parameters can always be computed after the fact (whether rate controlled
or not), from the bit stream schedule for any given Rn, from the iteration specified in Section 7.5.

File: JVT-A003r1.DOC Page: 54
Date Printed: 14.03.2002

Appendix I Non-normative Encoder Recommendation

I.1 Motion Estimation and Mode Decision

I.1.1 Low-complexity mode

I.1.1.1 Finding optimum prediction mode
Both for intra prediction and motion compensated prediction, a similar loop as indicated in Error!
Reference source not found. is run through. The different elements will be described below.

SA(T)D0

Prediction
Block_difference

Hadamard transform
SA(T)D

SA(T)Dmin

FIGURE 23

Loop for prediction mode decision

I.1.1.1.1 SA(T)D0
The SA(T)D to be minimised is given a 'bias' value SA(T)D0 initially in order to favour prediction modes
that need few bits to be signalled. This bias is basically a parameter representing bit usage times QP0(QP)

Intra mode decision: SA(T)D0 = QP0(QP)xOrder_of_prediction_mode (see above)

Motion vector search: SA(T)D0 = QP0(QP)x(Bits_to_code_vector + 2xcode_number_of_ref_frame)

In addition there are two special cases:

• For motion prediction of a 16x16 block with 0 vector components, 16xQP0(QP) is subtracted
from SA(T)D to favour the skip mode.

• For the whole intra 4x4 macroblock, 24xQP0(QP) is added to the SA(T)D before comparison with
the best SA(T)D for inter prediction. This is an empirical value to prevent using too many intra
blocks.

For flat regions having zero motion, B pictures basically fail to make effective use of zero motion and
instead are penalized in performance by selecting 16x16 intra mode. Therefore, in order to prevent
assigning 16x16 intra mode to a region with little details and zero motion, SA(T)D of direct mode is
subtracted by 16xQP0(QP) to bias the decision toward selecting the direct mode.

The calculation of SA(T)D0 at each mode is as follows.

• Forward prediction mode :
SA(T)D0 = QP0(QP) x (2xcode_number_of_Ref_frame + Bits_to_code_MVDFW)

• Backward prediction mode :
SA(T)D0 = QP0(QP) x Bits_to_code_MVDBW

File: JVT-A003r1.DOC Page: 55
Date Printed: 14.03.2002

• Bi-directional prediction mode :
SA(T)D0 = QP0(QP) x (2xcode_number_of_Ref_frame + Bits_to_code_forward_Blk_size +
Bits_to_code_backward_Blk_size + Bits_to_code_MVDFW + Bits_to_code_MVDBW)

• Direct prediction mode :
SA(T)D0 = – 16 x QP0(QP)

• Intra 4x4 mode :
SA(T)D0 = 24 x QP0(QP)

• Intra 16x16 mode :
SA(T)D0 = 0

I.1.1.1.2 Block_difference
For the whole block the difference between the original and prediction is produced

Diff(i,j) = Original(i,j) - Prediction(i,j)

I.1.1.1.3 Hadamard transform
For integer pixel search (see below) we use SAD based on Diff(i,j) for decision. Hence no Hadamard is
done and we use SAD instead of SATD.

∑=
ji

jiDiffSAD
,

),(

However, since we will do a transform of Diff(i,j) before transmission, we will do a better optimisation if
a transform is done before producing SAD. Therefore a two dimensional transform is performed in the
decision loop for selecting intra modes and for fractional pixel search (see below). To simplify
implementation, the Hadamard transform is chosen in this mode decision loop. The relation between
pixels and basis vectors (BV) in a 4 point Hadamard transform is illustrated below (not normalized):

Pixels →
B 1 1 1 1
V 1 1 -1 -1

↓ 1 -1 -1 1
1 -1 1 -1

This transformation is performed horizontally and vertically and result in DiffT(i,j). Finally SATD for
the block and for the present prediction mode is produced.

2/)),((
,
∑=

ji

jiDiffTSATD

I.1.1.1.4 Mode decision
Choose the prediction mode that results in the minimum value SA(T)Dmin = min(SA(T)D+SA(T)D0).

I.1.1.2 Encoding on macroblock level

I.1.1.2.1 Intra coding
When starting to code a macroblock, intra mode is checked first. For each 4x4 block, full coding
indicated in Error! Reference source not found. is performed. At the end of this loop the complete
macroblock is intra coded and a SATDintra is calculated.

I.1.1.2.2 Table for intra prediction modes to be used at the encoder side
Error! Reference source not found. gives the table of intra prediction modes according to probability of
each mode to be used on the decoder side. On the encoder side we need a sort of inverse table.
Prediction modes for A and B are known as in

File: JVT-A003r1.DOC Page: 56
Date Printed: 14.03.2002

TABLE 3. For the encoder we have found a Mode that we want to signal with an ordering number in the
bitstream (whereas on the decoder we receive the order in the bitstream and want to convert this to a
mode). Error! Reference source not found. is therefore the relevant table for the encoder. Example:
Prediction mode for A and B is 2. The string in Error! Reference source not found. is 2 1 0 3 4 5. This
indicates that prediction mode 0 has order 2 (third most probable). Prediction mode 1 is second most
probable and prediction mode 2 has order 0 (most probable) etc. As in

TABLE 3 '–' indicates that this instance can not occur because A or B or both are outside the picture.

TABLE 14

Prediction ordering to be used in the bitstream as a function of prediction mode (see text).
B\A outside 0 1 2 3 4 5

outside 0----- 021--- 102--- 120--- 012--- 012--- 012---

0 0---12 025314 104325 240135 143025 035214 045213

1 0---12 014325 102435 130245 032145 024315 015324

2 0---12 012345 102345 210345 132045 032415 013245

3 0---12 135024 214035 320154 143025 145203 145032

4 1---02 145203 125403 250314 245103 145203 145302

5 1---20 245310 015432 120534 245130 245301 135420

I.1.1.2.3 Inter mode selection
Next motion vector search is performed for motion compensated prediction. A search is made for all 7
possible block structures for prediction as well as from the 5 past decoded pictures. This result in 35
combinations of blocksizes and reference frames. For B-frames, the motion search is also conducted for
the temporal following reference picture to obtain backward motion vectors.

I.1.1.2.4 Integer pixel search
The search positions are organised in a 'spiral' structure around the predicted vector (see vector
prediction). The numbering from 0 and upwards for the first positions are listed below:

.

. 15 9 11 13 16

. 17 3 1 4 18

. 19 5 0 6 20

. 21 7 2 8 22

. 23 10 12 14 24

A parameter MC_range is used as input for each sequence. To speed up the search process, the search
range is further reduced:

• Search range is reduced to: Range = MC_range/2 for all block sizes except 16x16 in prediction
from the most recent decoded picture.

• The range is further reduced to: Range = Range/2 for search relative to all older pictures.

After Range has been found, the centre for the spiral search is adjusted so that the (0,0) vector position is
within the search range. This is done by clipping the horizontal and vertical positions of the search centre
to ±Range.

I.1.1.2.5 Fractional pixel search
Fractional pixel search is performed in two steps. This is illustrated below where capital letters represent
integer positions, numbers represent ½ pixel positions and lower case letters represent ¼ pixel positions.

