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Abstract—A new content-based approach for improved 
H.264/MPEG4-AVC video coding is presented. The framework is 
generic because it is based on a closed-loop texture analysis by 
synthesis algorithm that can automatically identify and recover 
from video quality impairments through artifact detectors and 
appropriate countermeasures. The algorithm is flexible, for it can 
in principle be integrated into any standards-compliant video 
codec. The fundamental assumption of our approach is that many 
video scenes can be classified into subjectively relevant and 
irrelevant textures. The texture categorization is thereby done by 
a texture analyzer (encoder side), while the corresponding texture 
synthesizer performs the replacement of the subjectively 
irrelevant textures (decoder side), given the side information 
generated by the texture analyzer. When implementing the 
proposed approach into an H.264/MPEG4-AVC codec, bit rate 
savings of up to 33.3% compared to an H.264/MPEG4-AVC video 
codec without our approach are reported. 

Content-based coding; Video coding; Texture analysis; Texture 
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I.  INTRODUCTION 
Content-based video coding aims to achieve bit rate 

reduction of compressed video sequences, while preserving 
high visual quality of decoded data. Content-based video 
coding approaches typically decompose the sequence into 
spatially, temporally, or spatio-temporally coherent regions. 
The coherence of a region is thereby measured based on 
motion, color, and/or texture features. These object attributes 
are typically described via compact representations given the 
video coding framework.  

Content-based video coding schemes can be clustered into 
low-, mid- and high-level techniques based on the semantic 
significance of the objects they are tuned to identify. Systems 
with the capability of automatically capturing semantically 
meaningful objects can be seen as high-level approaches. They 
represent the most challenging types of content-based video 
coding and will probably be beyond reach for several years to 
come. Mid-level techniques reduce coding costs by processing 
different regions with similar motion, texture or color 
characteristics together, e.g. see [1],[3],[4]. For such 
algorithms, the semantic content of the identified objects is 
irrelevant. However, these objects must be described 
consistently in space and time. Low-level approaches can be 
seen as coding techniques that exclusively rely on spatial or 

temporal features for the detection of homogeneous regions 
and do not incorporate any inference mechanism concerning 
tracking and/or spatial consistency of identified regions [5],[6]. 

In this paper, a generic, closed-loop, mid-level content-
based video coding scheme is proposed. It is assumed that 
many video scenes can be classified into detail-relevant and 
detail-irrelevant textures. Detail-irrelevant textures are highly 
texturized regions that are displayed with restricted spatial 
accuracy (e.g. flowers in the well-known test sequence “Flower 
Garden”), while the other textures are referred to as detail-
relevant textures. It is further assumed that for detail-irrelevant 
textures, the viewer perceives the semantic meaning of the 
displayed texture rather than the specific details therein. Many 
detail-irrelevant texture regions are costly to code, when using 
the mean squared error (MSE) criterion as the coding 
distortion. Thus, in this paper, it is argued that MSE is not an 
adequate distortion measure for efficient coding of detail-
irrelevant textures and it is claimed that global similarity 
measures, e.g. MPEG-7 descriptors [7], are better suited for 
assessing the distortion of such textures, as no MSE-accurate 
regeneration of these is requested. Often, the required bit rate 
for transmitting detail-irrelevant textures can be significantly 
reduced, if the number of bits needed for their description 
using the modified distortion measure is smaller than the 
number of bits for the description using MSE. The largest 
problem to solve within this approach is to perform the 
algorithm in an automatic way. Moreover, it also must be 
generic in that if a detail-irrelevant texture becomes detail-
relevant (e.g. when zooming in on the detail), the algorithm 
must seamlessly switch between the two ways of coding. These 
challenges have been addressed in this work. 