A B C
1 2 3

D 4 E 5 F
a b c

6 d 7 e 8

File: JVT-A003r1.DOC Page: 57
Date Printed: 14.03.2002

f g h
G H I

Assume that the integer search points to position E. Then ½ pixel positions 1,2,3,4,5,6,7,8 are searched.
Assume that 7 is the best position. Then the ¼ pixel positions a,b,c,d,e,f,g,h are searched. (Notice that by
this procedure a position with ‘more low pass filtering’ – see 4.2.1 - is automatically checked). If motion
compensation with 1/8 pixel accuracy is used, an additional sub-pixel refinement step is performed in the
described way. After fractional pixel search has been performed for the complete macroblock, the SATD
for the whole macroblock is computed: SATDinter.

I.1.1.2.6 Decision between intra and inter
If SATDintra < SATDinter intra coding is used. Otherwise inter coding is used.

I.1.2 High-complexity mode

I.1.2.1 Motion Estimation
For each block or macroblock the motion vector is determined by full search on integer-pixel positions
followed by sub-pixel refinement.

I.1.2.1.1 Integer-pixel search
As in low-complexity mode, the search positions are organized in a spiral structure around a prediction
vector. The full search range given by MC_range is used for all INTER-modes and reference frames. To
speed up the search process , the prediction vector of the 16x16 block is used as center of the spiral search
for all INTER-modes. Thus the SAD values for 4x4 blocks can be pre-calculated for all motion vectors of
the search range and than used for fast SAD calculation of all larger blocks. The search range is not
forced to contain the (0,0)-vector.

I.1.2.1.2 Fractional pixel search
The fractional pixel search is performed as in the low-complexity case.

I.1.2.1.3 Finding the best motion vector
The integer-pixel motion search as well as the sub-pixel refinement returns the motion vector that
minimizes

)())(,()(),(pmmm −⋅+= RcsDTSAJ MOTIONMOTION λλ

with (,)T
x ym m=m being the motion vector, (,)T

x yp p=p being the prediction for the motion vector,

and MOTIONλ being the Lagrange multiplier. The rate term ()R m - p represents the motion information

only and is computed by a table-lookup. The rate is estimated by using the universal variable length code
(UVLC) table, even if CABAC is used as entropy coding method. For integer-pixel search, SAD is used
as distortion measure. It is computed as

,

1, 1

(, ()) [,] [,]
B B

x y
x y

SAD s c s x y c x m y m
= =

= − − −∑m , 48,16 orB = .

with s being the original video signal and c being the coded video signal. In the sub-pixel refinement
search, the distortion measure SATD is calculated after a Hadamard transform (see section Error!
Reference source not found.). The Lagrangian multiplier MOTIONλ is given by

QP
QPQP

PMOTION e −
+⋅⋅= 34

520/
, 5λ

for P-frames and

QP
QPQP

BMOTION e −
+⋅⋅⋅= 34

520/
, 52λ

File: JVT-A003r1.DOC Page: 58
Date Printed: 14.03.2002

for B-frames, where QP is the macroblock quantization parameter.

I.1.2.1.4 Finding the best reference frame
The determination of the reference frame REF and the associated motion vectors for the NxM inter modes
in P-frames and the FWD NxM modes in B-frames is done after motion estimation by minimizing

))())()((()))(,(,()|(REFRREFREFRREFREFcsSATDREFJ MOTIONMOTION +−⋅+= pmm λλ .

The rate term)(REFR represents the number of bits associated with choosing REF and is computed by
table-lookup using UVLC. The reference frame and block sizes for the bi-directional mode are chosen as
combination of the “best” forward and backward mode.

I.1.2.2 Mode decision

I.1.2.2.1 Macroblock mode decision
The macroblock mode decision is done by minimizing the Lagrangian functional

(, , | ,) (, , |) (, , |)MODE MODEJ s c MODE QP SSD s c MODE QP R s c MODE QPλ λ= + ⋅

where QP is the macroblock quantizer, MODEλ is the Lagrange multiplier for mode decision, and

MODE indicates a mode chosen from the set of potential prediction modes:

I-frame: { }1616,44 xINTRAxINTRAMODE ∈ ,

P-frame:








∈
44,84,48,88,168,816,1616

,,1616,44

xxxxxxx

SKIPxINTRAxINTRA
MODE ,

B-frame:





















∈

44,84,48,88

,168,816,1616,44,84

,48,88,168,816,1616

,,,1616,44

xBAKxBAKxBAKxBAK

xBAKxBAKxBAKxFWDxFWD

xFWDxFWDxFWDxFWDxFWD

DIRECTBIDIRECTxINTRAxINTRA

MODE .

Note that the SKIP mode refers to the 16x16 mode where no motion and residual information is
encoded. SSD is the sum of the squared differences between the original block s and its reconstruction
c given as

[] []()

[] []() [] []() ,|,,,|,,,

|,,,)|,,(

8,8

1,1

2
8,8

1,1

2

16,16

1,1

2

∑∑

∑

====

==

−+−+

−=

yx
VV

yx
UU

yx
YY

QPMODEyxcyxsQPMODEyxcyxs

QPMODEyxcyxsQPMODEcsSSD

and (, , |)R s c MODE QP is the number of bits associated with choosing MODE and QP including the

bits for the macroblock header, the motion, and all DCT blocks. []QPMODEyxcY |,, and []yxsY ,

represent the reconstructed and original luminance values; Uc , Vc and Us , Vs the corresponding

chrominance values.

The Lagrangian multiplier MODEλ is given by

()QP
QPQP

PMODE e −
+⋅⋅= 34

510/
, 5λ

for I- and P-frames and

()QP
QPQP

BMODE e −
+⋅⋅= 34

510/
, 20λ

for B-frames, where QP is the macroblock quantization parameter.

File: JVT-A003r1.DOC Page: 59
Date Printed: 14.03.2002

I.1.2.2.2 INTER 16x16 mode decision
The INTER16x16 mode decision is performed by choosing the INTER16x16 mode which results in the
minimum SATD value.

I.1.2.2.3 INTER 4x4 mode decision
For the INTRA4x4 prediction, the mode decision for each 4x4 block is performed similar to the
macroblock mode decision by minimizing

)|,,()|,,(),|,,(QPIMODEcsRQPIMODEcsSSDQPIMODEcsJ MODEMODE ⋅+= λλ

where QP is the macroblock quantizer, MODEλ is the Lagrange multiplier for mode decision, and

IMODE indicates an intra prediction mode:

{ }LRDIAGRLDIAGDIAGVERTHORDCIMODE _,_,,,,∈ .

SSD is the sum of the squared differences between the original 4x4 block luminance signal s and its
reconstruction c, and)|,,(QPIMODEcsR represents the number of bits associated with choosing
IMODE. It includes the bits for the intra prediction mode and the DCT-coefficients for the 4x4 luminance
block. The rate term is computed using the UVLC entropy coding, even if CABAC is used for entropy
coding.

I.1.2.3 Algorithm for motion estimation and mode decision
The procedure to encode one macroblock s in a I-, P- or B-frame in the high-complexity mode is
summarized as follows.

1. Given the last decoded frames, MODEλ , MOTIONλ , and the macroblock quantizer QP

2. Choose intra prediction modes for the INTRA 4x4 macroblock mode by minimizing
)|,,()|,,(),|,,(QPIMODEcsRQPIMODEcsSSDQPIMODEcsJ MODEMODE ⋅+= λλ

with { }LRDIAGRLDIAGDIAGVERTHORDCIMODE _,_,,,,∈ .

3. Determine the best 1616xINTRA prediction mode by choosing the mode that results in the
minimum SATD.

4. Perform motion estimation and reference frame selection by minimizing
))())()((()))(,(,()()|)(,(REFRREFREFRREFREFcsDTSAREFREFJ MOTIONMOTION +−⋅+= pmmm λλ

for each reference frame and motion vector of a possible macroblock mode.

5. Choose the macroblock prediction mode by minimizing
(, , | ,) (, , |) (, , |)MODE MODEJ s c MODE QP SSD s c MODE QP R s c MODE QPλ λ= + ⋅ ,

given QP and MODEλ when varying MODE . MODE indicates a mode out of the set of potential

macroblock modes:

I-frame: { }1616,44 xINTRAxINTRAMODE ∈ ,

P-frame:








∈
44,84,48,88,168,816,1616

,,1616,44

xxxxxxx

SKIPxINTRAxINTRA
MODE ,

B-frame:





















∈

44,84,48,88

,168,816,1616,44,84

,48,88,168,816,1616

,,,1616,44

xBAKxBAKxBAKxBAK

xBAKxBAKxBAKxFWDxFWD

xFWDxFWDxFWDxFWDxFWD

DIRECTBIDIRECTxINTRAxINTRA

MODE .

The computation of (, , | ,)MODEJ s c SKIP QP λ and),|,,(MODEQPDIRECTcsJ λ is simple. The costs

for the other macroblock modes are computed using the intra prediction modes or motion vectors and
reference frames, which have been estimated in steps 2- 4.

File: JVT-A003r1.DOC Page: 60
Date Printed: 14.03.2002

I.2 Quantization
For each transform coefficient K the quantized LEVEL is produced in the following way:

LEVEL = (KxA(QP) + fx220)/220 |f| is 1/3 for intra and 1/6 for inter blocks and f has the same sign as
K.

I.3 Elimination of single coefficients in inter macroblocks

I.3.1 Luma
With the small 4x4 blocks, it may happen that for instance a macroblock has only one nonzero coefficient
with |Level| =1. This will probably be a very expensive coefficient and it could have been better to set it
to zero. For that reason a procedure to check single coefficients have been implemented for inter luma
blocks. During the quantization process, a parameter Single_ctr is accumulated depending on Run and
Level according to the following rule:

• If Level = 0 or (|Level| = 1 and Run > 5) nothing is added to Single_ctr.

• If |Level| > 1, 9 is added to Single_ctr.

• If |Level| = 1 and Run < 6, a value T(Run) is added to Single_ctr. where T(0:5) =(3,2,2,1,1,1)

• If the accumulated Single_ctr for a 8x8 block is less than 4, all coefficients of that luma block are
set to zero. Similarly, if the accumulated Single_ctr for the whole macroblock is less than 6, all
coefficients of that luma macroblock are set to zero.

I.3.2 Chroma
A similar method to the one for luma is used. Single_ctr is calculated similarly for each chroma
component, but for AC coefficients only and for the whole macroblock.

If the accumulated Single_ctr for each chroma component of a macroblock is less than 7, all the AC
chroma coefficients of that component for the whole macroblock are set to zero.

I.4 Encoding with Anticipation of Slice Losses
Low delay video transmission may lead to losses of slices. The decoder may then stop decoding until the
next I picture or P picture may conduct a concealment, for example as explained in Appendix IV, and
continue decoding. In the latter case, spatio-temporal error propagation occurs if the concealed picture
content is referenced for motion compensation. There are various means to stop spatio-temporal error
propagation including the usage of multiple reference pictures and Intra coding of macroblocks. For the
latter case, a Lagrangian mode selection algorithm is suggested as follows.

Since transmission errors occur randomly, the decoding result is also a random process. Therefore, the
average decoder distortion is estimated to control the encoder for a specified probability of packet losses
p. The average decoding result is obtained by running N complete decoders at the encoder in parallel. The
statistical process of loosing a slice is assumed to be independent for each of the N decoders. The slice
loss process for each decoder is also assumed to be i.i.d. and a certain slice loss probability p is assumed
to be known at the encoder. Obviously for large N the decoder gets a very good estimate of the average
decoder distortion. However, with increasing N a linear increase of storage and decoder complexity in the
encoder is incurred. Therefore, this method might not be practical in real-time encoding processes and
complexity and memory efficient algorithms are currently under investigation.

To encode a macroblock in a P picture, the set of possible macroblock types is given as

MBS = { SKIP, INTER_16x16, INTER_16x8, INTER_8x16,

INTER_8x8, INTER_8x4, INTER_4x8, INTER_4x4,

INTRA_4x4, INTRA_16x16}

For each macroblock the coding mode m’ is selected according to

{ }' min
MB

m mm
m D Rλ

∈
= +

S

File: JVT-A003r1.DOC Page: 61
Date Printed: 14.03.2002

with Dm being the distortion in the current macroblock when selecting macroblock mode m and Rm being
the corresponding rate, i.e. the number of bits. For the COPY_MB and all INTER_MxN types, the
distortion Dm is computed as

∑∑
=

−=
N

n i
mniim pff

N
D

1

2
,,))(ˆ(

1

with fi being the original pixel value at position i within the macroblock and mnif ,,
ˆ being the

reconstructed pixel value at position i for coding macroblock mode m in the simulated decoder n. The
distortion for the INTRA macroblocks remains unchanged. Since the various reconstructed decoders also
contain transmission errors, the Lagrangian cost function for the COPY_MB and all INTER_MxN types
increases making INTRA_NxN types more popular.

The λ parameter for mode decision depends on the quantization parameter q as follows

0 .15
(1)

3 4
qq

p e
q

λ += −
− .

File: JVT-A003r1.DOC Page: 62
Date Printed: 14.03.2002

Appendix II Network Adaptation Layer for IP networks
This section covers the Network Adaptation Layer for non-managed, best effort IP networks using RTP
[RFC1889] as the transport. The section will likely end up in the form of a standard’s track RFC
covering an RTP packetization for H.26L.

The NAL takes the information of the Interim File Format as discussed in section Error! Reference
source not found. and converts it into packets that can conveyed directly over RTP. It is designed to be
able to take advantage of more than one virtual transport stream (either within one RTP stream by
unequal packet content protection currently discussed in the IETF and as Annex I of H.323, or by using
several RTP streams with network or application layer unequal error protection).

In doing so, it has to

• arrange partitions in an intelligent way into packets

• eventually split/recombine partitions to match MTU size constraints

• avoid the redundancy of (mandatory) RTP header information and information in the video
stream

• define receiver/decoder reactions to packet losses. Note: the IETF tends more and more to do this
in a normative way, whereas in the ITU and in MPEG this is typically left to implementers. Issue
has to be discussed one day. Current document provides information without makeing any
assumptions about that.

II.1 Assumptions
Any packetization scheme has to make some assumptions on typical network conditions and constraints.
The following set of assumptions have been used in earlier Q.15 research on packetization and are
deemed to be still valid:

• MTU size: around 1500 bytes per packet for anything but dial-up links, 500 bytes for dial-up
links.

• Packet loss characteristic: non-bursty (due to drop-tail router implementations, and assuming
reasonable pacing algorithms (e.g. no bursting occurs at the sender).

• Packet loss rate: up to 20%

II.2 Combining of Partitions according to Priorities
In order to allow unequal protection of more important bits of the bitstream, exactly two packets per slice
are generated (see Q15-J-53 for a detailed discussion). Slices should be used to ensure that both packets
meet the MTU size constraints to avoid network splitting/recombining processes.