The remainder of the paper is organized as follows. In 
Section II, the principle of the automatic analysis-synthesis 
loop is introduced. The components of the loop, including 
texture analysis, texture synthesis, and video quality 
assessment among others, are presented in corresponding 
subsections. Finally, in Section III, the experimental results are 
shown. 
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II. PRINCIPLE OF THE CLOSED-LOOP VIDEO ANALYSIS-
SYNTHESIS ALGORITHM 

Mid-level video coding schemes can be found in the 
literature. One of the early descriptions of this coding strategy 
was published by Wang and Adelson [2]. They assume that 
any video sequence can be represented as a set of overlapping 
layers, where a layer is a description of a coherent motion 
region. Ordering the layers in depth and applying the rules of 
compositing ideally yields the original video sequence. 
Dumitraş and Haskell proposed a content-based video coding 
method by texture replacement [4]. Replaceable textures are 
identified and removed from the corresponding regions of the 
original pictures. The resulting video sequence is encoded and 
the extracted parameters of the removed textures transmitted to 
the decoder. Absent or very slow global motion of removable 
textures as well as few scene objects with moderate motion are 
assumed, which are very strong constraints that confine the 
practical usability of this approach to a limited number of 
applications. Both algorithms [2],[4] are open-loop, i.e. there 
is no mechanism to identify and where necessary alleviate 
artifacts due to erroneous analysis or synthesis, which yields 
unregulated (subjective) video quality at the decoder output.  

In this work, we have developed the closed-loop analysis-
synthesis algorithm depicted in Fig. 1. The incoming video 
sequence is divided into overlapping groups of pictures (GoP). 
The first GoP consists of the first I picture of the sequence and 
the last picture of the GoP is the first P picture. Between these 
I and P pictures are B pictures. For example, when 3 B 
pictures are used, the first GoP has the structure IBBBP1 in 
temporal order. The second GoP consists of the last picture 
(the P1 picture) of the first GoP and the next P picture. In our 
example, the second GoP has the structure P1BBBP2. I and P 
pictures are so-called key pictures and coded using MSE 
distortion and an H.264/MPEG4-AVC encoder. B pictures 
(between the key pictures) are candidates for a possible partial 
texture synthesis and are also otherwise coded using MSE 
distortion and H.264/MPEG4-AVC. 

Each GoP is analyzed by the texture analyzer (TA) and 
synthesized by the texture synthesizer (TS), given the 
(quantized) side information generated by the TA. The 
synthesized GoP is then submitted to the video quality 
assessment unit (VQA) for detection of possible spatial or 
temporal impairments in the reconstructed video.  
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Fig. 1 - Principle of the closed-loop analysis-synthesis video 
  coding approach 

In the subsequent iterations, the degrees of freedom of the 
system are explored by a state machine (SM) in the quest of 
even better side information. Once all relevant system states 
have been visited for the given input GoP, a rate-distortion 
decision is made and the optimized side information is 
transmitted to the decoder. Detail-irrelevant textures for which 

no rate-distortion gains can be achieved are coded by the 
reference codec, which acts as fallback coding solution. 
Furthermore, the GoP structure used in our framework allows 
a seamless change from detail-irrelevant to detail-relevant 
coding, as the key pictures are coded based on MSE. In the 
following, the modules of our content-based video coding 
approach are explained in-depth. 

A. Texture Analyzer (TA) 
The TA identifies detail-irrelevant textures and generates 

the corresponding side information, which yields a spatio-
temporal decomposition of the video sequence. 

The principle of the TA is depicted in Fig. 2. It consists of 
an optional spatial texture analysis (STA) module, which 
creates initial picture partitions that typically provide the 
subsequent motion analysis with very helpful hints w.r.t. 
amount and size of regions. However, the STA module can be 
bypassed if desired. Motion analysis is done based on the 
estimated dense motion field between two consecutive 
pictures [8]. The motion field is split (MS module) into 
homogeneous motion regions based on a robust, iterative 
maximum-likelihood process called M-estimation [1]. The 
latter is a model-fitting approach that detects outliers within a 
dataset a posteriori and without any prior knowledge of outlier 
characteristics. The observations are a set of motion vectors in 
our specific framework, while outliers can be seen as motion 
vectors that reveal different motion properties than the inliers. 
Motion homogeneity is defined w.r.t. the perspective motion 
model [1], which was selected due to its ability to describe 
translation, rotation, and scaling of a planar patch in 3-D as we 
assume this geometry also for our synthesized textures. The M-
estimator minimizes the influence of outliers on the model 
optimization by penalizing motion vectors yielding high 
modeling costs. The MSE-based cost function is thereby 
defined as the deviation between the observed [8] and the 
modeled dense motion field. 
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Fig. 2 - Principle of the spatio-temporal texture analyzer 