The ’First’ packet contains the following partitions:

• TYPE_HEADER

• TYPE_MBHEADER

• TYPE_MVD

• TYPE_EOS

The ’Second’ packet is assembled using the rest of the partitions

• TYPE_CBP Coded Block Patterm

• TYPE_2x2DC 2x2 DC Coefficients

• TYPE_COEFF_Y Luminance AC Coefficients

• TYPE_COEFF_C Chrominance AC Coefficients

This configuration allows decoding the first packet independently from the second (although not vice
versa). As the first packet is more important both because motion information is important for struction

File: JVT-A003r1.DOC Page: 63
Date Printed: 14.03.2002

[for what?] and because the ’First’ packet is necessary to decode the ’Second’, UEP should be used to
protect the ’First’ packet s higher.

II.3 Packet Structure
Each packet consists of a fixed 32 bit header a series of Part-of-Partition structures (POPs).

The packet header contains information

Bit 31 1 == This packet contains a picture header

Bit 30 1 == This packet contains a slice header

Bits 25..29 Reserved

Bits 10-24 StartMB. It is assumed that no picture has more than 2**14 Macroblocks

Bits 0..9 SliceID. It is assumed that a picture does not have more than 1024 slices

Note: The PictureID (TR) can be easily reconstructed from the RTP Timestamp and is therefore not coded
again.

Note: The current software reconstructs QP and Format out of the VLC coded Picture/Slice header
symbols. This is architecturally not nice and should be changed, probably by deleting these two values
from the interim File Format.

Note: This header is likely to change once bigger picture formats etc. come into play.

Each Part-of-Partition structure contains a header of 16 bits whose format is as follows

Bits 15..12 Data Type

Bits 11..0 Length of VLC-coded POP payload (in bits, starting byte-aligned, 0 indicates 4096
bits of payload)

The reasoning behind the introduction of POP packets lies in avoiding large fixed length headers for
(typically) small partitions. See Q15-J-53.

II.4 Packetization Process
The packetization process converts the Interim File Format (or, in a real world system, data partitioned
symbols arriving through a software interface) into packets. The following RTP header fields are used
(see RFC1889 for exact semantics):

• Timestamp: is calculated according to the rules of RFC1889 and RFC2429 based on a 90 KHz
timestamp.

• Marker Bit: set for the very last packet of a picture (’Second’ packet of the last Slice), otherwise
cleared.

• Sequence Number is increased by one for every generated packet, and starts with 0 for easier
debugging (this in contrast to RFC1889, where a random initialization is mandatory for security
purposes).

• Version (V): 2

• Padding (P): 0

• Extension (X): 0

• Csourcecount (CC): 0

• Payload Type (PT): 0 (This in contrast to RFC1889 where 0 is forbidden)

The RTP header is followed by the payload, which follows the packet structure of section II.3.

The RTP packet file, used as the input to packet loss simulators and similar tools (note that this format is
identical to the ones used for IP-related testing during the H.263++ project, so that the loss simulators,
error paytterns etc, can be re-used):

Int32 size of the following packet in bytes

[]byte packet content, starting with the RTP header.

File: JVT-A003r1.DOC Page: 64
Date Printed: 14.03.2002

II.5 De-packetization
The De-packetization process reconstructs a file in the Interim File Format from an RTP packet file (that
is possible subject to packet losses). This task is straightforward and reverse to the packetization process.
(Note that the QP and Format fields currently have to be reconstructed using the VLC-coded symbols in
the TYPE_HEADER partition. This bug in the Interim File Format spec should be fixed some time).

II.6 Repair and Error Concealment
In order to take advantage of potential UEP for the ’First’ packet and the ability of the decoder to
reconstruct data where CBP/coefficient information was lost, a very simple error concealment strategy is
used. This strategy repairs the bitstream by replacing a lost CBP partition with CBPs that indicate no
coded coefficients. Unfortunately, the CBP codewords for Intra and Inter blocks are different, so that
such a repair cannot be done context-insensitive. Instead of (partly) VLC-decoding the CBP partition in
the NAL module in order to insert the correct type of CBP symbol in the (lost) partition, the decoder itself
can be changed to report the appropriate CBP symbols saying ”No coefficients” whenever the symbol
fetch for a CBP symbol returns with the indication of a lost/empty partition.

File: JVT-A003r1.DOC Page: 65
Date Printed: 14.03.2002

Appendix III Interim File Format
[Editor: this text needs work by the proponent until the next meeting Jan 2002. If no

improvements are made, the text will be dropped.]

III.1 General
A file is self-contained.

A file consists of clumps, which are object-like entities and similar to boxes of ISO/IEC 14496-1:2001
(ISO media file format). Name ‘clump’ was chosen to differentiate them from MPEG-4’s boxes, chunks,
and objects as well as from QuickTime’s atoms. Note: In fact, the definition of a clump is the same as the
definition of a box except for the extended type mechanism of a box. Thus, in order to emphasize the
common definition of a clump and a box, it might be appropriate to refer to a box instead of a clump in
this document. However, as this was not agreed in the Pattaya meeting, this change was not done yet.

A clump may contain other clumps. A clump may have member attributes. If a clump contains attributes
and other clumps, clumps shall follow the attribute values.

The attribute values in the clumps are stored with the most significant byte first, commonly known as
network byte order or big-endian format.

A number of clumps contain index values into sequences in other clumps. These indexes start with the
value 0 (0 is the first entry in the sequence).

The Syntactic Description Language (SDL) of ISO/IEC 14496-1:2001 is used to define the file format. In
addition to the existing basic data types, the UVLC elementary data type is defined in this document. It
shall be used to carry variable-length bit-fields that follow the JVT UVLC design.

Unrecognized clumps should be skipped and ignored.

III.2 File Identification
The File Type Clump is the first clump of the file. JVT files shall be identified from a major Brand field
equal to ‘jvt ’.

The preferred file extension is ‘.jvt’.

III.3 Clump

III.3.1 Definition
Clumps start with a header, which gives both size and type. The header permits compact or extended size
(32 or 64 bits). Most clumps will use the compact (32-bit) size. The size is the entire size of the clump,
including the size and type header, fields, and all contained clumps. This facilitates general parsing of the
file.

III.3.1.1 Syntax
aligned(8) class clump (unsigned int(32) clumpType)

unsigned int(32) size;
unsigned int(32) type = clumpType;

if (size==1) {
unsigned int(64) largesize;

} else if (size==0) {
// clump extends to end of file

}
}

File: JVT-A003r1.DOC Page: 66
Date Printed: 14.03.2002

III.3.1.2 Semantics

• size is an integer that specifies the number of bytes in this clump, including all its fields and
contained clumps; if size is 1 then the actual size is in the field largesize; if size is 0, then this
clump is the last one in the file, and its contents extend to the end of the file (normally only used
for an Alternate Track Media Clump)

• type identifies the clump type; standard clumps use a compact type, which is normally four
printable characters, to permit ease of identification, and is shown so in the clumps below.

III.4 Clump Order
An overall view of the normal encapsulation structure is provided in the following table.

The table shows those clumps that may occur at the top-level in the left-most column; indentation is used
to show possible containment. Thus, for example, an Alternate Track Header Clump (atrh) is found in a
Segment Clump (segm).

Not all clumps need be used in all files; the mandatory clumps are marked with an asterisk (*). See the
description of the individual clumps for a discussion of what must be assumed if the optional clumps are
not present.

There are restrictions in which order the clumps shall appear in a file. See the clump definitions for these
restrictions.