In order to overcome the typically over-segmented result of 
the MS module, homogeneous texture segments that have 
similar motion parameters are fused to one single region by the 
motion merger (MM) module. The similarity criterion can be 
summarized as follows. Two homogeneous regions are merged 
when the modeling costs of the overall region do not exceed 
the single costs. 

Temporally consistent label assignment to homogeneous 
textures is ensured by setting up a "texture catalog” (TC). Each 
identified texture is mapped to one of the indexed textures if 
similar or added to the texture catalog otherwise. Similarity is 
measured w.r.t. MPEG-7’s scalable color descriptor [7], which 
is basically a color histogram in the HSV color space. MPEG-
7 recommends corresponding distance measures for similarity 



 

 

evaluation [7]. Two feature vectors are considered to be 
similar when the distance between them is smaller than a given 
threshold. 

As a result of the texture analysis process, a mask sequence 
showing the detail-irrelevant textures of the considered GoP is 
generated as well as a perspective motion parameter set and a 
control parameter for each detail-irrelevant texture region, 
using the side information generator (SIG) module. The 
control parameter indicates whether the current texture region 
(residing in a B picture) is to be synthesized using the first or 
the last picture of the GoP, which are non-synthesized I or P 
key pictures, as mentioned above. The motion parameter set 
describes the texture mapping operation from the key picture 
towards the missing texture region in the corresponding B 
picture. 

B. Quantization (Q) 
The motion parameters generated by the texture analyzer 

are uniformly quantized and their quantization step size can be 
varied. 

C. Texture Synthesizer (TS) 
Two major texture types are considered at the texture 

synthesis (TS) stage; rigid (e.g. grass, flowers) and non-rigid 
textures (e.g. water, clouds). Non-rigid textures typically 
feature local motion activity, which is not the case for rigid 
video textures. 

The texture synthesizer depicted in Fig. 3 is designed for 
rigid objects. The underlying hypothesis of this approach is 
that the picture-to-picture displacement of the objects can be 
described using the perspective motion model. The texture 
synthesizer warps the texture from the first or the last (key) 
picture of the considered GoP towards a synthesizable texture 
region identified by the texture analyzer as illustrated in Fig. 3, 
given a motion parameter set and a control parameter 
(cp. Section II.A.). 
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Fig. 3 - Texture synthesizer filling rigid texture region identified  

   by texture analyzer using left key picture 

The texture synthesizer for non-rigid textures is depicted 
in Fig. 4. In this approach, a texture is modeled based on 
Markov Random Field methods [9]. For that, each texture 
sample is assumed to be predictable from a small set of 
spatially neighboring samples and independent of the rest of 
the texture. 
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Fig. 4 - Texture synthesizer filling non-rigid texture region  

 identified by texture analyzer using left key picture 

The initial step of warping a texture region from the key to 
the current picture is the same as in Fig. 3. The causal 
neighborhood of each sample of the missing texture is 
compared to the neighborhoods of the warped samples within a 
restricted area (typically 3x3 samples) in order to capture local 
motion characteristics of the given texture. Hence, motion 
estimation has to be done at the decoder with a very limited 
search range. The warped sample with the most similar 
neighborhood (MSE) is finally copied to the location of the 
corresponding sample of the missing texture. 

D. Video Quality Assessment (VQA) 
Video texture synthesis can potentially yield annoying 

spatial and/or temporal artifacts. Objective measures indicating 
impairments are presented in the following. The purpose of our 
methods is to infer the impact of texture synthesis from 
specific features that can be automatically extracted from the 
video.  