TABLE 15

Clump types.

ftyp * III.5.1 File Type Clump, identifies the file format

jvth * III.5.2 File Header Clump, file-level meta-data

cinf III.5.3 Content Info Clump, describes file contents

atin * III.5.4 Alternate Track Info Clump, describes characteristics of tracks

prms * III.5.5 Parameter Set Clump, enumerated set of frequently changing coding parameters

segm * III.5.6 Segment Clump, contains meta- and media data for a defined period of time

atrh * III.5.7 Alternate Track Header Clump, meta-data for a track

swpc III.5.9 Switch Picture Clump, identifies pictures that can be used to switch between
tracks.

atrm * III.5.8 Alternate Track Media Clump, media data for a track

III.5 Clump Definitions

III.5.1 File Type Clump

III.5.1.1 Definition
Clump Type: `ftyp’

Container: File

Mandatory: Yes

Quantity: Exactly one

A media-file structured according to the ISO media file format specification may be compatible with
more than one detailed specification, and it is therefore not always possible to speak of a single ‘type’ or
‘brand’ for the file. This clump identifies a JVT file in a similar fashion without claiming compatibility
with the ISO format. However, it enables other file readers to identify the JVT file type. It must be placed
first in the file.

File: JVT-A003r1.DOC Page: 67
Date Printed: 14.03.2002

III.5.1.2 Syntax
aligned(8) class FileTypeClump aligned(8) extends clump(‘ftyp’) {

unsigned int(32) majorBrand = ‘jvt ’;
unsigned int(16) jmMajorVersion;
unsigned int(16) jmMinorVersion;
unsigned int(32) compatibleBrands[]; // to end of the clump

}

III.5.1.3 Semantics
This clump identifies the specification to which this file complies.

majorBrand is a brand identifier for the interim JVT file format. Only ‘jvt ’ shall be used for majorBrand,
as the file format is not compatible with any other format.

jmMajorVersion and jmMinorVersion define the version of the standard working draft the file complies
with. For example, JM-1 files shall have jmMajorVersion equal to 1 and jmMinorVersion equal to 0.

compatibleBrands is a list, to the end of the clump, of brands. Should only include the entry ‘jvt ’.

Note: As the interim JVT file format is based on the ISO media file format, it might be appropriate to
allow a combination of many ISO media file format based file types into the same file. In such a case, the
majorBrand might not be equal to ‘jvt ‘ but ‘jvt ‘ should be one of the compatibleBrands. As this option
was not discussed in the Pattaya meeting, it is not reflected in the current specification of the interim JVT
file format (this document).

III.5.2 File Header Clump

III.5.2.1 Definition
Clump Type: `jvth’

Container: File

Mandatory: Yes

Quantity: One or more

This clump must be placed as the second clump of the file.

The clump can be repeated at any position of the file when no container clump is open. A File Header
Clump identifies a random access point to the file. In other words, no data prior to a selected File Header
Clump is required to parse any of the succeeding data. Furthermore, any segment can be parsed without a
forward reference to any of the data succeeding the particular segment.

III.5.2.2 Syntax
aligned(8) class fileHeaderClump extends clump(‘jvth’) {

unsigned int(8) majorVersion = 0x00;
unsigned int(8) minorVersion = 0x00;
unsigned int(32) timescale;
unsigned int(32) numUnitsInTick;
unsigned int(64) duration;
unsigned int(16) pixAspectRatioX;
unsigned int(16) pixAspectRatioY;
unsigned int(16) maxPicId;
unsigned int(8) numAlternateTracks;
unsigned int(2) numBytesInPayloadCountMinusOne;
unsigned int(2) numBytesInPictureOffsetMinusTwo;
unsigned int(2) numBytesInPictureDisplayTimeMinusOne;
unsigned int(2) numBytesInPictureCountMinusOne;
unsigned int(2) numBytesInPayloadSizeMinusOne;

}

File: JVT-A003r1.DOC Page: 68
Date Printed: 14.03.2002

III.5.2.3 Semantics
majorVersion and minorVersion indicate the version of the file format. This specification defines the
format for version 0.0 (majorVersion.minorVersion). Version numbering is independent of working draft
document and joint model software as well as the version of the standard | recommendation. This allows
parsers interpret the high-level syntax of the files, even if decoding of a file according to the indicated
joint model or standard version was not supported.

timescale is the number of time units which pass in one second. For example, a time coordinate system
that measures time in sixtieths of a second has a time scale of 60.

numUnitsInTick is the number of time units according to timescale that correspond to one clock tick. A
clock tick is the minimum unit of time that can be presented in the file. For example, if the clock
frequency of a video signal is (30 000) / 1001 Hz, timescale should be 30 000 and numUnitsInTick should
be 1001.

duration is an integer that declares length of the file (in the indicated timescale). Value zero indicates that
no duration information is available.

pixAspectRatioX and pixAspectRatioY define the pixel geometry, calculated by pixAspectRatioX /
pixAspectRatioY. Value zero in either or both of the attributes indicate an unspecified pixel aspect ratio.

maxPicId gives the maximum value for the picture identifier.

numAlternateTracks gives the number of alternative encodings of the same source. Typically each
encoding is targeted for different bit-rate. Each file shall contain at least one track.

numBytesInPayloadCountMinusOne indicates the number of bytes that are needed to signal the
maximum number of payloads in any picture. For example, numBytesInPayloadCountMinusOne equal to
zero indicates that one byte is needed to signal the number of payloads, and the maximum number of
payloads is 255.

numBytesInPictureOffsetMinusTwo indicates the number of bytes that are needed to signal picture
offsets. For example, numBytesInPictureOffsetMinusTwo equal to zero indicates that the offsets are two-
byte integer values with a range of –32768 to 32767.

numBytesInPictureDisplayTimeMinusOne indicates the number of bytes that are needed to signal picture
display time offsets.

numBytesInPictureCountMinusOne indicates the number of bytes that are needed to signal the maximum
number of pictures in a segment.

numBytesInPayloadSizeMinusOne indicates the number of bytes to signal the maximum payload size in
bytes.

III.5.3 Content Info Clump

III.5.3.1 Definition
Clump Type: `cinf´

Container: File

Mandatory: No

Quantity: Zero or more

This clump gives information about the content of the file.

The clump can be repeated at any position of the file when no container clump is open.

III.5.3.2 Syntax
aligned(8) class contentInfoClump extends clump(‘cinf’) {

unsigned int(64) creationTime;
unsigned int(64) modificationTime;

unsigned int(8) titleNumBytes;
if (titleNumBytes)

File: JVT-A003r1.DOC Page: 69
Date Printed: 14.03.2002

unsigned int(8)[titleNumBytes] title;

unsigned int(8) authorNumBytes;
if (authorNumBytes)

unsigned int(8)[authorNumBytes] author;

unsigned int(8) copyrightNumBytes;
if (copyrightNumBytes)

unsigned int(8)[copyrightNumBytes] copyright;

unsigned int(16) descriptionNumBytes;
if (descriptionNumBytes)

unsigned int(8)[descriptionNumBytes] description;

unsigned int(16) URINumBytes;
if (URINumBytes)

unsigned int(8)[URINumBytes] URI;
}

III.5.3.3 Semantics
creationTime is an integer that declares the creation time of the presentation (in seconds since midnight,
Jan. 1, 1904).

modificationTime is an integer that declares the most recent time the presentation was modified (in
seconds since midnight, Jan. 1, 1904.

titleNumBytes gives the number of bytes in title.

title, if present, contains the title of the file coded according to ISO/IEC 10646-1 UTF-8.

authorNumBytes gives the number of bytes in author.

author, if present, contains the author of the source or the encoded representation in the file coded
according to ISO/IEC 10646-1 UTF-8.

copyrightNumBytes gives the number of bytes in copyright.

copyright shall be used only to convey intellectual property information regarding the source or the
encoded representation in the file. copyright is coded according to ISO/IEC 10646-1 UTF-8.

descriptionNumBytes gives the number of bytes in description.

description shall be used only to convey descriptive information associated with the information contents
of the file. description is coded according to ISO/IEC 10646-1 UTF-8.

URINumBytes gives the number of bytes in URI.

URI contains a uniform resource identifier (URI), as defined in IETF RFC 2396. URI is coded according
to ISO/IEC 10646-1 UTF-8. URI shall be used to convey any related information to the file.

III.5.4 Alternate Track Info Clump

III.5.4.1 Definition
Clump Type: ‘atin’

Container: File

Mandatory: Yes

Quantity: One or more.

This clump specifies the characteristics of alternate tracks. The clump shall precede the first Segment
Clump. The clump can be repeated at any position of the file when no container clump is open.

File: JVT-A003r1.DOC Page: 70
Date Printed: 14.03.2002

III.5.4.2 Syntax
aligned(8) class alternateTrackInfo {

unsigned int(16) displayWindowWidth;
unsigned int(16) displayWindowHeight;
unsigned int(16) maxSDUSize;
unsigned int(16) avgSDUSize;
unsigned int(32) avgBitRate;

}

aligned(8) class alternateTrackInfoClump
extends clump(‘atin’) {
(class alternateTrackInfo) trackInfo[numAlternateTracks];

}

III.5.4.3 Semantics
displayWindowWidth and displayWindowHeight declare the preferred size of the rectangular area on
which video images are displayed. The values are interpreted as amount of pixels.

An SDU is defined as the payload and the payload header. maxSDUSize gives the size in bytes of the
largest SDU of the track. avgSDUSize gives the average size of the SDU over the entire track. Value zero
in either attribute indicates that no information is available.

avgBitRate gives the average bit-rate in bits/second over the entire track. Payloads and payload headers
taken into account in the calculation.

III.5.5 Parameter Set Clump

III.5.5.1 Definition
Clump Type: ‘prms’

Container: File

Mandatory: Yes

Quantity: One or more

This clump specifies a parameter set.

Parameter sets can be repeated in the file to allow random access. A parameter set is uniquely identified
within a file based on parameterSetID. Decoders can infer a repetition of a parameter set if a set with the
same parameterSetID has already appeared in a file. A redundant copy of a parameter set can safely be
ignored.

III.5.5.2 Syntax
aligned(8) class parameterSetClump

extends clump(‘prms’) {
unsigned int(16) parameterSetID;
unsigned int(8) profile;
unsigned int(8) level;
unsigned int(8) version;
unsigned int(16) pictureWidthInMBs;
unsigned int(16) pictureHeightInMBs;
unsigned int(16) displayRectangleOffsetTop;
unsigned int(16) displayRectangleOffsetLeft;
unsigned int(16) displayRectangleOffsetBottom;
unsigned int(16) displayRectangleOffsetRight;
unsigned int(8) displayMode;

File: JVT-A003r1.DOC Page: 71
Date Printed: 14.03.2002

unsigned int(16) displayRectangleOffsetFromWindowTop;
unsigned int(16) displayRectangleOffsetFromWindowLeftBorder;
unsigned int(8) entropyCoding;
unsigned int(8) motionResolution;
unsigned int(8) partitioningType;
unsigned int(8) intraPredictionType;

};

III.5.5.3 Semantics
parameterSetId gives the identifier of the parameter set. The identifier shall be unique within a file.

profile defines the coding profile in use.

level defines the level in use within the profile.

version defines the version in use within the profile and the level.

pictureWidthInMBs and pictureHeightInMBs define the extents of the coded picture in macroblocks.

displayRectangleOffsetTop, displayRectangleOffsetLeft, displayRectangleOffsetBottom, and
displayRectangleOffsetRight define the rectangle to be displayed from the coded picture. Pixel units are
used.

displayMode defines the preferred displaying mode. Value zero indicates that the display rectangle shall
be rescaled to fit onto the display window. No scaling algorithm is defined. Image shall be as large as
possible, no clipping shall be applied, image aspect ratio shall be maintained, and image shall be centered
in the display window. Value one indicates that the display rectangle shall be located as indicated in
displayRectangleOffsetFromWindowTop and displayRectangleFromWindowLeftBorder. No scaling shall
be done and clipping shall be applied to areas outside the display window. No fill pattern is defined for
areas in the display window that are not covered by the display rectangle.

displayRectangleOffsetFromWindowTop and displayWindowOffsetFromWindowLeftBorder indicate the
location of the top-left corner of the display rectangle within the display window. The values are given in
pixels. The values are valid only if displayMode is one.

Error! Reference source not found. clarifies the relation of different display rectangle and window
related attributes. The dashed rectangle of in the decoded picture represents the display rectangle, which
is indicated by displayRectangleOffsetTop, displayRectangleOffsetLeft, displayRectangleOffsetBottom,
and displayRectangleOffsetRight.

entropyCoding equal to zero stands for UVLC, whereas value one stands for CABAC.

motionResolution equal to zero stands for full-pixel motion resolution, one stands for half-pixel motion
resolution, two stands for ¼-pixel motion resolution, and three stands for 1/8-pixel motion resolution.

partitioningType equal to zero stands for the single slice mode and one stands for the data partitioning
mode.

File: JVT-A003r1.DOC Page: 72
Date Printed: 14.03.2002

intraPredictionType equal to zero stands for normal INTRA prediction, whereas one stands for the
constrained INTRA prediction.

FIGURE 24

Relation of display window and rectangle attributes.

III.5.6 Segment Clump

III.5.6.1 Definition
Clump Type: `segm’

Container: File

Mandatory: Yes

Quantity: One or more

A segment clump contains data from a certain period of time. Segments shall not overlap in time.
Segments shall appear in ascending order of time in the file. A segment clump is a container clump for
several other clumps.

III.5.6.2 Syntax
aligned(8) class SegmentClump extends Clump(‘segm’) {

unsigned int(64) fileSize;
unsigned int(64) startTick;
unsigned int(64) segmentDuration;

}

III.5.6.3 Semantics
fileSize indicates the number of bytes from the beginning of the Segment Clump to the end of the file.
Value zero indicates that no size information is available. When downloading a file to a device with
limited storage capabilities, fileSize can be used to determine if a file fits into the available storage space.
In a progressive downloading service, fileSize, startTick, and duration (in the File Header Clump) can be

displayWindowWidthpictureWidthInMBs

pi
ct

ur
eH

ei
gh

tIn
M

B
s

Decoded picture Displayed picture

di
sp

la
yW

in
do

w
H

ei
gh

t

di
sp

la
yR

ec
ta

ng
le

O
ffs

et
F

ro
m

W
in

do
w

T
op

displayRectangleOffsetFromWindowLeftBorder

File: JVT-A003r1.DOC Page: 73
Date Printed: 14.03.2002

used to estimate the average bit-rate of the file including meta-data. This estimation can then be used to
decide how much initial buffering is needed before starting the playback.

startTick indicates the absolute time of the beginning of the segment since the beginning of the
presentation (time zero). Any time offsets within the segment are relative to startTick.

segmentDuration indicates the duration of the segment. Value zero indicates that no duration information
is available.