It is obvious that, given a correct texture analysis within the 
selected detail-irrelevant regions, most spatial impairments 
will occur at the transitions from synthesized to original 
textures in the form of spurious edges (cp. Fig. 3). Thus, the 
spatial quality assessor consists of a relatively simple linear 
anisotropic edge detector, the Kirsch detector [10]. The reason 
for selecting the Kirsch detector over other edge detectors is 
described in [11]. Only the vertical and horizontal 
directionalities of the detector are used, as the synthesizable 
texture regions are composed of square macroblocks of 
H.264/MPEG4-AVC [12]. The spatial quality assessor 
compares the ratio of the edge samples found in the 
synthesized and original pictures with a critical threshold [11]. 
In case the threshold is exceeded, the synthetic picture is 
classified as erroneous. 

Temporal VQA consists in evaluating the motion 
properties of the synthesized textures w.r.t. the original 
reference. The basis of our temporal impairment detector is the 
estimated dense motion field in the relevant regions. It is 
analyzed (on a macroblock basis) whether the motion vectors 
of the original and corresponding synthetic texture come from 
the same distribution. The distance between two distributions 
can thereby be determined with any adequate distance measure 
(e.g. l1 norm). This approach allows for small deviations 
between original and synthetic motion, which is in line with 
the fundamental assumptions of our content-based video 
coding approach. 



 

 

E. State Machine (SM) 
The state machine explores relevant system states. The 

quantizer resolution is varied, which allows examination of the 
sensitivity of synthesis results to the accuracy degradation of 
the motion parameters. The impact of motion description 
complexity on the texture synthesizer is also explored, i.e. the 
motion of detail-irrelevant regions is successively described 
with 8 (perspective model), 6 (affine model) and 2 
(translational model) of the 8 perspective motion parameters 
and the corresponding synthetic GoPs are evaluated with the 
VQA module. 

III. EXPERIMENTAL RESULTS 
We have integrated our approach into an H.264/MPEG4-

AVC codec. The test sequences “Concrete”, “City”, 
“Preakness”, and “Coastguard” are used to demonstrate that an 
approximate representation of some rigid and non-rigid 
textures can be done without subjectively noticeable loss of 
quality. 

 

Fig. 5 - Bit rate savings w.r.t. quantization accuracy 

The following set-up was used for the H.264/MPEG4-AVC 
codec. Three B pictures, one reference picture for each P 
picture, CABAC (entropy coding method), rate distortion 
optimization, 30 Hz progressive video at CIF resolution. The 
quantization parameter QP was set to 16, 20, 24, 28 and 32. 
Fig. 5 depicts the bit rate savings obtained for each of the test 
sequences. Here we have assumed and verified through visual 
inspection that the MSE coded and synthesized textures cannot 
be distinguished. It can be seen that the highest savings are 
measured for the highest quantization accuracy considered. 
The most substantial bit rate savings (33.3%) are measured for 
the “City” sequence. The bit rate savings decrease with the 
quantization accuracy due to the fact that the volume of the 
side information remains constant over the different QP 
settings. All results are derived from decoding bit-streams and 
the encoder is run automatically for each sequence. Sequences 
for subjective evaluation can be downloaded from  

http://ip.hhi.de/imagecom_G1/closed_loop.htm. 

IV. CONCLUSIONS AND FUTURE WORK 
An automatic, closed-loop, content-based approach for 

improved H.264/MPEG4-AVC video coding was presented. 
The fundamental hypothesis of our approach is that textures in 
a video sequence can be classified into two classes: detail-
relevant and detail-irrelevant. Our experiments show that our 
algorithm yields bit rate savings of up to 33.3% compared to 
an H.264/MPEG4-AVC video codec without our approach.  

The complexity of the analysis-synthesis loop will be 
addressed in future implementations. The state machine will, 
for instance, be provided with a memory to avoid considering 
all discrete system states for each GoP. This will allow setting 
the initial system’s state for the current GoP to the best state, in 
the rate-distortion sense, selected for the previous GoP. 
Synthesis of textures with local motion (e.g. water) will be 
improved. 
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