III.5.7 Alternate Track Header Clump

III.5.7.1 Definition
Clump Type: ‘atrh’

Container: Segment Clump (‘segm’)

Mandatory: Yes

Quantity: One or more

An alternate track represents an independent encoding of the same source as for the other alternate tracks.
The Alternate Track Header Clump contains meta-data for an alternate track. The clumps shall appear in
the same order in all Segment Clumps and they can be indexed starting from zero. Each succeeding clump
is associated with an index one greater than the previous one. The index can be used to associate the
clump with a particular track and with the information given in the Alternate Track Info Clump.

The clump contains an indication of the number of the pictures in the alternate track in this segment. In
addition, the clump contains picture information for each of these pictures. Picture information shall
appear in ascending order of picture identifiers (in modulo arithmetic). In other words, picture
information shall appear in coding/decoding order of pictures.

A picture information block contains a pointer to the coded representation of the picture. A picture is
associated with a display time and with a number of so-called payloads.

A payload refers to a slice, a data partition, or a piece of supplemental enhancement information. A
payload header refers to an equivalent definition as in VCEG-N72R1. For example, a payload header of a
single slice includes the “first byte”, an indication of the parameter set in use, and the slice header.

III.5.7.2 Syntax
aligned(8) class payloadInfo {

unsigned int((numBytesInPayloadSizeMinusOne + 1) * 8) payloadSize;
unsigned int(8) headerSize;
unsigned int(4) payloadType;
unsigned int(1) errorIndication;
unsigned int(3) reserved = 0;
if (payloadType == 0) { // single slice

UVLC parameterSet;
sliceHeader;

else if (payloadType == 1) { // partition A
UVLC parameterSet;
sliceHeader;
UVLC sliceID;

}
else if (payloadType == 2 || partitionType == 3) { // Partition B

or C
UVLC pictureID;
UVLC sliceID;

}

File: JVT-A003r1.DOC Page: 74
Date Printed: 14.03.2002

else if (payloadType == 5) { // Supplemental enhancement
information

// no additional codewords
}

}

aligned(8) class pictureInfo {
bit intraPictureFlag;
aligned(8) int((numBytesInPictureOffsetMinusTwo + 2) * 8)

pictureOffset;
int((numBytesInPictureDisplayTimeMinusOne + 1) * 8)

pictureDisplayTime;
unsigned int((numBytesInPayloadCountMinusOne + 1) * 8)

numPayloads;
(class payloadInfo) payloadData[numPayloads];

}

aligned(8) class AlternateTrackHeaderClump extends Clump(‘atrh’) {
unsigned int((numBytesInPictureCountMinusOne + 1) * 8)

numPictures;
(class pictureInfo) pictureData[numPictures];

}

III.5.7.3 Semantics
payloadInfo gives information related to a payload. payloadSize indicates the number of bytes in the
payload (excluding the payload header). The value of headerSize is the number of bytes in the payload
header, i.e., the number of bytes remaining in the structure. The rest of the data is defined in VCEG-
N72R1.

pictureInfo gives information related to a picture.

intraPictureFlag is set to one, when the picture is an INTRA picture. The flag is zero otherwise.

A picture pointer is maintained to point to the beginning of the latest picture in the corresponding
Alternate Track Media Clump. The pointer is relative to the beginning of the Alternate Track Media
Clump. pictureOffset gives the increment or the decrement (in bytes) for the picture pointer to obtain the
coded data for the picture. Initially, before updating the pointer for the first picture of the alternate track in
a segment, the picture pointer shall be zero.

pictureDisplayTime gives the time when the picture is to be displayed. It is assumed that the picture
remains visible until the next picture is to be displayed. The value is relative to the corresponding value of
the previous picture.

numPayloads indicates the number of payloads in the picture. payloadData is an array of payloadInfo
structures signaling the characteristics of the payloads.

numPictures indicates the number of pictures in the track during the period of the segment. pictureData is
an array of pictureInfo structures signaling the meta-data of the pictures.

III.5.8 Alternate Track Media Clump

III.5.8.1 Definition
Clump Type: ‘atrm’

Container: Segment Clump (‘segm’)

Mandatory: Yes

Quantity: One or more

File: JVT-A003r1.DOC Page: 75
Date Printed: 14.03.2002

An alternate track represents an independent encoding of the same source as for the other alternate tracks.
The Alternate Track Media Clump contains the media-data for an alternate track and for the duration of
the segment. The clumps shall appear in the same order in all Segment Clumps and they can be indexed
starting from zero. Each succeeding clump is associated with an index one greater than the previous one.
The index can be used to associate the clump with a particular track and with the information given in
other track-related clumps.

Pictures can appear in the clump in any order. This ensures that disposable pictures, such as conventional
B pictures, can be located flexibly. Data for different pictures shall not overlap. Data for a picture consists
of payloads, i.e., slices, data partitions, and pieces of supplemental enhancement information. Payloads
shall appear in successive bytes, and the order of payloads shall be the same as in the Alternate Track
Header Clump.

III.5.8.2 Syntax
aligned(8) class AlternateTrackMediaClump extends Clump(‘atrm’) {
}

III.5.9 Switch Picture Clump

III.5.9.1 Definition
Clump Type: ‘swpc’

Container: Segment Clump (‘segm’)

Mandatory: No

Quantity: Zero or one

This clump defines which pictures can be used to switch from an alternate track to another. Typically
these pictures are SP pictures.

III.5.9.2 Syntax
aligned(8) class uniquePicture {

unsigned int(8) alternateTrackIndex;
unsigned int((numBytesInPictureCountMinusOne + 1) * 8)

pictureIndex;
}

aligned(8) class switchPictureSet {
unsigned int(8) numSyncPictures;
(class uniquePicture) syncPicture[numSyncPictures];

}

aligned(8) class switchPictureClump extends Clump(‘swpc’) {
unsigned int((numBytesInPictureCountMinusOne + 1) * 8)

numSwitchPictures;
(class switchPictureSet) switchPicture[numSwitchPictures];

}

III.5.9.3 Semantics
uniquePicture uniquely identifies a picture within this segment. It contains two attributes:
alternateTrackIndex and pictureIndex. alternateTrackIndex identifies the alternate track where the picture
lies, and pictureIndex gives the picture index in coding order.

switchPictureSet gives a set of pictures that represent the same picture contents and can be used to replace
any picture in the set as a reference picture for motion compensation. numSyncPictures gives the number

File: JVT-A003r1.DOC Page: 76
Date Printed: 14.03.2002

of pictures in the set. syncPicture is an array of uniquePicture structures indicating which pictures belong
to the set.

numSwitchPictures indicates the number of picture positions that have multiple interchangeable
representations. switchPicture is an array of switchPictureSet structures indicating the set of pictures that
can be used interchangeably for each picture position.

File: JVT-A003r1.DOC Page: 77
Date Printed: 14.03.2002

Appendix IV Non-Normative Error Concealment

IV.1 Introduction
It is assumed that no erroneous or incomplete slices are decoded. When all received slices of a picture
have been decoded, skipped slices are concealed according to the presented algorithms. In practice, record
is kept in a macroblock (MB) based status map of the frame. The status of an MB in the status map is
"Correctly received" whenever the slice that the MB is included in was available for decoding, "Lost"
otherwise. After the frame is decoded if the status map contains "Lost" MBs, concealment is started.

Given the slice structure and MB-based status map of a frame, the concealment algorithms were designed
to work MB-based. The missing frame area (pixels) covered by MBs marked as "Lost" in the status map
are concealed MB-by-MB (16x16 Y pixels, 8x8 U, V pixels). After an MB has been concealed it is
marked in the status map as "Concealed". The order in which "Lost" MBs are concealed is important as
also the "Concealed", and not only the "Correctly received" MBs are treated as reliable neighbors in the
concealment process whenever no "Correctly received" immediate neighbor of a "Lost" MB exists. In
such cases a wrong concealment can result in propagation of this concealment mistake to several neighbor
concealed MBs. The processing order chosen is to take the MB columns at the edge of the frame first and
then move inwards column-by-column so to avoid a concealment mistake made in the usually "difficult"
(discontinuous motion areas, large coded prediction error) center part of the frame propagate to the "easy"
(continuous motion area, similar motion over several frames) side parts of the frame.

FIGURE 25 shows a snapshot of the status map during the concealment phase where already concealed
MBs have the status of "Concealed", and the currently processed (concealed) MB is marked as "Current
MB".

Current MB

3 MB correctly received

2 MB concealed

0 MB lost

3 3 3 3 3 3 3 3
3 3 3 3 3 0 0 0 2 2 2
2 2 2 2 0 0 0 0 2 2 2
2 2 2 0 0 0 0 2 2 2
2 2 2 2 0 0 3 3 3 3 3
3 3 3 3 3 3 3 3

Lost slice

FIGURE 25

MB status map at the decoder

IV.2 INTRA Frame Concealment
Lost areas in INTRA frames have to be concealed spatially as no prior frame may resemble the INTRA
frame. The selected spatial concealment algorithm is based on weighted pixel averaging presented in A.
K. Katsaggelos and N. P. Galatsanos (editors), “Signal Recovery Techniques for Image and Video
Compression and Transmission”, Chapter 7, P. Salama, N. B. Shroff, and E. J. Delp, “Error
Concealment in Encoded Video Streams”, Kluwer Academic Publishers, 1998.

Each pixel value in a macroblock to be concealed is formed as a weighted sum of the closest boundary
pixels of the selected adjacent macroblocks. The weight associated with each boundary pixel is relative to
the inverse distance between the pixel to be concealed and the boundary pixel. The following formula is
used:

Pixel value = (∑ai×(B-di)) / ∑(B-di)

where ai is the pixel value of a boundary pixel in an adjacent macroblock, B is the horizontal or vertical
block size in pixels, and di is the distance between the destination pixel and the corresponding boundary
pixel in the adjacent macroblock.

File: JVT-A003r1.DOC Page: 78
Date Printed: 14.03.2002

In

15

32 7

21

Pixel to be concealed

Macroblock

FIGURE 26, the shown destination pixel is calculated as follows

Pixel value = (15x(16-3) + 21x(16-12) + 32x(16-7) + 7x(16-8)) / (13 + 4 + 9 + 8) ≈ 18

Only "Correctly received" neighboring MBs are used for concealment if at least two such MBs are
available. Otherwise, neighboring "Concealed" MBs are also used in the averaging operation.

15

32 7

21

Pixel to be concealed

Macroblock

FIGURE 26

Spatial concealment based on weighted pixel averaging

IV.3 INTER and SP Frame Concealment

IV.3.1 General
Instead of directly operating in the pixel domain a more efficient approach is to try to "guess" the motion
in the missing pixel area (MB) by some kind of prediction from available motion information of spatial or
temporal neighbors. This "guessed" motion vector is then used for motion compensation using the
reference frame. The copied pixel values give the final reconstructed pixel values for concealment, and no
additional pixel domain operations are used. The presented algorithm is based on W.-M. Lam, A. R.
Reibman, and B. Liu, “Recovery of lost or erroneously received motion vectors,” in Proc. ICASSP’93,
Minneapolis, Apr. 1993, pp. V417–V420.

File: JVT-A003r1.DOC Page: 79
Date Printed: 14.03.2002

IV.3.2 Concealment using motion vector prediction
The motion activity of the correctly received slices of the current picture is investigated first. If the
average motion vector is smaller than a pre-defined threshold (currently ¼ pixels for each motion vector
component), all the lost slices are concealed by copying from co-located positions in the reference frame.
Otherwise, motion-compensated error concealment is used, and the motion vectors of the lost
macroblocks are predicted as described in the following paragraphs.

The motion of a "Lost" MB is predicted from a spatial neighbor MB's motion relying on the statistical
observation, that the motion of spatially neighbor frame areas is highly correlated. For example, in a
frame area covered by a moving foreground scene object the motion vector field is continuous, which
means that it is easy to predict.

The motion vector of the "Lost" MB is predicted from one of the neighbor MBs (or blocks). This
approach assumes, that the motion vector of one of the neighbor MBs (or blocks) models the motion in
the current MB well. It was found in previous experiments, that median or averaging over all neighbors'
motion vectors does not give better results. For simplicity, in the current implementation the smallest
neighbor block size that is considered separately as predictor is set to 8x8 Y pixels. The motion of any
8x8 block is calculated as the average of the motion of the spatially corresponding 4x4 or other shaped
(e.g. 4x8) blocks.

The decision of which neighbor's motion vectors to use as prediction for the current MB is made based on
the smoothness of the concealed (reconstructed) image. During this trial procedure the concealment pixel
values are calculated using the motion vector of each candidate (motion compensated pixel values). The
motion vector, which results in the smallest luminance change across block boundaries when the block is
inserted into its place in the frame is selected. (see FIGURE 27). The zero motion vector case is always
considered and this copy concealment (copy pixel values from the co-located MB in the reference frame)
is evaluated similarly as the other motion vector candidates.

1botmv 2botmv

topmv

rightmv IN
OUT

FIGURE 27

Selecting the motion vector for prediction

The winning predictor motion vector is the one which minimizes the side match distortion smd , which is

the sum of absolute Y pixel value difference of the IN-block and neighboring OUT-block pixels at the
boundaries of the current block:

{ }, , , 1

ˆminarg ()
N

dir IN OUT
sm j j

dir top bot left right j
d Y Y N

∈ =

  = −   
∑ mv

When "Correctly received" neighbor MBs exist the side match distortion is calculated only for them.
Otherwise all the "Concealed" neighbor MBs are included in the calculation.

File: JVT-A003r1.DOC Page: 80
Date Printed: 14.03.2002

IV.3.3 Handling of Multiple reference frames
When multiple references are used, the reference frame of the candidate motion vector is used as the
reference frame for the current MB. That is, when calculating the side match distortion smd , the IN-block

pixels are from the reference frame of the candidate motion vector.

IV.4 B Frame Concealment
A simple motion vector prediction scheme according to the prediction mode of the candidate MB is used
as follows:

If the prediction mode of the candidate MB is

• forward prediction mode, use the forward MV as the prediction the same way as for P frames.

• backward prediction mode, use the backward MV as the prediction.

• bi-directional prediction mode, use the forward MV as the prediction, and discard the backward
MV.

• direct prediction mode, use the backward MV as the prediction.

Note that 1) Each MV, whether forward or backward, has its own reference frame. 2) An Intra coded
block is not used as a motion prediction candidate.

IV.5 Handling of Entire Frame Losses
TML currently lacks H.263 Annex U type of reference picture buffering. Instead, a simple sliding
window buffer model is used, and a picture is referred using its index in the buffer. Consequently, when
entire frames are lost, the reference buffer needs to be adjusted. Otherwise, the following received frames
would use wrong reference frames. To solve this problem, the reference picture ID is used to infer how
many frames are lost, and the picture indices in the sliding window buffer are shifted appropriately.

